
Nþ 1 formalism in Einstein-Gauss-Bonnet gravity

Takashi Torii1,* and Hisa-aki Shinkai2,+

1Department of General Education, Osaka Institute of Technology, Omiya, Asahi-ku, Osaka 535-8585, Japan
2Department of Information Systems, Osaka Institute of Technology, Kitayama, Hirakata, Osaka 573-0196, Japan

(Received 16 September 2008; published 28 October 2008)

Towards the investigation of the full dynamics in a higher-dimensional and/or a stringy gravitational

model, we present the basic equations of the Einstein-Gauss-Bonnet gravity theory. We show the ðN þ
1Þ-dimensional version of the Arnowitt-Deser-Misner decomposition including Gauss-Bonnet terms,

which shall be the standard approach to treat the space-time as a Cauchy problem. Because of the

quasilinear property of the Gauss-Bonnet gravity, we find that the evolution equations can be in a treatable

form in numerics. We also show the conformally transformed constraint equations for constructing the

initial data. We discuss how the constraints can be simplified by tuning the powers of conformal factors.

Our equations can be used both for timelike and spacelike foliations.
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I. INTRODUCTION

General relativity (GR) has been tested with many ex-
periments and observations in both the strong and the weak
gravitational field regimes (see e.g. [1]), and none of them
are contradictory to GR. However, the theory also predicts
the appearance of the space-time singularities under natu-
ral conditions [2,3], which also indicates that GR is still
incomplete as a physics theory that describes the whole of
the gravity and the space-time structure.

We expect that the true fundamental theory will resolve
these theoretical problems. Up to now, several quantum
theories of gravity have been proposed. Among them, the
superstring/M theory, formulated in higher dimensional
space-time, is the most promising candidate. In these pros-
pects, a considerable number of studies concerned with
gravitational phenomena and cosmology have been made
in the string theoretical framework beyond GR.

Since the present knowledge is still far from understand-
ing the full aspects of the string theory, several kinds of
approaches, which are fundamentally approximations, are
usually taken. Among them, the perturbative approach
plays important roles. There are two particular parameters
which characterize the system in the superstring theory.
One is string coupling parameter g2s ¼ e�, where � is the
dilaton field. The other is the inverse string tension �0.
When the tension is strong (i.e., small �0) compared to the
energy scale of the system, it is difficult to excite strings,
and the size of the strings becomes small enough to be
regarded as particles in the zeroth order approximation. In
this limit GR (with other light fields) is recovered. This is
called �0 expansion [4].

In the higher order terms of �0, curvature corrections
appear. The Gauss-Bonnet (GB) term is the next leading
order of the �0 expansion of type IIB superstring theory

[4,5] and has nice properties such that it is ghost-free
combinations [6] and does not give higher derivative equa-
tions but an ordinary set of equations with up to the second
derivative in spite of the higher curvature combinations.
The models with the GB term and/or other higher cur-

vature terms have been intensively studied in high energy
physics. One of them is a series of studies in string cos-
mology. The pre-big-bang scenario [7] is a fantastic sce-
nario which tries to avoid the big-bang singularity by
making use of T duality [8] (or scale factor duality).
Furthermore, the pre-big-bang scenario gives a natural
inflation mechanism, since the solution in the pre-big-
bang phase is inflating from the beginning at least in the
string frame. Although these analyses show that the singu-
larity problem has not been resolved yet completely, there
are some cosmological solutions which do not start from an
initial singularity [9–11].
In addition to cosmology, the string effects can be also

seen in the study of black hole physics. As the size of a
black hole becomes small, and the curvature around the
black hole becomes large, it is expected that the curvature
corrections cannot be negligible. The singularity inside of
the event horizon would be also modified or even disappear
by string effects. For these reasons, the static or stationary
black hole solutions in effective string theories were inves-
tigated in the systems both without higher curvature terms
[12,13] and with such terms [14–16]. Besides the static or
stationary solutions, there are some dynamical solutions
which are motivated by gravitational collapse [17].
These analyses are performed on the assumption of

highly symmetric space-time because the system is much
more complicated than that in GR. To obtain a deeper
understanding of the early stage of the Universe, singular-
ity, and/or black holes, we should consider a less symmet-
ric and/or dynamical space-time; the analyses require the
direct numerical integration of the equations. None of the
fully dynamical simulations in GB gravity has been
performed.
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In this article, we present the basic equations of the
Einstein-GB gravity theory. We show the ðN þ
1Þ-dimensional version of the Arnowitt-Deser-Misner
(ADM) decomposition, which is the standard approach to
treat the space-time as a Cauchy problem. The topic was
first discussed by Choquet-Bruhat [18], but the full set of
equations and the methodology have not yet been pre-
sented. In four-dimensional GR, numerical simulations of
binary compact objects are available in the past years, and
many groups apply the modified ADM equations in order
to obtain long-term stable and accurate simulations.
However, such modifications depend on the problem to
consider, and the ‘‘robustest’’ formulation is not yet known
(see e.g. [19]). Therefore, as the first step, we in this paper
just present the fundamental space-time decomposition of
the GB equations, focusing on the GB term.

The ADM decomposition is supposed to construct the
space-time with foliations of the constant-time hypersur-
faces. This method can be also applied to study the brane-
world model [20], which states the visible space-time is
embedded in higher dimensional ‘‘bulk’’ space-time. As
was first investigated by Chamblin et al. [21], it is possible
to study the bulk structure by switching the normal vector
of the hypersurface from timelike to spacelike. We there-
fore present all sets of equations for both cases for future
convenience.

The outline of this paper is as follows. In Sec. II, we
show that the set of equations is divided into two con-
straints and evolution equations according to the standard
procedure. In Sec. III, we present the conformal approach
to solve the constraints which shall be used for preparing
the initial data. In Sec. IV, we show the dynamical equa-
tions in GR and in GB theory separately. Section V is
devoted to the discussions and summary. We think these
expressions are useful for future dynamical investigations.

II. ðNþ 1Þ DECOMPOSITION IN EINSTEIN-
GAUSS-BONNET GRAVITY

A. Model and basic equations

We start from the Einstein-Gauss-Bonnet action in ðN þ
1Þ-dimensional space-time ðM; g��Þwhich is described as
[22]

S ¼
Z
M

dNþ1X
ffiffiffiffiffiffiffi�g

p �
1

2�2
ðR� 2�þ �GBLGBÞ

þLmatter

�
; (1)

with

L GB ¼ R2 � 4R��R�� þR����R����; (2)

where �2 is the ðN þ 1Þ-dimensional gravitational constant
and R, R��, R����, and Lmatter are the ðN þ
1Þ-dimensional scalar curvature, Ricci tensor, Riemann
curvature, and matter Lagrangian, respectively. This action

reproduces the standard ðN þ 1Þ-dimensional Einstein
gravity, if we set the coupling constant �GBð� 0Þ equal
to zero.
The action (1) gives the gravitational equation as

G �� þ �GBH �� ¼ �2T ��; (3)

where

G �� ¼ R�� � 1
2g��Rþ g���; (4)

H �� ¼ 2½RR�� � 2R��R�
� � 2R��R����

þR�
��	R���	� � 1

2g��LGB; (5)

T �� ¼ �2

Lmatter


g�� þ g��Lmatter: (6)

