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We derive the simplest traversable wormhole solutions in n-dimensional general relativity, assum-
ing static and spherically symmetric spacetime with a ghost scalar field. This is the generalization of
the Ellis solution (or the so-called Morris-Thorne’s traversable wormhole) into a higher-dimension.
We also study their stability using linear perturbation analysis. We obtain the master equation
for the perturbed gauge-invariant variable and search their eigenvalues. Our analysis shows that
all higher-dimensional wormholes have an unstable mode against the perturbations with which the
throat radius is changed. The instability is consistent with the earlier numerical analysis in four-
dimensional solution.

PACS numbers: 04.20.-q, 04.40.-b, 04.50.-h

I. INTRODUCTION

Wormholes are popular tools in science fiction as a
way for rapid interstellar travel, time machines and warp
drives. However, wormholes are also a scientific topic,
just after the birth of general relativity.

Historically, a “tunnel structure” in the Schwarzschild
solution was first pointed out by Flamm in 1916[1]. Ein-
stein and Rosen [2] proposed a “bridge structure” be-
tween black holes in order to obtain a regular solution
without a singularity. The name “wormhole” was coined
by John A. Wheeler in 1957, and its fantastic applications
are popularized after the influential study of traversable
wormholes by Morris and Thorne [3].

Morris and Thorne considered “traversable conditions”
for human travel through wormholes responding to Carl
Sagan’s idea for his novel (Contact), and concluded that
such a wormhole solution is available if we allow “exotic
matter” (negative-energy matter).

The introduction of exotic matter sounds to be unusual
for the first time, but such matter appears in quantum
field theory and in alternative gravitational theories such
as scalar-tensor theories. The Morris-Thorne solution
is constructed with a massless Klein-Gordon field whose
gravitational coupling takes the opposite sign to normal,
which appears in Ellis’s earlier work [4], who called it a
drainhole, and also in more general framework of scalar-
tensor theories by Bronnikov in the same year[5]. (See a
review e.g. by Visser [6] for earlier works; See also e.g.
Lobo [7] for recent works).

Since the difference of light bending behavior between
the Ellis wormhole and Schwarzschild black hole were
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reported by Abe[8], the microlensing images with worm-
holes are also getting attention from the observational
point of view [9, 10].

One of our main motivations in this paper is the dy-
namical features of wormholes. A wormhole is supposed
to connect two spacetimes as a two-way interface, while
a black hole is an one-way interface. From this analogy,
Hayward [11] proposed a unified understanding of black
holes and traversable wormholes, i.e. a wormhole throat
can be interpreted as a degenerate horizon. This idea
predicts that a wormhole changes to a black hole in its
dynamical evolutions in the classical process.

This is numerically shown by one of the authors [12].
Using a dual-null formulation for space-time integration,
they observed that the wormhole is unstable against
Gaussian pulses in either an exotic or normal massless
Klein-Gordon field. The wormhole throat suffers a bi-
furcation of the horizon and either explodes to form an
inflationary universe or collapses to a black hole, whether
the total input energy is negative or positive, respectively.

These basic behaviors were repeatedly confirmed by
other groups [13, 14], together with linear perturbation
analysis [15] 1. The wormhole solutions with a conformal
scalar field were reported[5, 17], and their instabilities
are shown also using linear perturbation analysis [18].
There are also discussions on the wormhole solutions in
alternative/modified gravity (e.g. [19, 20]). Wormhole
thermodynamics is also proposed based on these proper-
ties [21].

We, therefore, understand that four-dimensional Ellis
wormhole is unstable. If this feature can also be seen in

1 Armendariz-Picon[16] reported that the Ellis wormhole is sta-
ble using perturbation analysis. However, Gonzalez et al [15]
reported that his conclusion is within the limited class of pertur-
bations and the Ellis wormhole is unstable
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higher-dimensional spacetime, it should be generic inde-
pendent of the dimension. The higher-dimensional the-
ories such as string/M theories are applied for various
unsolved problems in gravitational phenomena and cos-
mology, and we gain new insights into them. The worm-
holes in higher dimensional general relativity lead to the
study in such fundamental theories.

Wormhole study in higher-dimensional spacetime is
not a new topic. We can find the articles from 1980s
[22, 23], and the recent studies include higher-curvature
terms (see e.g. [24] and [25] and references therein). Most
of the research concerns the solutions and their energy
conditions mainly, but to our knowledge there is no gen-
eral discussion on the stability analysis of the solutions.

