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We present our numerical comparisons between the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formulation widely used in numerical relativity today and its adjusted versions using constraints. We
performed three test beds: gauge-wave, linear wave, and Gowdy-wave tests, proposed by the Mexico
workshop on the formulation problem of the Einstein equations. We tried three kinds of adjustments,
which were previously proposed from the analysis of the constraint propagation equations, and inves-
tigated how they improve the accuracy and stability of evolutions. We observed that the signature of the
proposed Lagrange multipliers are always right and the adjustments improve the convergence and stability
of the simulations. When the original BSSN system already shows satisfactory good evolutions (e.g.,
linear wave test), the adjusted versions also coincide with those evolutions, while in some cases (e.g.,
gauge-wave or Gowdy-wave tests) the simulations using the adjusted systems last 10 times as long as
those using the original BSSN equations. Our demonstrations imply a potential to construct a robust
evolution system against constraint violations even in highly dynamical situations.
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I. INTRODUCTION

Numerical integration of the Einstein equations is the
only way to investigate highly dynamical and nonlinear
gravitational space-time. The detection of gravitational
waves requires templates of waveform; among them merg-
ers of compact objects are the most plausible astrophysical
sources. Numerical relativity has been developed with this
purpose over decades.

For neutron star (NS) binaries, a number of scientific
numerical simulations have been done so far, and we are
now at the level of discussing the actual physics of the
phenomena, including the effects of the equations of state,
hydrodynamics, and general relativity by evolving various
initial data [1–5]. Mergers of black holes (BHs) are also
available after the breakthrough by Pretorius [6] in 2004.
Pretorius’s implementation had many novel features in his
code; among them he discretizes the four-dimensional
Einstein equations directly, which is not a conventional
approach so far. However, after the announcements of
successful binary BH mergers by Campanelli et al. [7]
and Baker et al. [8] based on the standard 3� 1 decom-
position of the Einstein equations, many groups began
producing interesting results [9–18]. The merger of NS-
BH binary simulations has also been reported recently, e.g.
[19].

Almost all the groups which apply the above conven-
tional approach use the so-called BSSN variables together
with ‘‘1� log’’-type slicing conditions for the lapse func-
tion and ‘‘�-driver’’ type slicing conditions for the shift
function. BSSN stands for Baumgarte-Shapiro [20] and

Shibata-Nakamura [21], the modified Arnowitt-Deser-
Misner formulation initially proposed by Nakamura [22].
(The details are described in Sec. II A.) There have already
been several efforts to explain why the combination of this
recipe works from the point of view of the well-posedness
of the partial differential equations (e.g. [23,24]). However,
the question remains whether there exists an alternative
evolution system that enables more long-term stable and
accurate simulations. The search for a better set of equa-
tions for numerical integrations is called the formulation
problem for numerical relativity, of which earlier stages are
reviewed by one of the authors [25].

In this article, we report our numerical tests of modified
versions of the BSSN system, the adjusted BSSN systems,
proposed by Yoneda and Shinkai [26]. The idea of their
modifications is to add constraints to the evolution equa-
tions like Lagrange multipliers and to construct a robust
evolution system, which evolves to the constraint surface
as the attractor. Their proposals are based on the eigenvalue
analysis of the constraint propagation equations (the evo-
lution equations of the constraints) on the perturbed metric.
For the Arnowitt-Deser-Misner (ADM) formulation, they
explain why the standard ADM does not work for long-
term simulations by showing the existence of the constraint
violating mode in perturbed Schwarzschild space-time
[27]. For the BSSN formulation, they analyzed the eigen-
values of the constraint propagation equations only on flat
space-time [26], but one of their proposed adjustments was
immediately tested by Yo et al. [28] for the numerical
evolution of Kerr-Schild space-time and confirmed to
work as expected. (The details are described in Sec. II B.)

Our numerical examples are taken from the proposed
problems for testing the formulations of the Mexico
Numerical Relativity Workshop 2001 participants [29],

*kiuchi@gravity.phys.waseda.ac.jp
†shinkai@is.oit.ac.jp

PHYSICAL REVIEW D 77, 044010 (2008)

1550-7998=2008=77(4)=044010(11) 044010-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.044010


which are sometimes called the Apples-with-Apples test.
To concentrate the comparisons on the formulation prob-
lem, the templated problems are settled so as not to require
technical complications; e.g., periodic boundary condi-
tions are used and the slicing conditions do not require
solving elliptical equations. Several groups already re-
ported their code tests using these Apples tests (e.g. [30–
32]), and we are also able to compare our results with
theirs.