B. Projections to hypersurface

In order to investigate the space-time structure as the
foliations of the N-dimensional (spacelike or timelike)
hypersurface �, we introduce the projection operator to
� as

?�� ¼ g�� � "n�n�; (7)

where n� is the unit-normal vector to � with n�n
� ¼ ",

with which we define n� as timelike (if " ¼ �1) or space-

like (if " ¼ 1). Therefore, � is spacelike (timelike) if n� is

timelike (spacelike).
The projections of the gravitational equation (3) give the

following three equations:

ðG�� þ �GBH ��Þn�n� ¼ �2T ��n
�n� ¼ �2�; (8)

ðG�� þ �GBH ��Þn�?�
� ¼ �2T ��n

�?�
� ¼ ��2J�;

(9)

ðG�� þ �GBH ��Þ?�
�?�

� ¼ �2T ��?�
�?�

�

¼ �2S��; (10)

where we defined the components of the energy-
momentum tensor as

T �� ¼ �n�n� þ J�n� þ J�n� þ S��; (11)

and we also define T ¼ "�þ S�� for later convenience.
Projection of the ðN þ 1Þ-dimensional Riemann tensor

onto the N-dimensional hypersurface can be written as

R��	
?�
�?�

�?	
�?


�

¼ R���� � "ðK��K�� � K��K��Þ; (12)

R ��	
?�
�?�

�?	
�n


 ¼ �D½�K���; (13)

R ��	
?�
�?	

�n
�n
 ¼ LnK�� þ K��K

�
�; (14)
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where R���� is the Riemann tensor of the induced metric

	��ð¼ ?��Þ, D� is the covariant differentiation with re-

spect to 	��, Ln denotes the Lie derivative in the n

direction, and K�� is the extrinsic curvature defined as

K�� ¼ �1
2Ln	�� ¼ �?�

�?�
�r�n�: (15)

Equation (12) is called the Gauss equation, and the con-
traction of (13) of � and � gives the Codacci equation.
Using these projections, the ðN þ 1Þ-dimensional

Riemann curvature and its contractions (the Ricci tensor
and scalar curvature) are described by the N-dimensional
variables on the hypersurface � as

R���� ¼ R���� � "ðK��K�� � K��K�� � n�D�K�� þ n�D�K�� þ n�D�K�� � n�D�K�� � n�D�K��

þ n�D�K�� þ n�D�K�� � n�D�K��Þ þ n�n�K��K
�
� � n�n�K��K

�
� � n�n�K��K

�
� þ n�n�K��K

�
�

þ n�n�LnK�� � n�n�LnK�� � n�n�LnK�� þ n�n�LnK��; (16)

R�� ¼ R�� � "½KK�� � 2K��K
�
� þ n�ðD�K

�
� �D�KÞ þ n�ðD�K

�
� �D�KÞ� þ n�n�K��K

�� þ "LnK��

þ n�n�	
��LnK��; (17)

R ¼ R� "ðK2 � 3K��K
�� � 2	��LnK��Þ; (18)

where K ¼ K�
�.

Substituting these relations into the field equation (3) or
(8)–(10), we find the equations are decomposed as (a) the
Hamiltonian constraint equation

Mþ �GBðM2 � 4MabM
ab þMabcdM

abcdÞ
¼ �2"�2�H þ 2�; (19)

(b) the momentum constraint equation

Ni þ 2�GBðMNi � 2Mi
aNa þ 2MabNiab �Mi

cabNabcÞ
¼ �2Ji; (20)

and (c) the evolution equations for 	ij

Mij � 1
2M	ij � "ð�KiaK

a
j þ 	ijKabK

ab �LnKij

þ 	ij	
abLnKabÞ þ 2�GB½Hij þ "ðMLnKij

� 2Mi
aLnKaj � 2Mj

aLnKai �Wij
abLnKabÞ�

¼ �2Sij � 	ij�; (21)

respectively, where

Mijkl ¼ Rijkl � "ðKikKjl � KilKjkÞ; (22)

Mij ¼ 	abMiajb ¼ Rij � "ðKKij � KiaK
a
jÞ; (23)

M ¼ 	abMab ¼ R� "ðK2 � KabK
abÞ; (24)

Nijk ¼ DiKjk �DjKik; (25)

Ni ¼ 	abNaib ¼ DaKi
a �DiK; (26)

Hij ¼ MMij � 2ðMiaM
a
j þMabMiajbÞ þMiabcMj

abc � 2"½�KabK
abMij � 1

2MKiaKj
a þ KiaK

a
bM

b
j þ KjaK

a
bM

b
i

þ KacKc
bMiajb þ NiNj � NaðNaij þ NajiÞ � 1

2NabiN
ab

j � NiabNj
ab� � 1

4	ij½M2 � 4MabM
ab þMabcdM

abcd�
� "	ij½KabK

abM� 2MabK
acKc

b � 2NaN
a þ NabcN

abc�; (27)

Wij
kl ¼ M	ij	

kl � 2Mij	
kl � 2	ijM

kl þ 2Miajb	
ak	bl: (28)

We remark that the terms ofLnKij appear only in the linear
form in (21). This is due to the quasilinear property of the
GB gravity.

C. Cauchy approach

Using the Bianchi identity, Choquet-Bruhat [18] showed
that the set of equations forms the first-class system the

same as in GR; that is, a spacelike hypersurface which
satisfies the constraints (19) and (20) will also satisfy the
constraints after the evolution using (21).
The most standard procedures for following the dynam-

ics of space-time consist of three steps: (i) solve the con-
straint equations (19) and (20) for ð	ij; Kij; �H; JiÞ on

�ðt ¼ 0Þ and prepare them as the initial data, (ii) evolve
ð	ij; Kij; �H; JiÞ using (21) and the matter equations, and
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(iii) monitor the accuracy of the evolutions by checking
constraint equations on the evolved �ðtÞ.

In the case of seeking the ‘‘dynamics’’ along a spacelike
direction � such as a study of the bulk structure in the
brane-world model, the above strategy can be switched to
the evolution in � coordinates instead of t (using the set of
equations of " ¼ þ1). The initial data, in this case, is a
timelike hypersurface which should satisfy the constraints.
Such initial data can be obtained either by solving the
dynamics of the ‘‘brane’’ part or by taking double Wick
rotation after the above step (i), depending on the models
and motivations.

In the following sections, we describe a way of solving
constraints (Sec. III) and a way of solving evolution equa-
tions (Sec. IV).