In this article, we construct Ellis solutions in higher-
dimensional general relativity, and study their stability
using the linear perturbation technique. The full numer-
ical studies will be shown in our follow up paper.

This paper is organized as follows. In Section II, we de-
rive our higher-dimensional wormhole solutions. In Sec-
tion III, we show the linear perturbation analysis. The
conclusion and discussion are shown in Section IV.

II. WORMHOLE SOLUTIONS

We start from the n-dimensional Einstein-Klein-
Gordon system

S =
∫
dnx

√
−g

[
1

2κ2
n

R− 1
2
ε(∇φ)2 − V (φ)

]
, (2.1)

where κ2
n is a n-dimensional gravitational constant. The

scalar field φ can be called as normal (or ghost) field if
ε = 1 (−1).

This action derives the Einstein equation

Gµν = κ2
nTµν , (2.2)

where

Tµν = ε(∂µφ)(∂νφ) − gµν

[ 1
2
ε(∇φ)2 + V (φ)

]
, (2.3)

and the Klein-Gordon equation

φ = −εdV
dφ

. (2.4)

We consider the space-time with the metric

ds2 = −f(t, r)e−2δ(t,r)dt2 + f(t, r)−1dr2

+R(t, r)2hijdx
idxj , (2.5)

where hijdx
idxj represents the line element of a unit (n−

2)-dimensional constant curvature space with curvature
k = ±1, 0 and volume Σk.

In order to construct a static wormhole solution, we
restrict the metric function as f = f(r), R = R(r), φ =
φ(r), and δ = 0. The (t, t), (r, r), and (t, r) components
of the Einstein equations, then, become

−n− 2
2

f2

[
2R′′

R
+
f ′R′

fR
+

(n− 3)R′2

R2

]
+

(n− 2)(n− 3)kf
2R2

= κ2
nf

[ 1
2
εfφ′2 + V (φ)

]
, (2.6)

n− 2
2

R′

R

[
f ′

f
+

(n− 3)R′

R

]
− (n− 2)(n− 3)k

2fR2
=
κ2

n

f

[ 1
2
εfφ′2 − V (φ)

]
, (2.7)

f ′′

2
+ (n− 3)f

(
R′′

R
+
f ′R′

fR
+
n− 4

2
R′2

R2

)
− (n− 3)(n− 4)k

2R2
= κ2

n

[ 1
2
εfφ′2 + V (φ)

]
, (2.8)

respectively, and the Klein-Gordon equation becomes

1
Rn−2

(
Rn−2fφ′

)′ = −εdV
dφ

. (2.9)

Hereafter, we assume that the scalar field is ghost
(ε = −1) and massless (V (φ) = 0). The Klein-Gordon
equation (2.9) is integrated as

φ′ =
C

fRn−2
, (2.10)

where C is an integration constant. The Einstein equa-

tions (2.6)–(2.8) are reduced to

(n− 2)R′

R

[f ′
f

+
(n− 3)R′

R

]
− (n− 2)(n− 3)k

fR2

= − κ2
nC

2

f2R2(n−2)
(2.11)

and
(n− 2)R′′

R
=

κ2
nC

2

f2R2(n−2)
. (2.12)

We assume the throat of the wormhole is at r = 0,
and a is the radius of the throat, i.e., R(0) = a. By the
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FIG. 1: The n-dimensional wormhole solutions; (a) The circumference radius R and (b) the scalar field φ are plotted as a
function of the radial coordinate r. The cases of n = 4–10 are shown.

regularity conditions at the throat,

R(0) = a > 0, and f(0) = f0 > 0, (2.13)

where f0 is a constant. Here we can assume a = 1 and
f0 = 1 without loss of generality [26], but we keep a in
the equations in this section for later convenience. We
also assume the reflection symmetry with respect to the
throat:

R′(0) = 0, and f ′(0) = 0. (2.14)

There is a shift symmetry of the scalar field φ and we
impose φ(0) = 0. By substituting these conditions into
Eq. (2.11), the integration constant C is determined as

κ2
nC

2 = (n− 2)(n− 3)ka2(n−3). (2.15)

For the case k = 0, the constant C vanishes and the
solution becomes trivial. For the case k = −1, Eq. (2.15)
is not satisfied and there is no wormhole solution. Below
we assume k = 1.