This article is organized as follows. We describe the
BSSN equations and the adjusted BSSN equations in
Secs. II A and II B. We give our three numerical test prob-
lems in Sec. III. Comments on our coding stuff are in
Sec. IV. Section V is devoted to showing numerical results
for each test bed, and we summarize the results in Sec. VI.

II. BASIC EQUATIONS

A. BSSN equations

We start by presenting the standard BSSN formulation,
where we follow the notations of [20], which are widely
used among numerical relativists.

The idea of the BSSN formulation is to introduce aux-
iliary variables to those of the ADM formulation for ob-
taining longer stable numerical simulations. The basic
variables of the BSSN formulation are ��; ~�ij; K; ~Aij; ~�

i�,
which are defined by

 � �
1

12
log�det�ij�; (2.1)

 

~� ij � e�4��ij; (2.2)

 K � �ijKij; (2.3)

 

~A ij � e�4�
�
Kij �

1
3�ijK

�
; (2.4)

 

~� i � ~�jk~�ijk; (2.5)

where ��ij; Kij� are the intrinsic and extrinsic ADM 3-
metric. The conformal factor � is introduced so as to set
~� � det�~�ij� as unity, ~Aij is supposed to be traceless, and
~�i is treated independently in evolution equations.
Therefore these three requirements turn into the new con-
straints [below (2.16), (2.17), and (2.18)].

The set of the BSSN evolution equations are

 @t� � �
1
6�K � �

i@i��
1
6@i�

i; (2.6)

 

@t ~�ij � �2� ~Aij � ~�ik@j�k � ~�jk@i�k �
2
3 ~�ij@k�k

� �k@k ~�ij; (2.7)

 @tK � �D
iDi�� � ~Aij ~Aij � 1

3�K
2 � �i@iK; (2.8)

 @t ~Aij � �e�4��DiDj�� �Rij�TF � �K ~Aij � 2� ~Aik ~Akj

� @i�k ~Akj � @j�k ~Aki �
2
3@k�

k ~Aij � �k@k ~Aij;

(2.9)

 

@t~�
i � �2@j� ~Aij � 2�

�
~�ijk ~Ajk � 2

3 ~�ij@jK � 6 ~Aij@j�
�

� ~�jk@j@k�i �
1
3 ~�ij@j@k�k � �j@j~�

i

� ~�j@j�i �
2
3
~�i@j�j; (2.10)

where Di is the covariant derivative with respect to the 3-
metric �ij and TF means trace-free operation, i.e., HTF

ij �

Hij �
1
3�ijH

k
k . The Ricci tensor is computed with the

conformal connection ~�i as

 Rij � R�ij � ~Rij; (2.11)

 R�ij � �2 ~Di
~Dj�� 2~�ij ~Dk ~Dk�� 4 ~Di� ~Dj�

� 4~�ij ~Dk� ~Dk�; (2.12)

 

~R ij � �
1
2 ~�lk@k@l ~�ij � ~�k�i@j�~�

k � ~�lm~�klm~��ij�k

� 2~�lm~�kl�i
~�j�km � ~�lm~�kim~�klj; (2.13)

where ~Di is a covariant derivative associated with ~�ij.
Similar to the ADM formulation, this system has con-

straint equations. The two ‘‘kinematic’’ constraints, the
Hamiltonian and momentum constraint equations, are ex-
pressed in terms of the BSSN basic variables and are
written as
 

H � e�4� ~R� 8e�4�� ~Di ~Di�� ~Di� ~Di��

� 2
3K

2 � ~Aij ~Aij � 2
3AK 	 0; (2.14)

 M i � 6 ~Aji ~Dj�� 2A ~Di��
2
3

~DiK � ~Dj
~Aji 	 0:

(2.15)

Additionally, the BSSN formulation requires three ‘‘alge-
braic’’ constraint relations;

 G i � ~�i � ~�jk~�ijk 	 0; (2.16)

 A � ~Aij ~�ij 	 0; (2.17)

 S � ~�� 1 	 0; (2.18)

where (2.16) and (2.17) are from the definitions of (2.4) and
(2.5), respectively. Equation (2.18) is from the requirement
on ~�.