III. CONFORMAL APPROACH TO SOLVE THE
CONSTRAINTS

A. ‘‘Conformal approach’’

In order to prepare the initial data for dynamical evolu-
tion, we have to solve two constraints: (19) and (20). The

standard approach is to apply a conformal transformation
on the initial hypersurface [24]. The idea is to introduce a
conformal factor c between the initial trial metric 	̂ij and

the solution 	ij, as

	ij ¼ c 2m	̂ij; 	ij ¼ c�2m	̂ij; (29)

where m is a constant, and solve for c so the solution
satisfies the constraints.
For N-dimensional space-time, the Ricci scalar is trans-

formed as

R ¼ c�2mfR̂� 2ðN � 1Þmc�1ðD̂aD̂ac Þ
þ ðN � 1Þ½2� ðN � 2Þm�mc�2ðD̂c Þ2g; (30)

Rij ¼ R̂ij �m	̂ijc
�1D̂aD̂

ac � ðN � 2Þmc�1D̂iD̂jc

þ ðN � 2Þmðmþ 1Þc�2D̂ic D̂jc

�m½ðN � 2Þm� 1�c�2ðD̂c Þ2	̂ij; (31)

Rijkl ¼ c 2mfR̂ijkl þmc�1	̂il½D̂jD̂kc � ðmþ 1Þc�1D̂jc D̂kc � �mc�1	̂ik½D̂jD̂lc � ðmþ 1Þc�1D̂jc D̂lc �
þmc�1	̂jk½D̂iD̂lc � ðmþ 1Þc�1D̂ic D̂lc � �mc�1	̂jl½D̂iD̂kc � ðmþ 1Þc�1D̂ic D̂kc �
þm2c�2ðD̂c Þ2ð	̂il	̂jk � 	̂ik	̂jlÞg: (32)

Regarding the extrinsic curvature, we decompose Kij

into its trace part K ¼ 	ijKij and the traceless part Aij ¼
Kij � 1

N 	ijK and assume the conformal transformation
[25] as

Aij ¼ c ‘Âij; Aij ¼ c ‘�4mÂij; (33)

K ¼ c �K̂; (34)

where ‘ and � are constants. For the matter terms, we also
assume the relations � ¼ c�p�̂ and Ji ¼ c�qĴi, where p
and q are constants, while we regard the cosmological
constant as common to both flames, � ¼ �̂.

Up to here, the powers of conformal transformation ‘,
m, �, p, and q are not yet specified. Note that, in the
standard three-dimensional initial-data construction cases,
the combination of m ¼ 2, ‘ ¼ �2, � ¼ 0, p ¼ 5, and
q ¼ 10 is preferred since this simplifies the equations.
We also remark that if we choose � ¼ ‘� 2m, then the

extrinsic curvature can be transformed as Kij ¼ c ‘K̂ij and

Kij ¼ c ‘�4mK̂ij.

B. Hamiltonian constraint

Using these equations, the Hamiltonian constraint equa-
tion (19) turns to be

2ðN� 1ÞmD̂aD̂
ac �ðN� 1Þ½2�ðN� 2Þm�mðD̂c Þ2c�1

¼ R̂c �N� 1

N
"c 2mþ2�þ1K̂2 þ "c�2mþ2‘þ1ÂabÂ

ab

þ 2"�2�̂c�p � 2�̂þ�GB�̂c 2mþ1: (35)

We will show the explicit form of the GB part �̂ ¼ M2 �
4MabM

ab þMabcdM
abcd in Appendix A. At this moment,

we observe that (35) can be simplified in the following two
ways.
(A) If we specify � ¼ ‘� 2m and m ¼ 2=ðN � 2Þ,

then (35) becomes

4ðN � 1Þ
N � 2

D̂aD̂
ac ¼ R̂c � "c 2‘þ1�4=ðN�2Þ

� ðK̂2 � K̂abK̂
abÞ

þ 2"�2�̂c�p � 2�̂

þ �GB�̂c 1þ4=ðN�2Þ: (36)

In the case of the Einstein gravity (�GB ¼ 0) with
� ¼ 0, the combination ‘ ¼ 2=ðN � 2Þ and p ¼
�1 makes the right-hand side of (36) linear. If we
choose ‘ ¼ �2, which will make the momentum
constraint simpler as we see later, (36) also remains
as a simple equation.
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(B) If we specify � ¼ 0 and m ¼ 2=ðN � 2Þ, then (35)
becomes

4ðN � 1Þ
N � 2

D̂aD̂
ac ¼ R̂c � "

N � 1

N
c 1þ4=ðN�2ÞK̂2

þ "c 2‘þ1�4=ðN�2ÞÂabÂ
ab

þ 2"�2�̂c�p � 2�̂

þ �GB�̂c 1þ4=ðN�2Þ: (37)

C. Momentum constraint

In order to express the momentum constraint equation in
a tractable form, additionally to the variables in Sec. III A,
we introduce the transverse traceless part and the longitu-

dinal part of Âij as

D̂ jÂ
ij
TT ¼ 0; (38)

Â
ij
L ¼ Âij � Âij

TT; (39)

respectively. Since the conformal transformation of the
divergence DjAi

j becomes

DjAi
j ¼ c ‘�2mfD̂jÂi

j þ c�1½‘þmðN � 2Þ�Âi
jD̂jc g;

(40)

the momentum constraint (20) can be written as

c ‘�2mD̂aÂiL
a þ ½‘þ ðN � 2Þm�c ‘�2m�1ÂiL

aD̂ac

� N � 1

N
D̂iðc �K̂Þ þ 2�GB�̂i ¼ �2c 2m�qĴi: (41)

We will show the explicit form of the GB part �̂i in
Appendix B; meanwhile, we proceed with the standard
procedure, that is, introducing a vector potential Wi for

Âij
L as

Â
ij
L ¼ D̂iWj þ D̂jWi � 2

N
	̂ijD̂kW

k: (42)

Since the divergence of Âij
L becomes

D̂ jÂ
ij
L ¼ D̂aD̂

aWi þ N � 2

N
D̂iD̂kW

k þ R̂i
kW

k; (43)

the momentum constraint (41) becomes

D̂aD̂
aWi þ N � 2

N
D̂iD̂kW

k þ R̂ikW
k

þ c�1½‘þ ðN � 2Þm�
�
�
D̂aWb þ D̂bWa � 2

N
	̂abD̂kW

k

�
	̂biD̂ac

� c 2m�‘ N � 1

N
D̂iðc �K̂Þ þ c 2m�‘2�GB�̂i

¼ �2c 4m�‘�qĴi: (44)

Similarly to the case of the Hamiltonian constraint equa-
tion, we consider the following two cases.
(A) If we specify � ¼ ‘� 2m and m ¼ 2=ðN � 2Þ,

then (44) becomes

D̂aD̂
aWi þ N � 2

N
D̂iD̂kW

k þ R̂ikW
k

þ c�1ð‘þ 2Þ
�
D̂aWb þ D̂bWa � 2

N
	̂abD̂kW

k

�

� 	̂biD̂ac � N � 1

N

��
‘� 4

N � 2

�

� ðD̂ic ÞK̂ þ D̂iK̂

�
þ c�‘þ4=ðN�2Þ2�GB�̂i

¼ �2c 8=ðN�2Þ�‘�qĴi: (45)

In the case of the Einstein gravity (�GB ¼ 0), the
choice of ‘ ¼ �2 cancels the mixing term between
c and Wi. Further, when �GB ¼ 0, we have a
chance to make two constraint equations, (36) and

(45), decouple by assuming K̂ ¼ 0 and q ¼
8=ðN � 2Þ þ 2. However, when �GB � 0, this de-
coupling feature is no longer available, since the

term �̂i includes c -related terms as we see in
Eq. (B7) in Appendix B.

