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We study charged brane-world black holes in the model of Randall and Sundrum in which our universe is
viewed as a domain wall in asymptotically anti—de Sitter space. Such black holes can carry two types of
“charge,” one arising from the bulk Weyl tensor and one from a gauge field trapped on the wall. We use a
combination of analytical and numerical techniques to study how these black holes behave in the bulk. It has
been shown that a Reissner-Nordstrgeometry is induced on the wall when only Weyl charge is present.
However, we show that such solutions exhibit pathological features in the bulk. For more general charged
black holes, our results suggest that the extent of the horizon in the fifth dimension is usually less than for an
uncharged black hole that has the same mass or the same horizon radius on the wall.
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[. INTRODUCTION If this cigar extends all the way down to the anti-de Sitter
(AdS) horizon, then we recover the metric for a black string
In many of the brane-world scenarios, the matter fielddin AdS. However, such a black string is unstable near the
which we observe are trapped on the brahe4] (see also  AdS horizon. This instability, known as the “Gregory-
[5] for older proposals If matter trapped on a brane under- | aflamme” instability[7], implies that the string will frag-
goes gravitational collapse then a black hole will form. Suchment in the region near the AdS horizon. However, the so-
a_black hole will have a horizon thgt extend_s into t_he dimen1ution is stable far from the AdS horizon. Thus, one may
sions transverse to the brane: it will be a higher dimensionalonciude that the late time solution describes an object that
Oblef?t- ) looks like the black string far from the AdS horizdso the
Within the context of the second Randall-SundriR®)  eric on the domain wall is close to Schwarzschbdt has

scenario[4], it is important that the induced metric on the g o170 that closes off before reaching the AdS horizon. A
domain walt is, to a good approximation, the solution pre- gimijar effect occurs when there is more than one extra di-

dicted by standard general relativity in four dimensions. Oth<,ansion transverse to the braf&]. These conclusions are

erwise the usual astrophysical properties of black holes and,ynorted by an exact calculation for a three dimensional RS
stars would not be recovered. model[9].

In a recent papef6], the gravitational collapse afin- In this paper, we consider black holes charged under
charged non-rotating matter in the second model of RS WaSyauge fields which argapped on the braneThe flux lines
investigated. There it was proposed that what would appegl g,ch gauge fields can pierce the horizon only where it
to be a four-dimensional black hole from the point of view of 5.,a|ly intersects the brane. The bulk theory is the same as
an observer in the brane-world, is really a five-dimensionak, the' yncharged case so one might expect that the black
“black cigar,” which extends into the extra fifth dimension. ;g4 solution would still describe the bulk metric of such a
charged brane-world black hole. The effect of the charge
might simply be to modify the position of the brane in the
bulk spacetime. If this were the case, then we might be able
to repeat the analysis §6] by starting with the black string
metric and solving the Israel equations appropriate for the
presence of a gauge field on the brane. However, in the Ap-

Yn this paper, we use the terms “domain wall” and “brane” pendix we prove that this is not possible. It is still conceiv-
interchangeably. able that the bulk metric is the same as that of the black
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cigar, but unfortunately the form of the cigar metric is not brane. One consistent interpretation of the RN solution of
known. We are therefore forced to study charged branef10] would be as the induced metric on the brane in the
world black holes numerically. (bulk) charged black string solution ¢14,15. However, in

A recent papef10] has claimed to give a solution de- this paper we will study whether sense can be made of this
scribing a non-charged black hole in the RS scenario. Byolution without introducing bulk gauge fields.
using the brane-world Einstein equations derivedlif, it Related numerical work on uncharged brane-world black
was shown that a Reissner-NordstroRN) geometry could holes has recently appeared[it6]. The difference between
arise on the domain wall provided that the bulk Weyl tensorthat paper and the present work is that we will prescribe
take a particular form at the wall. We regard this solution as‘initial” data on the brane and evolve it in the spacelike
unsatisfactory for two reasons. First, there is no Maxwelldirection transverse to the brane, whereafsl8], initial data
field on the domain wall so the black hole cannot be regardewas prescribed on a spacelike hypersurface and evolved in a
as charged.Secondly, only the induced metric on the do- timelike direction.
main wall was given—the bulk metric was not discussed. The outline of this paper is as follows. First, we set up the
The solution is simply a solution to the Hamiltonian con- basic notation and formalism for a covariant treatment of the
straint of general relativity and gives appropriate initial datasecond brane-world scenario of Randall and Sundrum. Next
for evolution into the bulk. Until this evolution is performed we solve the Hamiltonian constraint for “initial” data on the
and boundary conditions in the bulk are imposed, it is notorane and obtain a RN solution with small corrections. We
clear what this solution represents. For example, it mighthen numerically evolve the solution into the bulk subject to
give rise to some pathology such as a naked curvature sifthe constraint that the metric solve the vacuum Einstein
gularity. We would then not regard it as a brane-world blackequations with a negative cosmological constant. Finally we
hole, which should have a regular horizi@)9]. One aim of  discuss the properties of the resulting bulk spacetime.
the present paper is to evolve the initial datd 1] in order

to understand Wh?.t this “SplutiOﬂ” rgally describes. Il. FORMULATION AND STRATEGY
The second aim of this paper is to study brane-world ) ) )
black holes that are charged with respect to a Maxwell field A. Covariant formulation of brane-world gravity

on the brane. We start by solving the Hamiltonian constraint \We shall be discussing a thin domain wall in a five di-
on the brane to give an induced metric that is close to, buinensional bulk spacetime. We shall assume that the space-