These five constraints are, theoretically, supposed to be
zero at all times; therefore they can be used to modify the
dynamical equations. For example, Alcubierre et al. [33]
announced that the replacement of the terms in (2.10) using
the momentum constraint drastically changes the stability
feature. Actually, such replacements of terms using con-
straints are applied (with/without intentions) in many terms
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in (2.6), (2.7), (2.8), (2.9), and (2.10), which are expressed
as Eqs. (2.27)–(2.31) in [26].

Alcubierre et al. [34] also pointed out that the redefini-
tion of ~Aij by

 

~A ij ! ~Aij �
1
3 ~�ijtr ~A (2.19)

during the time evolution improves the numerical stability.
This technique again can be understood as the trace out of
the A-constraint (2.17) from the evolution equations. In
our numerical code, we do not apply this technique be-
cause we recognize the trace-free property as the new
constraint A in the BSSN system, and our purpose is to
construct a system preventing the violation of constraints.

Recently, several groups applied artificial dissipation
(e.g. [35]) to obtain stable evolutions (see, e.g.
[32,36,37]). We, however, do not introduce such dissipa-
tions in our code, since we try to clarify the difference of
stability from the viewpoint of formulations of the Einstein
equations.

B. Adjusted BSSN systems

To understand the stability property of the BSSN system,
Yoneda and Shinkai [26] studied the structure of the evo-
lution equations (2.6), (2.7), (2.8), (2.9), and (2.10) in de-
tail, especially how the modifications using the constraints
(2.14), (2.15), (2.16), (2.17), and (2.18) affect to the stabil-
ity. They investigated the signature of the eigenvalues of
the constraint propagation equations (dynamical equations
of constraints), and explained that the standard BSSN
dynamical equations are balanced from the viewpoints of
constrained propagations, including a clarification of the
effect of the replacement using the momentum constraint
equation.

Moreover, they predicted that several combinations of
modifications have a constraint-damping nature, and
named them adjusted BSSN systems. (Their predictions
are based on the signature of eigenvalues of the constraint
propagations, and the negative signature implies a dynami-
cal system, which evolves toward the constraint surface as
the attractor.)

Among them, in this work, we test the following three
adjustments:

(1) An adjustment of the ~A-equation with the momen-
tum constraint:

 @t ~Aij � @Bt ~Aij � �A� ~D�iMj�; (2.20)

where �A is predicted (from the eigenvalue analy-
sis) to be positive in order to damp the constraint
violations.

(2) An adjustment of the ~�-equation with G constraint:

 @t ~�ij � @Bt ~�ij � �~��~�k�i ~Dj�G
k; (2.21)

with �~� < 0.
(3) An adjustment of the ~�-equation with G constraint:

 @t~�
i � @Bt ~�i � �~��G

i; (2.22)

with �~� < 0.
These three adjustments are chosen as samples of ‘‘best

candidates,’’ Eq. (4.9)–(4.11) in [26]. The term ‘‘best’’
comes from their conjecture on the eigenvalue analysis
of the constraint propagation matrix; that is, (a) all the
resultant eigenvalues from the above adjustments can be
less than or at most equal to zero, which indicates the decay
of constraint errors, and (b) the resultant constraint propa-
gation matrix is diagonalizable, which guarantees the pre-
dictions of the above eigenvalue analysis (see Table II in
[26]). However, since the above eigenvalues include zero
elements and also the above analysis assumes a linearly
perturbed metric about the flat space-time, the effects of
the adjustments (2.20), (2.21), and (2.22) need to be dem-
onstrated via numerical experiments.

III. NUMERICAL TEST BED MODELS

Following the proposals of the Mexico Numerical
Relativity Workshop [29], we perform three kinds of tests.
In this section, we explicitly give some details of the
models.

A. Gauge-wave test bed

The first test is the trivial Minkowski space-time, but
sliced with the time-dependent 3-metric, which is called
the gauge-wave test. The 4-metric is obtained by coordi-
nate transformation from the Minkowski metric as

 ds2 � �Hdt2 �Hdx2 � dy2 � dz2; (3.1)

where

 H � H�x� t� � 1� A sin
�
2��x� t�

d

�
; (3.2)

which describes a sinusoidal gauge wave of amplitude A
propagating along the x-axis. The nontrivial extrinsic cur-
vature is

 Kxx � �
�A
d

cos�2��x�t�d ���������������������������������
1� A sin2��x�t�

d

q : (3.3)

Following [29], we chose numerical domain and parame-
ters as follows:

(i) Gauge-wave parameters: d � 1 and A � 10�2;
(ii) Simulation domain: x 2 ��0:5; 0:5�, y � z � 0;