(B) If we specify � ¼ 0 and m ¼ 2=ðN � 2Þ, then (44)
becomes

D̂aD̂
aWi þ N � 2

N
D̂iD̂kW

k þ R̂ikW
k þ c�1ð‘þ 2Þ

�
�
D̂aWb þ D̂bWa � 2

N
	̂abD̂kW

k

�
	̂biD̂ac

� c 4=ðN�2Þ�‘ N � 1

N
D̂iK̂ þ c 4=ðN�2Þ�‘2�GB�̂i

¼ �2c 8=ðN�2Þ�‘�qĴi: (46)

For the Einstein gravity (�GB ¼ 0), the choice of
‘ ¼ �2 again cancels the mixing term between c
and Wi. The decoupling feature between (37) and

(46) is available when �GB ¼ 0, K̂ ¼ const, and
q ¼ 8=ðN � 2Þ þ 2. However, when �GB � 0,
this decoupling feature is no longer available, since

the term �̂i includes c -related terms as we see in
Eq. (B13) in Appendix B.

D. Procedures

For the readers’ convenience, we summarize the above
procedure briefly. The initial data ð	ij; Kij; �; J

iÞ can be

constructed by solving the Hamiltonian constraint (19) and
the momentum constraint equations (20). This can be done
by the following steps.
(1) Give the initial assumption (trial values) for 	̂ij, K,

ÂTT
ij , and �̂, Ĵ.

(2) Solve (35) and (44) for c and Wi by fixing the
exponents ‘, m, �, p, and q.
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(3) By the following inverse conformal transforma-
tions:

	ij ¼ c 2m	̂ij; (47)

Kij ¼ c ‘

�
ÂTT
ij þ D̂iWj þ D̂jWi � 2

N
	̂ijD̂kW

k

�

þ 1

N
c 2mþ�	̂ijK̂; (48)

� ¼ c�p�̂; (49)

Ji ¼ c�qĴi; (50)

we obtain the solutions 	ij, Kij, �, and Ji, which

satisfy the constraints.

E. Momentarily static case

The easiest construction of the initial data may be under
the assumption of the momentarily static (or time-
symmetric) situation Kij ¼ Ji ¼ 0. In such a case, the

momentum constraint becomes trivial, and the
Hamiltonian constraint (35) can be reduced as

2ðN� 1ÞmD̂aD̂
ac �ðN� 1Þ½2�ðN� 2Þm�mðD̂c Þ2c�1

¼ R̂c þ 2"�2�̂c�p � 2�̂þ�GB�̂c 2mþ1; (51)

where

�̂ ¼ ðN � 3Þmc�4mf4ðN � 2Þmc�2½ðD̂aD̂
ac Þ2

� ðD̂aD̂bc ÞðD̂aD̂bc Þ� � 4c�1½R̂� ðN � 2Þ
� ½ðN � 3Þm� 2�mc�2ðD̂c Þ2�D̂aD̂

ac

þ 8c�1½R̂ab þ ðN � 2Þmðmþ 1Þc�2D̂ac D̂bc �
� D̂aD̂bc þ ðN � 1Þ2m2½ðN � 4Þm� 4�c�4ðD̂c Þ4
� 2c�2½ðN � 4Þm� 2�ðD̂c Þ2R̂
� 8ðmþ 1Þc�2R̂abD̂ac D̂bc g þ c�4mR̂GB; (52)

where

ðD� nÞm ¼ ðD� nÞ!
ðD�m� 1Þ!

¼ ðD� nÞðD� n� 1Þ . . . ðD�mÞ; (53)

and R̂GB ¼ R̂2 � 4R̂abR̂
ab þ R̂abcdR̂

abcd.

WhenN ¼ 3, �̂ simply becomes �̂ ¼ c�4mR̂GB so that
(51) will be reduced as

8D̂aD̂
ac ¼ R̂c þ 2"�2�̂c�p � 2�̂þ �GBR̂GBc

�3;

(54)

for the choice of m ¼ 2.

However, in generalN, it is hard to find an appropriatem
which simplifies the equation, even if 	̂ij is taken to be the

flat space-time that reduces �̂ as

�̂ ¼ ðN � 3Þm2c�4m�2f4ðN � 2Þ½ðD̂aD̂
ac Þ2

� ðD̂aD̂bc ÞðD̂aD̂bc Þ� þ 4ðN � 2Þ
� ½ðN � 3Þm� 2�c�1ðD̂c Þ2D̂aD̂

ac þ 8ðN � 2Þ
� ðmþ 1Þc�1ðD̂ac ÞðD̂bc ÞD̂aD̂bc þ ðN � 1Þ2m
� ½ðN � 4Þm� 4�c�2ðD̂c Þ4g: (55)

Roughly speaking, Eq. (55) is a quadratic equation with
respect to the second-order derivative of c , which means
that there are two roots in general when a set of trial values
	̂ij and �̂ on the hypersurface is given. The meaning of the

existence of two solutions is more clearly understood by
assuming p ¼ 0 and q ¼ 0 in the conformal transforma-
tion of the matter field. In this case, two different 	ij’s are

obtained through the different conformal transformations
even for the same matter field distributions.
The nonuniqueness of the solution is due to the higher

curvature combination of the GB terms. The existence of
two solutions can also be seen for the black hole solutions
in the Einstein-GB theory [14,16]. In the black hole case,
the gravitational equations reduce to a quadratic equation
under the suitable choice of a metric function. The two
roots of the equation correspond to the different black hole
solutions. In the �GB ! 0 limit, one of the black hole
solutions approaches to the solutions in GR, while the
metric component of the other solution diverges and there
is no counterpart in GR. Hence the former is classified into
the GR branch and the latter into the GB branch. In some
mass parameter regions of the black hole, the metric com-
ponents of these branches coincide at the certain radius. It
is a multiple root of the field equation. Solving the field
equations beyond this radius, we find that the metric be-
comes imaginary, and this region is physically irrelevant.
The space-time becomes singular at this radius, and it is
called a branch singularity, which is a new ingredient of
GB gravity.
Whenwe solve theHamiltonian constraint equation (55),

a similar situation may occur. The conformal factor c
becomes imaginary, and the solution 	ij is also imaginary

in some regions on the hypersurface. The boundary of this
region corresponds to the singularity. The situation is the
same also in the non-time-symmetric case.

IV. DYNAMICAL EQUATIONS

A. Dynamical equations in general relativity

Equations in GR are obtained by putting �GB ¼ 0. The
evolution equations of ðN þ 1Þ-dimensional ADM formu-
lation are presented in Ref. [26], but here we generalize
them to the set of equations for both spacelike and timelike
foliations.
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First, we rewrite the dynamical equations (21) by intro-
ducing the metric components as

ds2 ¼ "�2ðdx0Þ2 þ 	ijðdxi þ �idx0Þðdxj þ �jdx0Þ
¼ ð"�2 þ �a�

aÞðdx0Þ2 þ 2�idx
idx0 þ 	ijdx

idxj;

(56)

where � and �i are the lapse and shift functions, respec-
tively. The components of the normal vector, then, are

n� ¼ ð"�; 0; . . . ; 0Þ; n� ¼ 1

�
ð1;��iÞ: (57)

In the matrix from, the ðN þ 1Þ and N metrics are ex-
pressed as

g�� ¼ "�2 þ �a�
a �j

�i 	ij

 !
; (58)

g�� ¼ "

�2

1 ��i

��j "�2	ij þ �i�j

� �
; (59)

and

	�� ¼ �a�
a �j

�i 	ij

� �
; 	�� ¼ 0 0

0 	ij

� �
: (60)

The trace of Eq. (21) minus half of Eq. (19) gives

	abLnKab ¼ � "

2
M� KabK

ab � "�2

N � 1
T þ "�: (61)

This is equivalent to the trace of Einstein equation (3) with
the projection (14). Substituting Eq. (61) into Eq. (21), we
find

LnKij ¼ �"Mij � KiaK
a
j þ "�2

�
Sij � 1

N � 1
T 	ij

�

þ 2"

N � 1
	ij�: (62)

The extrinsic curvature and its Lie derivative are ex-
pressed as

Kij ¼ 1

2�
ð�@0	ij þDj�i þDi�jÞ; (63)

LnKij ¼ 1

�
ð@0Kij þDiDj�� �aDaKij � KajDi�

a

� KaiDj�
aÞ; (64)

respectively.