The solution of Eqs. (2.10)–(2.12) is obtained as

f ≡ 1, (2.16)

R′ =

√
1 −

( a
R

)2(n−3)

, (2.17)

φ =

√
(n− 2)(n− 3)

κn
an−3

∫
1

R(r)n−2
dr. (2.18)

The Eq. (2.17) is integrated to give

r(R) = −mBz

(
−m,

1
2

)
−

√
πΓ[1 −m]

Γ[m(n− 4)]
, (2.19)

where m = 1/2(n− 3) and z = Rm. Bz(p, q) is the
incomplete beta function defined by

Bz(p, q) :=
∫ z

0

tp−1(1 − t)q−1dt (2.20)

which can be expressed by the hypergeometric function
F (α, β, γ; z) as

Bz(p, q) =
zp

p
F (p, 1 − q, p+ 1; z). (2.21)

Although Eq. (2.19) is implicit with respect to R, it is
rewritten in the explicit form by using the inverse incom-
plete beta function. For n = 4, this solution reduces to
Ellis’s wormhole solution.

f ≡ 1, R =
√
r2 + a2, φ =

√
2 tan−1 r

a
. (2.22)

At the throat, we find

R′′(a) =
n− 3
a

, and φ′(a) =

√
(n− 2)(n− 3)

κna
. (2.23)

These indicate that the throat of the wormhole has larger
curvature and the scalar field φ becomes steeper as n
goes higher. At the spacial infinity, the scalar field φ(r)
becomes constant and the function R(r) is proportional
to r. We plotted these behaviors in Figure 1. For n→ ∞,
the functions have the limiting solution, R = r + a and
φ = π/2 (r > 0).
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III. STABILITY ANALYSIS

In this section, we investigate the linear stability of
the higher-dimensional wormhole solution obtained in
the previous section. In the non-linear analysis in four-
dimensional spacetime, it is shown that the instability
occurs by resolution of the degeneracy of a double trap-
ping horizon by perturbing the throat radius [12]. Hence
we follow the analysis in Ref. [15], where the throat ra-
dius is not fixed.

We focus on the “spherical” modes, where the (n− 2)-
dimensional constant curvature space is not perturbed
[27]. In the time-dependent and spherically symmetric

spacetime, the metric is written as Eq. (2.5) generally.
We write the perturbed functions as

f(t, r) = f0(r) + εf1(r)eiωt, (3.1)
δ(t, r) = δ0(r) + εδ1(r)eiωt, (3.2)
R(t, r) = R0(r) + εR1(r)eiωt, (3.3)
φ(t, r) = φ0(r) + εφ1(r)eiωt. (3.4)

ε is an infinitesimal parameter. The variables with sub-
script 0 denote the static solution obtained in the previ-
ous section. This ansatz contains one gauge mode.

The first-order equations of the Einstein equations become

R′′
1 +

(n− 3)R′
0

R0
R′

1 +
R′

0

2
f ′1 +

(n− 3)
2R0

f1 −
√
n− 3
n− 2

1
Rn−3

0

φ′1 = 0, (3.5)

(n− 3)R′
0

R0
R′

1 +
n− 3
R2n−4

0

R1 +
R′

0

2
f ′1 +

(n− 3)
2R0

f1 −R′
0δ

′
1 +

√
n− 3
n− 2

1
Rn−3

0

φ′1 +R1ω
2 = 0, (3.6)

2R′
1 −R′

0f1 − 2

√
n− 3
n− 2

1
Rn−3

0

φ1 = 0, (3.7)

for the (t, t), (r, r), and (t, r) components, respectively. Here we assume a = 1. From Eq. (3.7), f1 is

f1 = 2

√
n− 3
n− 2

1
Rn−3

0 R′
0

φ1 −
2
R′

0

R′
1. (3.8)

By substituting Eq. (3.8) into Eqs. (3.5) and (3.6), we find

R′′
1 − n− 3

R2n−4
0

R1 +R′
0δ

′
1 − 2

√
n− 3
n− 2

1
Rn−3

0

φ′1 = ω2R1. (3.9)

With Eq. (3.8), the Klein-Gordon equation turns out to be

φ′′1 +
(n− 2) + (n− 4)R−2n+6

0

R0R′
0

φ′1 −
2(n− 3)2

R2n−4
0 R′2

0

φ1 −
2
√

(n− 2)3
Rn−2

0 R′
0

R′′
1

+

√
(n− 2)3

[
(n− 2) + (n− 4)R−2n+6

0

]
Rn−1

0 R′2
0

R′
1 −

(n− 2)
√

(n− 2)3R′
0

Rn
0

R1 −
√

(n− 2)3
Rn−2

0

δ′1 = −ω2φ1. (3.10)

By introducing the new variable,

ψ1 = R
n−2

2
0

(
φ1 −

φ′0
R′

0

R1

)
, (3.11)

we find Eqs. (3.9) and (3.10) give the single master equa-
tion,

−ψ′′
1 + V (r)ψ1 = ω2ψ1, (3.12)

with the potential,

V (r) =
n− 2

2

[
n− 3

R
2(n−2)
0

+
(n− 4)R′2

0

2R2
0

]
+

2(n− 3)2

R
2(n−2)
0 R′

0
2
.