(iii) Grid: xi � �0:5� �n� 1
2�dx with n � 1; 
 
 
 50�,

where dx � 1=�50�� with � � 2, 4, 8;
(iv) Time step: dt � 0:25dx;
(v) Boundary conditions: Periodic boundary condition in

x direction and planar symmetry in y and z
directions;

(vi) Gauge conditions:

 @t� � ��2K; �i � 0: (3.4)

NUMERICAL EXPERIMENTS OF ADJUSTED BAUMGARTE- . . . PHYSICAL REVIEW D 77, 044010 (2008)

044010-3



The 1D simulation is carried out for a T � 1000 crossing
time or until the code crashes, where one crossing time is
defined by the length of the simulation domain.

B. Linear wave test bed

The second test is to check the ability of handling a
travelling gravitational wave. The initial 3-metric and ex-
trinsic curvatures Kij are given by a diagonal perturbation
with component

 ds2 � �dt2 � dx2 � �1� b�dy2 � �1� b�dz2; (3.5)

where

 b � A sin
�
2��x� t�

d

�
; (3.6)

for a linearized plane wave traveling in the x-direction.
Here d is the linear size of the propagation domain and A is
the amplitude of the wave. The nontrivial components of
extrinsic curvature are then

 Kyy � �
1
2@tb; Kzz �

1
2@tb: (3.7)

Following [29], we chose the following parameters:
(i) Linear wave parameters: d � 1 and A � 10�8;

(ii) Simulation domain: x 2 ��0:5; 0:5�, y � 0, z � 0;
(iii) Grid: xi � �0:5� �n� 1

2�dx with n � 1; 
 
 
 50�,
where dx � 1=�50�� with � � 2, 4, 8;

(iv) Time step: dt � 0:25dx;
(v) Boundary conditions: Periodic boundary condition in

x direction and planar symmetry in y and z
directions;

(vi) Gauge conditions: � � 1 and �i � 0.
The 1D simulation is carried out for a T � 1000 crossing
time or until the code crashes.

C. Collapsing polarized Gowdy-wave test bed

The third test is to check the formulation in a strong-field
context using the polarized Gowdy metric, which is written
as

 ds2 � t�1=2e�=2��dt2 � dz2� � t�ePdx2 � e�Pdy2�:

(3.8)

Here time coordinate t is chosen such that time increases as
the Universe expands. Simple forms of the solutions, P and
�, are given by

 P � J0�2�t� cos�2�z�; (3.9)

 

� � �2�tJ0�2�t�J1�2�t�cos2�2�z� � 2�2t2�J2
0�2�t�

� J2
1�2�t�� �

1
2��2��

2�J2
0�2�� � J

2
1�2���

� 2�J0�2��J1�2���; (3.10)

where Jn is the Bessel function. The nontrivial extrinsic
curvatures are then

 Kxx � �
1
2t

1=4e��=4eP�1� tP;t�; (3.11)

 Kyy � �
1
2t

1=4e��=4e�P�1� tP;t�; (3.12)

 Kzz �
1
4t
�1=4e�=4�t�1 � �;t�: (3.13)

According to [29], the new time coordinate 	, which
satisfies harmonic condition, is obtained by coordinate
transformation as

 t�	� � kec	; (3.14)

where c and k are arbitrary constants. Using this freedom,
we can set the lapse function in the new time coordinate to
be unity at the initial time. Concretely, we set

 t0 � 	0 � 9:8753205829098;

c� 0:0021195119214617; k� 9:6707698127638;

(3.15)

where t0 is the initial time. Following [29], we perform our
evolution in the collapsing (i.e. backward in time) direc-
tion. Parameters are chosen as follows:

(i) Simulation domain: z 2 ��0:5; 0:5�, x � y � 0;
(ii) Grid: z � �0:5� �n� 1

2�dz with n � 1; 
 
 
 50�,
where dz � 1=�50�� with � � 2, 4, 8;

(iii) Time step: dt � 0:25dz;
(iv) Boundary conditions: Periodic boundary condition

in z-direction and plane symmetry in x- and
y-directions;

(v) Gauge conditions: the harmonic slicing (3.4) and
�i � 0.

The 1D simulation is carried out for a T � 1000 crossing
time or until the code crashes.