With the metric components (56), Eqs. (62) and (63) are

@0	ij ¼ �2�Kij þDj�i þDi�j; (65)

@0Kij ¼��"Mij ��KiaK
a
j �DiDj�þ�aðDaKijÞ

þ ðDj�
aÞKiaþðDi�

aÞKaj

��"�2

�
Sij � 1

N� 1
T 	ij

�
þ 2�"

N� 1
	ij�: (66)

If we have matter, we need to evolve them together with
metric. The dynamical equations for matter terms can be
derived from the conservation equation r�T �� ¼ 0.

B. Dynamical equations in Gauss-Bonnet gravity

With the Gauss-Bonnet terms, the evolution equa-
tion (21) cannot be expressed explicitly for each LnKij.

That is, (21) is rewritten as

ð1þ 2�GBMÞLnKij � ð	ij	
ab þ 2�GBWij

abÞLnKab

� 8�GBMði
aLnKjajjÞ

¼ �"ðMij � 1
2M	ijÞ � KiaK

a
j þ 	ijKabK

ab

þ "�2Sij � "	ij�� 2"�GBHij; (67)

and the second and third terms on the right-hand side
include the linearly coupled terms between LnKij.

Therefore, in an actual simulation, we have to extract
each evolution equation of Kij using a matrix form of

Eq. (67) such as

k ¼ Akþ b; (68)

where k ¼ ðLnK11;LnK12; . . . ;LnKNNÞT and A and b are
the appropriate matrix and vector, respectively, derived
from Eq. (67).
The procedure of inverting the matrix ð1� AÞ is techni-

cally available, but the invertibility of the matrix is not
generally guaranteed at this moment. In the case of the
standard ADM foliation in four-dimensional Einstein
equations, the continuity of the time evolutions depends
on the models and the choice of gauge conditions for the
lapse function and shift vectors. If the combination is not
appropriate, then the foliation hits the singularity which
stops the evolution. The similar obstacle may exist also for
the Gauss-Bonnet gravity. We expect that in the most cases
Eq. (68) is invertible for Kij, but we cannot deny the

pathological cases which depend on the models and gauge
conditions. Such a study must be done together with actual
numerical integrations in the future.
We obtain, however, a similar form of the equation by

introducing the ðN þ 1Þ-dimensional Weyl curvature
[27,28]. It is useful for the discussion of the brane-world
cosmology although it is not written by only the
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N-dimensional quantities, and we cannot adopt it as the
evolution equation directly. The trace of Eq. (21) minus
half of Eq. (19) gives

ðN � 1Þ
�
"

2
Mþ KabK

ab þ habLnKab

�

þ 2ðn� 3Þ�GB

�
"

4
ðM2 � 4MabM

ab þMabcdM
abcdÞ

þMKabK
ab � 2Ki

jK
j
kM

k
i � 2NaN

a þ NabcN
abc

þMhabLnKab � 2MabLnKab

�
¼ �"�2T þ "�:

(69)

By the last term on the left-hand side of this equation, the
term of the Lie derivative cannot be expressed by the other
term explicitly.

Let us rewrite the dynamical equation (21) in a different
form. From Eqs. (14), (17), and (18) with the decomposi-
tion of the Riemann tensor as

R ���� ¼ 2

N � 1
ðg�½�R��� � g�½�R���Þ

� 2

NðN � 1Þg�½�g���Rþ C����; (70)

where C���� is the ðN þ 1Þ-dimensional Weyl curvature,

we find

L nKij ¼ "
N � 1

N � 2
Eij þ "

N � 2

�
Mij � 1

N
M	ij

�

� KiaK
a
j þ

1

N
	ijKabK

ab þ 1

N
	ij	

abLnKab;

(71)

where

Eij :¼ C����n
�n�	�

i	
�
j: (72)

However, because Eq. (71) is a trace-free equation,LnK��

cannot be fixed by Eq. (71). Inserting Eq. (71) into
Eq. (69), we find

habLnKab ¼ �"

2
M� KabK

ab � "

U
ð�2T ��Þ

þ 2"ðN � 3Þ�GB

U
I; (73)

where

U ¼ N � 1þ 2ðN � 2ÞðN � 3Þ
N

�GBM; (74)

I ¼ N � 6

4ðN � 2ÞM
2 þ N

N � 2
MabM

ab þ 1

4
MabcdM

abcd

� "

�
NaN

a þ 4NabcN
abc � 2ðN � 1Þ

N � 2
MabE

ab

�
:

(75)

From Eq. (71) with Eq. (73), we then find

L nKij ¼ N � 1

N � 2
Eij þ "

N � 2

�
Mij � 1

2
M	ij

�
� KiaK

a
j

� "

NU
ð�2T ��Þ	ij � 2"ðN � 3Þ�GB

NU
I	ij:

(76)

Since Eij is a ðN þ 1Þ-dimensional quantity, LnKij cannot

be evaluated by the valuables on N-dimensional hypersur-
face with this equation. This means that Eq. (76) cannot be
used for the full dynamics as we mentioned. For example,
however, for the Friedmann brane-world model, where the
constant-time slice of the timelike hypersurface is homo-
geneous and isotropic, Eij can be written using quantities

on the hypersurface. For such limited cases where the term
Eij can be evaluated on the hypersurface, Eq. (76) is useful

for simplifying the situation.