(3.13)

The variable ψ1 is gauge invariant under the spherically
symmetric ansatz. However, R′

0 is zero at the throat, and
the potential V diverges there. Hence we regularize the
master equation (3.12)[28].

It is easily checked that the master equation (3.12) has
a 0-mode solution

ψ̄1 =
1

R
n−4

2
0 R′

0

. (3.14)

With the 0-mode solution, we define differential operators

D+ =
d

dr
− ψ̄′

1

ψ̄1
and D− = − d

dr
− ψ̄′

1

ψ̄1
. (3.15)
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FIG. 2: The potential function W (r) is plotted. W (r) is finite
everywhere, and negative around the throat.

Then the master equation, (3.12), can be written as

D−D+ψ1 = ω2φ1. (3.16)

Operating D+ from the left and defining the new variable
Ψ1 = D+ψ1, we find the regularized master equation

−Ψ′′
1 +W (r)Ψ1 = ω2Ψ1, (3.17)

where

W (r) = − 1
4R2

0

[3(n− 2)2

R
2(n−3)
0

− (n− 4)(n− 6)
]
. (3.18)

Figure 2 shows the configurations of the potential func-
tion W (r). Now the potential function is regular every-
where. For n = 4, W (r) has the minimum at the throat
and is negative definite. For n ≥ 5, W (r) has the min-
imum at the throat, while it increases apart from the
throat and becomes positive for large r.

We search the eigenfunctions Ψ1(r) of Eq. (3.17), and
find them in any dimension n. There exists one nega-
tive eigenvalue for ω2, which are listed in Table I. The
existence of the eigenfunction with negative ω2 implies
that the solution is unstable. We find large negative ω2

for higher n, which indicates the time-scale of instability
becomes shorter. This feature corresponds to the depth
of the potential W . The associated eigenfunctions Ψ1(r)
are shown in Figure 3.

IV. CONCLUSIONS AND DISCUSSIONS

We derived the simplest wormhole solutions in higher-
dimensional general relativity. The spacetime is assumed
to be static and spherically symmetric, has ghost scalar
field, and has reflection symmetry at the throat. The
four-dimensional version is known as the Ellis (Morris-
Thorne) solution. At the throat, both the ingoing and
outgoing expansions vanish, which means that the throat
consists of a degenerate horizon.

FIG. 3: The eigenfunction Ψ1 [Eq. (3.17)] is plotted as a
function of radial coordinate r.

TABLE I: The negative eigenvalues ω2.

n ω2

4 −1.39705243371511
5 −2.98495893027790
6 −4.68662054299460
7 −6.46258414126318
8 −8.28975936306259
9 −10.1535530451867

10 −12.0442650147438
11 −13.9552091676647
20 −31.5751101285105
50 −91.3457759137153

100 − 191.283017729717

The obtained solutions are expressed with the incom-
plete beta function. We expect that the solution can be
expressed more simple functional form if we use another
coordinate system. Or such an expression might have
appeared in the literature, but we have not noticed it.
However, we believe the successive stability analysis is
new to us.

From the stability analysis using the linear perturba-
tion technique, we showed that the solutions have one
negative mode, which concludes that all wormholes are
linearly unstable. The time scale of instability becomes
shorter as n becomes large.

By extrapolating the knowledge of four-dimensional
Ellis’s wormhole, we expect that these higher-
dimensional wormholes also change to a black hole or
an expanding throat. This is actually true. In our suc-
ceeding papers, we will report the numerical evolutions
of higher-dimensional wormholes, in which we show the
above predictions are realized. Both linearly perturbed
solutions and solutions with nonlinear pulse input suffer
the bifurcations of horizons and turn to either black hole
or expanding throat. In order to obtain a robust worm-
hole solution for such a disturbance, we may have to work
in modified gravity theories, as was recently reported in
dilaton-Gauss-Bonnet gravity[25].
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The instability of wormholes requires additional main-
tenance techniques in science fiction. Not only so, but
this indicates that such a simple wormhole construction
cannot be available as an astrophysical object with the
present setting.
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