IV. THE CODE

A. Code description

We have developed a new numerical code based on the
adjusted BSSN systems. The variables are
��; ~�ij; K; ~Aij; ~�

i�, and the evolution equations are (2.6),
(2.7), (2.8), (2.9), and (2.10) with/without adjustment (2.20)
and (2.21), and/or (2.22). The time-integration is under the
free-evolution scheme, and we monitor five constraints
(2.14), (2.15), (2.16), (2.17), and (2.18) to check the accu-
racy and stability of the evolutions.

Our time-integration scheme is the three-step iterative
Crank-Nicholson method with centered finite difference in
space [38]. This scheme should have second-order con-
vergence both in space and time, and we checked its
convergence in all the test beds.

As we have already mentioned in the end of Sec. II A, we
do not apply the trace out technique of ~Aij (2.19) in our
code.

We also remark on our treatment of the conformal
connection variable ~�i. As was pointed out in [39], it is
better not to use ~�i in all the evolution equations. We
surmise this is because the amplification of the error due
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to the discrepancy of the definition (2.5), i.e., the accumu-
lations of the violations of Gi-constraint (2.16). Therefore,
we used the evolved ~�i only for the terms in (2.10) and
(2.13), and not for other terms, so as not to implicitly apply
the Gi-constraint in time evolutions.

B. Debugging procedures

It is crucial that our code can produce accurate results,
because the adjustment methods are based on the assump-
tion that the code represents the BSSN system (2.6), (2.7),
(2.8), (2.9), and (2.10) accurately. We verified our code by
comparing our numerical data with analytic solutions from
the gauge-wave and Gowdy-wave test beds in Sec. III. The
actual procedures are as follows:

(1) Evolve only one component, e.g. ~Axx, numerically,
and express all the other components with those of
the analytic solution. In this situation, the origin of
the error is from the finite differencing of the ana-
lytic solution in the spatial direction and from that of
the numerically evolved component ( ~Axx) both in
spatial and time directions. We checked the code by
monitoring the difference between the numerically
evolved component ( ~Axx) and its analytic expres-
sion. This procedure was applied to all the compo-
nents one by one.

(2) Evolve only several components, e.g., ~Axx and ~�x,
numerically, and express the other components by
the analytic solution. The error can be checked by a
procedure similar to the one above.

(3) Evolve all the components numerically, and check
the error with the analytic solution.

We repeated these procedures 3 times by switching the
propagation directions (x, y, and z-directions) of gauge-
wave and Gowdy-wave solutions. We also applied these
procedures in a 2D test [29], and checked the off-diagonal
component.

C. Error evaluation methods

It should be emphasized that the adjustment effect has
two meanings, improvement of stability and of accuracy.
Even if a simulation is stable, it does not imply that the
result is accurate. We judge the stability of the evolution by
monitoring the L2 norm of each constraint,

 jj
Cjj2�t� �

���������������������������������������
1

N

X
x;y;z

�C�t; x; y; z��2
vuut ; (4.1)

where N is the total number of grid points, while we judge
the accuracy by the difference of the metric components
gij�t; x; y; z� from the exact solution g�exact�

ij �t; x; y; z�,

 jj
gijjj2�t� �

������������������������������������������
1

N

X
x;y;z

�gij � g
�exact�
ij �2

vuut : (4.2)

D. Magnitude of �

Adjusted systems (2.20), (2.21), and (2.22) require to
specify the parameter �. From the analytical prediction in
[26] we know the signature of �, but not for its magnitude.
By definition of the adjustment terms in Eqs. (2.20), (2.21),
and (2.22), applying small � should produce the close
results with those of the plain system. On the contrary,
the large � system will violate the Courant-Friedrich-Lewy
condition [40]. Hence, there exists a suitable region in the
adjustment parameters.

At this moment, we have to chose � experimentally, by
observing the lifetime of simulations. The value of �, used
in our demonstrations, is one of the choices of which the
adjustment works effectively in all the resolutions.

V. NUMERICAL RESULTS

A. Gauge-wave test

1. The plain BSSN system

As the first test, we show the plain BSSN evolution (that
is, no adjustments) in Fig. 1 for the gauge-wave test. In
Fig. 1, the L2 norms of the Hamiltonian and momentum
constraints (4.1) are plotted as a function of the crossing
time. The second-order convergent nature is lost at an early
time, the 20 crossing time, and the simulation crashes at
about the 100 crossing time. The poor performance of the
plain BSSN system for the gauge-wave test has been
reported in [31] (see their Fig. 8). This drawback, on the
other hand, can be overcome if one uses the fourth-order
finite differencing scheme, an example of which can be
seen in [32] (see their Fig. 2).