V. DISCUSSION

With the aim of numerical investigations of space-time
dynamics in higher-dimensional and/or higher-curvature
gravity models, we presented the basic equations of the
Einstein-Gauss-Bonnet gravity theory.
We show the ðN þ 1Þ-dimensional decomposition of the

basic equations, in order to treat the space-time as a
Cauchy problem. With the aim of investigations of bulk
space-time in recent brane-world models, we also prepared
the equations for both timelike and spacelike foliations.
The equations can be separated into the constraints (the
Hamiltonian constraint and the momentum constraint) and
the evolution equations.
Two constraints should be solved for constructing the

initial data. By showing the conformally transformed con-
straint equations, we discussed how the constraints can be
simplified by tuning the powers of conformal factors. If we
have Gauss-Bonnet terms, however, the equations still
remain in a complicated style.
For the evolution equations, we find that LnKij compo-

nents are coupled. However, this mixture is only up to the
linear order due to the quasilinear property of the Gauss-
Bonnet terms, so that the equations can be in a treatable
form in numerics.
We are now developing our numerical code and hope to

present some results elsewhere in the near future.
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APPENDIX A: GB PART OF HAMILTONIAN CONSTRAINT EQUATION

In Eq. (35), the GB part of the Hamiltonian constraint equation �̂ ¼ M2 � 4MabM
ab þMabcdM

abcd is not written
explicitly. It becomes

�̂¼ ðN� 3Þmc�4mf4ðN� 2Þmc�2½ðD̂aD̂
ac Þ2 � D̂aD̂bc D̂aD̂bc �

� 4c�1½M̂�ðN� 2Þ½ðN� 3Þm� 2�mc�2D̂ac D̂ac �D̂aD̂
ac

þ 8c�1½M̂ab þðN� 2Þmðmþ 1Þc�2D̂ac D̂bc �D̂aD̂bc þðN� 1Þ2m2½ðN� 4Þm� 4�c�4ðD̂ac D̂ac Þ2
� 2c�2½ðN� 4Þm� 2�M̂D̂cc D̂cc � 8ðmþ 1Þc�2M̂abD̂ac D̂bc gþ c�4mð�̂2 � 4�̂ab�̂

ab þ �̂abcd�̂
abcdÞ; (A1)

where

�̂ ¼ R̂� "

�
N � 1

N
c 2mþ2�K̂2 � c 2‘�2mÂabÂ

ab

�
; (A2)

�̂ij ¼ R̂ij � "

�
N � 1

N2
c 2mþ2�	̂ijK̂

2 þ N � 2

N
c ‘þ�K̂Âij

� c 2‘�2mÂiaÂ
a
j

�
; (A3)

�̂ijkl ¼ R̂ijkl � "

�
1

N2
c 2mþ2�ð	̂ik	̂jl � 	̂il	̂jkÞK̂2

þ 1

N
c ‘þ�ðÂik	̂jl � Âil	̂jk þ Âjl	̂ik � Âjk	̂ilÞ

þ c 2‘�2mðÂikÂjl � ÂilÂjkÞ
�
: (A4)

When � ¼ ‘� 2m and m ¼ 2=ðN � 2Þ, which corre-
sponds to case A [Eq. (36)],

�̂ ¼ 2ðN � 3Þ
N � 2

c�8=ðN�2Þ
�
8c�2½ðD̂aD̂

ac Þ2 � D̂aD̂bc D̂aD̂bc � � 4c�1ðM̂þ 2c�2D̂ac D̂ac ÞD̂aD̂
ac

þ 8c�1

�
M̂ab þ 2N

N � 2
c�2D̂ac D̂bc

�
D̂aD̂bc � 8NðN � 1Þ

ðN � 2Þ2 c�4ðD̂ac D̂ac Þ2 þ 8

N � 2
c�2M̂D̂cc D̂cc

� 8N

N � 2
c�2M̂abD̂ac D̂bc

�
þ c�8=ðN�2Þð�̂2 � 4�̂ab�̂

ab þ �̂abcd�̂
abcdÞ; (A5)

where

�̂ ¼ R̂� "c 2‘�4=ðN�2ÞðK̂2 � K̂abK̂
abÞ; (A6)

�̂ ij ¼ R̂ij � "c 2‘�4=ðN�2ÞðK̂K̂ij � K̂iaK̂
a
jÞ; (A7)

�̂ ijkl ¼ R̂ijkl � "c 2‘�4=ðN�2ÞðK̂ikK̂jl � K̂ilK̂jkÞ: (A8)

When � ¼ 0, m ¼ 2=ðN � 2Þ, which corresponds to
case B [Eq. (37)], � is expressed as Eq. (A5) and

�̂ ¼ R̂� "

�
N � 1

N
c 4=ðN�2ÞK̂2 � c 2‘�4=ðN�2ÞÂabÂ

ab

�
;

(A9)

�̂ij ¼ R̂ij � "

�
N � 1

N2
c 4=ðN�2Þ	̂ijK̂

2 þ N � 2

N
c ‘K̂Âij

� c 2‘�4=ðN�2ÞÂiaÂ
a
j

�
; (A10)

�̂ijkl ¼ R̂ijkl � "

�
1

N2
c 4=ðN�2Þð	̂ik	̂jl � 	̂il	̂jkÞK̂2

þ 1

N
c ‘ðÂik	̂jl � Âil	̂jk þ Âjl	̂ik � Âjk	̂ilÞ

þ c 2‘�4=ðN�2ÞðÂikÂjl � ÂilÂjkÞ
�
: (A11)

APPENDIX B: GB PART OF MOMENTUM
CONSTRAINT EQUATION

In Eq. (44), the GB part of the Hamiltonian constraint

equation �̂i is not written explicitly. It becomes
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�i ¼ c ‘�4m

�
R̂� 2ðN � 3Þmc�1D̂bD̂

bc � ðN � 3Þm½ðN � 4Þmþ 2�c�2D̂bc D̂bc � N2 � 3N þ 4

N2
"cþ2mþ2�K̂2

� "c 2‘�2mÂbcÂ
bc

�
D̂aÂ

a
i þ c ‘�4m

�
�2R̂b

i þ 2ðN � 3Þmc�1D̂bD̂ic � 2ðN � 3Þmðmþ 1Þc�2D̂ic D̂bc

þ 2ðN � 3Þ
N

"c ‘þ�K̂Âi
b � 2"c 2‘�2mÂi

cÂc
b

�
D̂aÂ

a
b

þ c ‘�4m

�
2R̂ab � 2ðN � 3Þmc�1D̂bD̂ac � 2ðN � 1Þmðmþ 1Þc�2D̂ac D̂bc � 2ðN � 3Þ

N
"c ‘þ�K̂Âab

þ 2"c 2‘�2mÂa
cÂ

cb

�
ðD̂iÂab � D̂aÂibÞ þ 2"c 3‘�6mÂi

aÂbcðD̂aÂbc � D̂bÂacÞ þRi þDi þAð1ÞD̂ic þAð2ÞD̂iK̂

þAð3ÞD̂ac Âa
i � 2ðN � 2Þ3

N2
"c ‘�2mþ2�K̂ðD̂aK̂ þ �c�1K̂D̂ac ÞÂa

i

þ 2ðN � 3Þ
N

½ðN � 4Þmþ 2‘þ ��"c 2‘�4mþ��1K̂D̂bc Âb
aÂ

a
i þ 2ðN � 3Þ

N
"c 2‘�4mþ�D̂bK̂Â

b
aÂ

a
i

� 2½ðN � 6Þmþ 3‘�"c 3‘�6m�1D̂cc Âc
bÂ

b
aÂ

a
i; (B1)

where

Ri ¼
�
½ðN � 3Þmþ ‘�c ‘�4m�1Âi

aD̂ac � N � 3

N
c�2mþ�ðD̂iK̂ þ �c�1K̂D̂ic Þ

�
R̂

þ
�
2ðN � 3Þ

N
�c�2mþ��1K̂D̂ac þ 2ðN � 3Þ

N
c�2mþ�D̂aK̂ � 2½ðN � 3Þmþ ‘�c ‘�4m�1Âa

bD̂bc

�
R̂i

a

� 2ðm� ‘Þc ‘�4m�1ðÂabD̂ic � ÂibD̂ac ÞR̂ab þ 2ðm� ‘Þc ‘�4m�1D̂ac ÂbcR̂i
cab; (B2)