2. Adjusted BSSN with ~A-equation

We found that the simulation lasts 10 times longer with
the adjustment in the ~A-equation using the momentum
constraint (2.20). Figure 2 shows the L2 norms of the
Hamiltonian and momentum constraints in the same style
as in Fig. 1. The adjustment parameter is set at �A � 0:005
for this plot. We obtain almost prefect overlap of the
rescaled Hamiltonian constraint for 200 crossing times
and almost perfect overlap in the momentum constraint
for 50 crossing times; there apparently improve the results
of the plain BSSN system (see Fig. 1). We show the plots
until the 1000 crossing time; there we observe the growth
of the error both in later time and in higher resolution
cases. However, it is also true that all errors are still under
the errors of the plain BSSN system. Therefore, we con-
clude that this adjusted system shows a weaker instability
than the plain system.

3. Adjusted BSSN with ~�-equation

The case of the adjustment of the ~�-equation using the G
constraint (2.22) is shown in Fig. 3.
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The adjustment parameter is set at �~� � �0:1. We find
that the second-order convergence breaks down near the 40
crossing time under the momentum constraint, which is
almost the same as with the plain BSSN system. However,
the convergence of the Hamiltonian constraint is improved,
i.e., it continues to the near 55 crossing time. The lifetime
of the simulation is almost the same as that of the plain
BSSN system.

4. Adjusted BSSN with ~�-equation

We also tested the cases of the adjustment of the
~�-equation using the G constraint (2.21). We again ob-
served the effects of the adjustment on its stability and
accuracy but found a rather small effect compared to the
cases of the adjustments of (2.20) or (2.22), up to our trials
of the parameter range of ��. Therefore we omit showing
the results.
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FIG. 2 (color online). The one-dimensional gauge-wave test with the adjusted BSSN system in the ~A-equation (2.20). The L2 norm
of H and Mx, rescaled by �2=4, are plotted with a function of the crossing time. The wave parameter is the same as with Fig. 1, and
the adjustment parameter �A is set to �A � 0:005. We see the higher resolution runs show convergence longer, i.e., the 300 crossing
time in H and the 200 crossing time in Mx with � � 4 and 8 runs. All runs can stably evolve up to the 1000 crossing time.
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FIG. 3 (color online). The one-dimensional gauge-wave test with the adjusted BSSN system in the ~�-equation (2.22). The L2 norm
of H and Mx, rescaled by �2=4, are plotted with a function of the crossing time. The wave parameter is the same as Fig. 1, and the
adjustment parameter is �~� � �0:1. Note the near perfect overlap for the 55 crossing time in H and the 40 crossing time in Mx.
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FIG. 1 (color online). The one-dimensional gauge-wave test with the plain BSSN system. The L2 norm of H and Mx, rescaled by
�2=4, are plotted with a function of the crossing time. The amplitude of the wave is A � 0:01. The loss of convergence at the early
time, near the 20 crossing time, can be seen, and it will produce the blowups of the calculation in the end.
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5. Evaluation of Accuracy

For evaluating the accuracy, we prepare Fig. 4(a), in
which we plot the L2 norm of the error in �xx (4.2), with
the function of time. Three lines correspond to the result of
the plain BSSN system, ~A-equation adjusted, and
~�-equation adjusted BSSN system, respectively. The
~�-adjustment makes the lifetime slightly longer than that
of the plain BSSN, while ~A-adjustment increases the life-
time of the simulation by a factor of 10. However, it is also
true that the error grows in time in all the three cases.

We also find that the error is induced by distortion of the
wave, i.e. the both phase and amplitude errors distort the
numerical solution. In Fig. 4(b), we show a snapshot of �xx
numerical solution at T � 100, together with the exact
solution at the same time coordinate. The amplitude dif-
ference between the numerical and exact solutions is ap-
parently less when we use the ~A-equation adjusted system
than that of the plain system. In Sec. VI later, we discuss
what causes the error and why the simulation lifetime
becomes longer when we use the adjusted system.

B. Linear wave test

The second test is the linear wave propagation test,
Sec. III B, to check the accuracy of wave propagations in

the adjusted systems. We find that the linear wave test bed
does not produce a significant constraint violation even for
the plain BSSN system. The simulation does not crash at
the 1000 crossing time irrespective of the resolutions.
Figure 5 illustrates the profiles of �zz � 1 at the 500 cross-
ing time. The figure indicates the simulation does not
produce the amplitude error but does produce the phase
error. However, we also observe that the higher resolution
run reduces the phase error.

We tried the same evolutions with adjusted BSSN sys-
tems. However, all the results are indistinguishable from
the those of the plain BSSN system. This is because the
adjusted terms of the equations are small due to the small
violations of constraints. Figure 6 shows a snapshot of the
error defined by �zz � �

�exact�
zz at the 500 crossing time both

for the plain BSSN system and the adjusted BSSN system
where the ~A-equation where �A � 10�3. Since two lines
are matching quite well, we can say that the adjusted BSSN
system produces the same result as the plain BSSN system,
including the phase error. Results from the other adjusted
BSSN systems are almost the same qualitatively, including
their convergence features. We also remark that we do not
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see a case in which adjustment worsens accuracy and
stability.

C. Gowdy-wave test

The third test is the polarized Gowdy-wave test,
Sec. III C, to check the adjustments in the strong-field
regime.

1. The plain BSSN

In Fig. 7, we first show the case of the plain BSSN
evolution. We find that the second-order convergence con-
tinues up to the 100 crossing time and the higher resolution
runs tend to crash at early times. This behavior (and
crashing time) almost coincides with the results of the
Cactus BSSN code, reported by Alcubierre et al. [29]
(see their Fig. 7). (We remark that Zlochower et al. [32]
reported they can produce the stable and accurate evolution
for the 1000 crossing time by implementing the higher
order differencing scheme to their LazEv code. However,
it should be emphasized that they suggested their code
produces the stable simulation only when they used the
Kreiss-Oliger dissipation term [35].)

2. Adjusted BSSN with ~A-equation

Adjustment of the ~A-equation using the momentum
constraint (2.20), extends the lifetime of the simulation
10 times longer for the highest resolution run. Figure 8
depicts the rescaled L2 norm of H and Mz versus time.
We set �A � �0:001. (Note that the signature of � is
reversed from the expected one, since the evolution is
backward in time.)

We find that an almost perfect overlap up to the 1000
crossing time under both the Hamiltonian constraint and
the momentum constraint. (These overlaps indicate that the
error in H and Mz in the � � 8 resolution runs are 16
times smaller than these errors in the � � 2 resolution
run.) However, we also find oscillations in the momentum
constraint, especially in the end of the simulation.

3. Adjusted BSSN with ~�-equation

The case of the adjustment of the ~�-equation using the
G-constraint (2.21), is shown in Fig. 9. The adjustment
parameter �~� is set at 0.000 025. (Again, the signature of �
is reversed from the expected one.)

Figure 9 shows that an almost perfect overlap is obtained
for the 200 crossing time in both H and Mz. The higher
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resolution runs tend to crash at earlier times, which is same
as with the plain BSSN system. However, the convergence
time becomes longer than that of the plain BSSN system.
We will discuss the quantitative improvement for the
~�-adjustment in the next subsection.

4. Adjustment effect

In order to check the accuracy of the simulations, we
prepare Fig. 10 to show the error of the �zz component of
the metric.

Unlike the gauge-wave or the linear wave test, in this
Gowdy-wave test the amplitude of the metric functions
damps with time. Therefore we use the criterion that the
error normalized by �zz be under 1% for an accurate
evolution. This criterion is the same as the one used in
Zlochower et al. [32].

Figure 10 shows the normalized error in �zz versus time
for the plain BSSN, adjusted BSSN with ~A-equation, and
adjusted BSSN with ~�-equation systems. We find that
these three systems produce accurate results up to t �

200, t � 1000, and t � 400, respectively. This proves
that the adjustments work effectively, i.e., they make pos-
sible a stable and accurate simulation, especially the
A-adjusted BSSN system.

VI. SUMMARY AND DISCUSSION

In this article, we presented our numerical comparisons
of the BSSN formulation and its adjusted versions using
constraints. We performed three test beds: gauge-wave,
linear wave, and collapsing polarized Gowdy-wave tests
with their evolutions by three kinds of adjustments, which
were previously proposed by Yoneda and Shinkai [26]
based on their constraint propagation analysis.

The idea of the adjusted systems is to construct a system
robust against constraint violations by modifying the evo-
lution equations using the constraint equations.

We can summarize our tests as follows:
(i) When the plain (original) BSSN evolutions already

show satisfactory good evolutions (e.g., the linear
wave test), the constraint violations (i.e., adjusted
terms) are also small or ignorable.

Therefore the adjusted BSSN equations become quite
similar to the plain BSSN equations, and their results
coincide with the plain BSSN results.