Di ¼
�
N2 � 8N þ 11

N
mc�2mþ��1ðD̂iK̂ þ �c�1K̂D̂ic Þ � 2m½ðN2 � 6N þ 7Þmþ ðN � 3Þ‘�c ‘�4m�2D̂bc Âb

i

�

� D̂aD̂
ac �

�
2ðN � 2Þ3

N
mc�2mþ��1ðD̂aK̂ þ �c�1K̂D̂ac Þ � 2m½ðN2 � 4N þ 5Þmþ ðN � 2Þð‘� 2Þ�

� c ‘�4m�2D̂bc Âb
a

�
D̂aD̂ic þ 2ðN � 3Þmðm� ‘Þc ‘�4m�2ðÂabD̂ic � ÂiaD̂bc ÞD̂bD̂ac ; (B3)

Að1Þ ¼ 2

�
�N � 2

N
mðmþ 1Þc�2mþ2��2ðD̂aK̂ þ �c�1K̂D̂ac ÞðD̂aK̂ þ �c�1K̂D̂ac Þ

þ ðN � 2Þ2
N

mðmþ 1Þc�2mþ��2D̂aK̂D̂ac þ N � 2

2N
m½ðN2 � 4N þ 5Þmþ 2��c�2mþ��3K̂D̂ac D̂ac

� ðN � 2Þ3m2ðmþ 1Þc ‘�4m�3D̂ac D̂bc Âab þ N � 3

N
ðm� ‘� �Þ"c 2‘�4mþ��1K̂ÂabÂ

ab

� ðm� ‘Þ"c 3‘�6m�1Âa
bÂb

cÂc
a

�
; (B4)

A ð2Þ ¼ 1

N

�
ðN � 2Þ3m½ðN � 3Þm� 2�c�2mþ��2D̂ac D̂ac � ðN � 1Þ2ðN þ 1Þ

N2
"c 3�K̂2 � ðN � 3Þ"c 2‘�4mþ�ÂabÂ

ab

�
;

(B5)

Að3Þ ¼ �m½ðN � 2Þ2ðN � 5Þm2 þ ðN � 2Þ3ð‘� 2Þmþ ðN � 1Þð3‘� 2Þ�c ‘�4m�3D̂ac D̂ac

� 1

N2
½ðN � 1ÞðN2 � 8Þmþ ðN2 � N þ 2Þ‘�"c ‘�2mþ2��1K̂2 þ ½ðN � 6Þmþ 3‘�"c 3‘�6m�1ÂabÂ

ab: (B6)
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When � ¼ ‘� 2m and m ¼ 2=ðN � 2Þ, which corresponds to case A [Eq. (45)],

�i ¼ c ‘�8=ðN�2Þ
�
R̂� 4ðN � 3Þ

N � 2
c�1D̂bD̂

bc � 4ðN � 3Þ2
N � 2

c�2D̂bc D̂bc

� N2 � 3N þ 4

N2
"c 2‘�4=ðN�2ÞK̂2 � "c 2‘�4=ðN�2ÞÂbcÂ

bc

�
D̂aÂ

a
i

þ c ‘�8=ðN�2Þ
�
�2R̂b

i þ
4ðN � 3Þ
N � 2

c�1D̂bD̂ic � 4NðN � 3Þ
ðN � 2Þ2 c�2D̂ic D̂bc þ 2ðN � 3Þ

N
"c 2‘�4=ðN�2ÞK̂Âi

b

� 2"c 2‘�4=ðN�2ÞÂi
cÂc

b

�
D̂aÂ

a
b þ c ‘�8=ðN�2Þ

�
2R̂ab � 4ðN � 3Þ

N � 2
c�1D̂bD̂ac � 4NðN � 1Þ

ðN � 2Þ2 c�2D̂ac D̂bc

� 2ðN � 3Þ
N

"c 2‘�4=ðN�2ÞK̂Âab þ 2"c 2‘�4=ðN�2ÞÂa
cÂ

cb

�
ðD̂iÂab � D̂aÂibÞ

þ 2"c 3‘�12=ðN�2ÞÂi
aÂbcðD̂aÂbc � D̂bÂacÞ þRi þDi þAð1ÞD̂ic þAð2ÞD̂iK̂ þAð3ÞD̂ac Âa

i

� 2ðN � 2Þ3
N2

"c 3‘�12=ðN�2ÞK̂
�
D̂aK̂ þ

�
‘� 4

N � 2

�
c�1K̂D̂ac

�
Âa

i

þ 2ðN � 3Þ
N

�
3‘þ 2ðN � 6Þ

N � 2

�
"c 3‘�12=ðN�2Þ�1K̂D̂bc Âb

aÂ
a
i þ 2ðN � 3Þ

N
"c 3‘�12=ðN�2ÞD̂bK̂Â

b
aÂ

a
i

� 2

�
3‘þ 2ðN � 6Þ

N � 2

�
"c 3‘�12=ðN�2Þ�1D̂cc Âc

bÂ
b
aÂ

a
i; (B7)

where

Ri ¼ c ‘�8=ðN�2Þ
��
‘þ 2ðN � 3Þ

N � 2

�
c�1Âi

aD̂ac � N � 3

N

�
D̂iK̂ þ

�
‘� 4

N � 2

�
c�1K̂D̂ic

��
R̂

þ c ‘�8=ðN�2Þ
�
2ðN � 3Þ

N

�
‘� 4

N � 2

�
c�1K̂D̂ac þ 2ðN � 3Þ

N
D̂aK̂ � 2

�
‘þ 2ðN � 3Þ

N � 2

�
c�1Âa

bD̂bc

�
R̂i

a

þ 2

�
‘� 2

N � 2

�
c ‘�8=ðN�2Þ�1ðÂabD̂ic � ÂibD̂ac ÞR̂ab � 2

�
‘� 2

N � 2

�
c ‘�8=ðN�2Þ�1D̂ac ÂbcR̂i

cab; (B8)

Di ¼ c ‘�8=ðN�2Þ
�
2ðN2 � 8N þ 11Þ

NðN � 2Þ c�1

�
D̂iK̂ þ

�
‘� 4

N � 2

�
c�1K̂D̂ic

�

� 4

N � 2

�
ðN � 3Þ‘þ 2ðN2 � 6N þ 7Þ

N � 2

�
c�2D̂bc Âb

i

�
D̂aD̂

ac

� c ‘�8=ðN�2Þ
�
4ðN � 3Þ

N
c�1

�
D̂aK̂ þ

�
‘� 4

N � 2

�
c�1K̂D̂ac

�
� 4

�
‘þ 6

ðN � 2Þ2
�
c�2D̂bc Âb

a

�
D̂aD̂ic

� 4ðN � 3Þ
N � 2

�
‘� 2

N � 2

�
c ‘�8=ðN�2Þ�2ðÂabD̂ic � ÂiaD̂bc ÞD̂bD̂ac ; (B9)