(ii) Among the adjustments we tried, we observed that
the adjusted BSSN system with the ~A-equation (2.20) is
the most robust for all the test beds examined in this study.
It gives us an accurate and stable evolution compared to
the plain BSSN system. Quantitatively, the lifetime of
the simulation becomes 10 times longer for the gauge-
wave test bed and 5 times longer for the Gowdy-wave
test bed than the lifetime of the plain BSSN system.
However, it should be noted that for the gauge-wave test
bed, the convergence feature is lost at a comparatively
early time, the 200 crossing time in the Hamiltonian con-
straint and the 50 crossing time in the momentum
constraint.
Recently, it has been claimed that the set up of the gauge-
wave problem in Apples with Apples has a problematic
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point [37], which arises from the harmonic gauge condi-
tion. In [41], it is argued that this gauge has a residual
freedom in the formH ! e�tH, where � is an arbitrary and
H is a function in Eq. (3.1). Of course, our set up corre-
sponds to the � � 0 case, but numerical error easily excites
modes that result in either exponentially increasing or
decaying metric amplitude. Actually, we find the amplitude
of the error decays with time in this test bed. So, we
conclude that due to the adjustment, the growing rate of
the gauge mode is suppressed and the lifetime of the
simulation is extended as a result.

(iii) The other type of adjustments (2.21) and (2.22)
show their apparent effects while depending on a problem.
The ~�-adjustment for the gauge-wave test bed makes the
lifetime longer slightly. The ~�-adjustment for the Gowdy-
wave test bed makes possible a simulation twice as long as
the plain BSSN system.
We can understand the effect of the adjustments in terms of
adding dissipative terms. By virtue of the definition of the
constraints, we can recognize that the adjusted equation
corresponds to the diffusion equation [see, for example,
Eq. (2.20)] and the signature of � determines whether the
diffusion is positive or negative. In the adjusted ~A-equation
system (2.20), the adjustment term corresponds to the
positive diffusive term, due to the definition of Mi and
the positiveness of �A [see Eq. (2.15) and (2.20)]. This fact
might explain why the adjusted ~A-equation system works
effectively for all the test beds.

In contrast, why are not all the adjustments effective in
all test beds? As we mentioned in Sec. II B, the eigenvalue
analysis was made on the linearly perturbed violation of
constraints on the Minkowski space-time. Since the con-
straint violation grows nonlinearly as seen in the Appendix
of [26], the candidates may not be the best in their later
evolution phase.

We remark upon two more interesting aspects arising
from our study. The first is the mechanism of the constraint
violations. As was shown in the appendix of [26], each
constraint propagation (behavior of their growth or de-
crease) depends on the other constraint terms together
with itself. That is, we can guess A and S constraints
(2.17) and (2.18) in this article, propagate independently of
the other constraints, while the violation of the
G-constraint, (2.16) is triggered by the violation of the
momentum constraint, and both the Hamiltonian and the
momentum constraints are affected by all the other con-
straints. Such an order of the constraint violation can be
guessed in Fig. 11 (earlier time), where we plot the rate of
constraint violation normalized with its initial value,
jj
Cjj2�t�=jj
Cjj2�0�, as a function of time, for the gauge-
wave test beds with the plain BSSN evolution. [Note that
the constraints at the initial time, 
C�0�, are not zero due to
the numerical truncation error.] The parameters are the
same as those shown in Sec. III A, and the lowest resolution
run is used. From this investigation, we might conclude

that to monitor the momentum constraint violation is the
key to checking the stability of the evolution.

The second remark is on the Lagrange multipliers, �,
used in the adjusted systems. As discussed in Sec. II B, the
signatures of the �’s are determined a priori, and we
confirmed that all the predicted signatures of �’s in [26]
are right to produce positive effects for controlling con-
straint violations. However, we have to search for a suitable
magnitude of �’s for each problem. Therefore we are now
trying to develop a more sophisticated version, such as an
autocontrolling � system, which will be reported upon in
the future elsewhere.

Although the test beds used in this work are simple, it
might be rather surprising to observe the expected effects
of adjustments with such a slight change in the evolution
equations. We therefore think that our demonstrations
imply a potential to construct a robust system against
constraint violations even in highly dynamical situations,
such as black hole formation via gravitational collapse, or
binary merger problems. We are now preparing our strong-
field tests of the adjusted BSSN systems using large am-
plitude gravitational waves, black hole space-time, or non-
vacuum space-time, which will be reported on in the near
future.
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