A ð1Þ ¼ 2c ‘�8

�
� 2

N � 2
c ‘�4=ðN�2Þ�2

�
D̂aK̂ þ

�
‘� 4

N � 2

�
c�1K̂D̂ac

��
D̂aK̂ þ

�
‘� 4

N � 2

�
c�1K̂D̂ac

�

þ 2c�2D̂aK̂D̂
ac þ 2ðN2 � 3nþ 3Þ

NðN � 2Þ
�
‘� 4

N � 2

�
c�3K̂D̂ac D̂ac � 4NðN � 3Þ

ðN � 2Þ2 c�3D̂ac D̂bc Âab

þ 2ðN � 3Þ
N

�
‘� 1

N � 2

�
"c ‘�4=ðN�2Þ�1K̂ÂabÂ

ab þ
�
‘� 2

N � 2

�
"c ‘�4=ðN�2Þ�1Âa

bÂb
cÂc

a

�
; (B10)

A ð2Þ ¼ 1

N
c ‘�8=ðN�2Þ

�
� 4ðN � 3Þ

N � 2
c�2D̂ac D̂ac � ðN � 1Þ2ðN þ 1Þ

N2
"c 2‘�4=ðN�2ÞK̂2 � ðN � 3Þ"c 2‘�4=ðN�2ÞÂabÂ

ab

�
;

(B11)
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Að3Þ ¼ �c ‘�8=ðN�2Þ
�

4

N � 2
½ðN � 3Þ‘� 6�c�3D̂ac D̂ac þ 1

N2

�
ðN2 � N þ 2Þ‘þ 2ðN � 1Þ

ðN � 2ÞðN2 � 8Þ
�
"c 2‘�4�1K̂2

�
�
3‘þ 2ðN � 6Þ

N � 2

�
"c 2‘�4=ðN�2Þ�1ÂabÂ

ab

�
: (B12)

When � ¼ 0 and m ¼ 2=ðN � 2Þ, which corresponds to case B [Eq. (46)],

�̂i ¼ c ‘�8=ðN�2Þ
�
R̂� 4ðN � 3Þ

N � 2
c�1D̂bD̂

bc � 8ðN � 3Þ2
ðN � 2Þ2 c�2D̂bc D̂bc � N2 � 3N þ 4

N2
"c 4=ðN�2ÞK̂2

� "c 2‘�4=ðN�2ÞÂbcÂ
bc

�
D̂aÂ

a
i þ c ‘�8=ðN�2Þ

�
�2R̂b

i þ
4ðN � 3Þ
N � 2

c�1D̂bD̂ic � 4NðN � 3Þ
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N

"c ‘K̂Âi
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cÂc
b

�
D̂aÂ

a
b þ c ‘�8=ðN�2Þ

�
2R̂ab � 4ðN � 3Þ

N � 2
c�1D̂bD̂ac

� 4NðN � 1Þ
ðN � 2Þ2 c�2D̂ac D̂bc � 2ðN � 3Þ

N
"c ‘K̂Âab þ 2"c 2‘�4=ðN�2ÞÂa

cÂ
cb

�
ðD̂iÂab � D̂aÂibÞ

þ 2"c 3‘�12=ðN�2ÞÂi
aÂbcðD̂aÂbc � D̂bÂacÞ þRi þDi þAð1ÞD̂ic þAð2ÞD̂iK̂ þAð3ÞD̂ac Âa

i

� 2ðN � 2Þ3
N2

"c ‘�4=ðN�2ÞK̂D̂aK̂Â
a
i þ 4ðN � 3Þ

N

�
‘þ N � 4

N � 2

�
"c 2‘�8=ðN�2Þ�1K̂D̂bc Âb

aÂ
a
i

þ 2ðN � 3Þ
N

"c 2‘�8=ðN�2ÞD̂bK̂Â
b
aÂ

a
i � 2

�
3‘þ 2ðN � 6Þ

N � 2

�
"c 3‘�12=ðN�2Þ�1D̂cc Âc

bÂ
b
aÂ

a
i; (B13)

where

Ri ¼
��
‘þ 2ðN � 3Þ

N � 2

�
c ‘�8=ðN�2Þ�1Âi

aD̂ac � N � 3

N
c�4=ðN�2ÞD̂iK̂

�
R̂

þ 2

�ðN � 3Þ
N

c�4=ðN�2ÞD̂aK̂ �
�
‘þ 2ðN � 3Þ

N � 2

�
c ‘�8=ðN�2Þ�1Âa

bD̂bc

�
R̂i

a

þ 2

�
‘� 2

N � 2

�
c ‘�8=ðN�2Þ�1fðÂabD̂ic � ÂibD̂ac ÞR̂ab � D̂ac ÂbcR̂i

cabg; (B14)

Di ¼ 2

N � 2

�
N2 � 8N þ 11

N
c�4=ðN�2Þ�1D̂iK̂ � 2

�
ðN � 3Þ‘þ 2ðN2 � 6N þ 7Þ

N � 2

�
c ‘�8=ðN�2Þ�2D̂bc Âb
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D̂aD̂

ac

� 4

�
N � 3
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�
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�
c ‘�8=ðN�2Þ�2D̂bc Âb

a

�
D̂aD̂ic

� 4ðN � 3Þ
N � 2

�
‘� 2

N � 2

�
c ‘�8=ðN�2Þ�2ðÂabD̂ic � ÂiaD̂bc ÞD̂bD̂ac ; (B15)

A ð1Þ ¼ � 4

N � 2
c�4=ðN�2Þ�2D̂aK̂D̂

aK̂ þ 4c�4=ðN�2Þ�2D̂aK̂D̂
ac � 8NðN � 3Þ

ðN � 2Þ2 c ‘�8=ðN�2Þ�3D̂ac D̂bc Âab

� 2ðN � 3Þ
N

�
‘� 2

N � 2
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�
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N � 2

�
"c 3‘�12=ðN�2Þ�1Âa

bÂb
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a; (B16)

A ð2Þ ¼ � 1

N

�
2ðN � 3Þc�4=ðN�2Þ�2D̂ac D̂ac þ ðN � 1Þ2ðN þ 1Þ

N2
"K̂2 þ ðN � 3Þ"c 2‘�8=ðN�2ÞÂabÂ

ab

�
; (B17)

Að3Þ ¼ � 4

N � 2
½ðN � 3Þ‘� 6�c ‘�8=ðN�2Þ�3D̂ac D̂ac � 1

N2

�
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N � 2

�
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þ
�
3‘þ 2ðN � 6Þ
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�
"c 3‘�12=ðN�2Þ�1ÂabÂ

ab: (B18)
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[24] N. Ó Murchadha and J.W. York, Jr., Phys. Rev. D 10, 428
(1974).

[25] In the strict sense this is not the conformal transformation
but just the relation between the values with and without a
caret.

[26] H. Shinkai and G. Yoneda, Gen. Relativ. Gravit. 36, 1931
(2004).

[27] T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev. D 62,
024012 (2000); M. Sasaki, T. Shiromizu, and K. Maeda,
ibid. 62, 024008 (2000).

[28] K. Maeda and T. Torii, Phys. Rev. D 69, 024002 (2004);
A. N. Aliev, H. Cebeci, and T. Dereli, Classical Quantum
Gravity 23, 591 (2006).

[29] N. Deruelle and J. Madore, arXiv:gr-qc/0305004.

N þ 1 FORMALISM IN EINSTEIN-GAUSS-BONNET GRAVITY PHYSICAL REVIEW D 78, 084037 (2008)

084037-13