not exactly, Reissner-Nordstrom. The *“charge” ¢10]  time is symmetric under reflections in the wall. The
arises as an integration constant in the metric. We theB-dimensional Einstein equation is

evolve this “initial” data away from the domain wall in
order to study the resulting bulk spacetime. Our solution to
the Hamiltonian constraint is based on a metric ansatz that is
almost certainly not obeyed by the true solution describing a
charged brane-world black hole. However, we expect ouwhere k2=87G5 and G is the five dimensional Newton
ansatz to be sufficiently close to the true solution that usefutonstant. The energy-momentum tensor has the form
results can be obtained without a knowledge of the exact

metric, just as if6]. CITrr=—As%g,,+8(x)[—\h,,+T,,]. (2.2

Our results suggest that it is more natural to take the
“charge squared” parameter dfl0] to be negative than In the above, the brane is assumed to be locateg=ad
positive since the latter gives an apparent horizon that grow#herey is a Gaussian normal coordinate to the domain wall.
relative to the black string as one moves away from thex=0 is the fixed point of th&, reflection symmetryA and
brane. For black holes charged with respect to a Maxwelh denote the bulk cosmological constant and the domain
field, we find that the horizon shrinks in the fifth dimension. wall tension respectivelyh,,, is the induced metric on the
In both casesand for black holes carrying both chargese  wall, given bthZ(S)gW—nﬂnV wheren , is the unit nor-
obtain a numerical upper bound on the length of the horizonmal to the wall. The effect of the singular sourceyat O is
in the fifth dimension. We find that increasing either type ofdescribed by Israel's junction conditigt7]
charge tends to decrease this length, even if the horizon ra-
dius on the brane is held fixed.

It is worth emphasizing that this paper is quite distinct
from recent papers which have appeared on the subject of
charged black holes in brane-world scenafib3—15. This  Here, K., denotes the extrinsic curvature of the domain
is because these papers all study the effectsutk charges  wall, defined byK,,,=hfh7V n,. In Eq.(2.3), we are cal-
on the brane-world geometry, whereas our analysis dealsulating the extrinsic curvature on the side of the domain
with gauge degrees of freedom that are truly localized on thevall that the normal poininto. This is because we want to

evolve initial date prescribed on the wall in the direction of
this normal. Using the Gauss equation and the junction con-

2In the AdS conformal field theoryCFT) interpretation[12] of  dition, we recover the Einstein equation on the bre:

the RS model, this black hole must be charged with respect to a ) 4
U(1) subgroup of the dual CFT. Guv=—A4h,, +87C,T , + k57, —E,,, (24

1
(S)Rw_ E(S)QW(S)R: K2 (5)TW' (2.2

1, 1, 1
K =——kshh,,— 5k5| T,— 3N, T). (23

,U.V|X=O 6 2 - 3w
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where wheredQ3=d§?+ sirfédg? Note that this is ayuess It is
unlikely that the exact metric describing a brane-world black

A= }Kz Aet EKz)\z 2.5 hole would have'p'recisely this form—in gengral one would
47275 expect the coefficients ofit?> and dr? to be independent
(when the coefficient oflQ3 is fixed asr?). However, we
K;‘x know that the induced metric describing a charged black hole
Gy= 487 (2.6) should be close to Reissner-Nordstrom, whielm be written
in this form, so our ansatz is probably quite a good guess.
1 We expect that deviations from the exact metric will give
Tyy= 21T —Toaly rise to pathologies when this initial data is evolved into the

Mmv 12 V 4 Mma . . .
bulk. Even so, the analysis p§] shows that it is possible to

extract quite a lot of information from a pathological solu-
*t3 h,wTaﬁT”‘ - 2—4h,wT2 (2.7 tion. The functionU(r) will be determined from the Hamil-
tonian constraint equation below. The bulk metric is assumed

andE,,, is the “electric” part of the 5-dimensional Weyl © take the form

tensor: 62001 g2
— 2d,2_ a2a(x.r) 24
E,,=®)C,,,gnnk. 2.9 ds’=N(x.r)*dx*=~ e DU(Ndt+ —5as
We shall now specialize to the RS model. This has +e2Nr2dQ3. (2.14
6 6 N is the lapse function which describes the embedding ge-
Ag=— PR )\=—2|, (2.9  ometry of the hypersurface spanned iy (¢, ) during the
Ks Ks evolution in the bulk spacetime.
hich imoli The extrinsic curvature of a hypersurface of constant
which implies (with unit normaln=Ndy) is given by
Ay=0, Gyl (2.10 a b ¢
4= Y, 4= 5 - .
| t— r— _— 0_we—_
K; N’ K; N and Ky=K¥¢ N’ (2.15

The matter on the domain wall will be assumed to be a
Maxwell field. This impliesT=0, so we can rewrite the Where a dot denotes, . The spacetime is described by the
Einstein equation as evolution equation,

4
K .
DR, =87G,T,,~ T, T°—E,,. (219 K“=N

4 HPv v

—-D*D,N, (2.19

(DRE— KK+ %5*‘
14 14 I 14

The Israel equation gives the extrinsic curvature of the wallthe Hamiltonian constraint equation,

2

= - Xs (4) 2 v 12
K,uvl)(:()__l_h,uv_ 7T,u,v (212 R—K +KHVKM :—I—Z, (217)

B. Strategy and the momentum constraint equation,
We adopt the following procedure: We take a certain D,K“~D,K=0. (2.18

charged black hole geometry for the brane. When we solve

for the bulk, we Wick rotate twice. This gives a Kaluza- Here (4)R“ and @R are the Ricci tensor and Ricci scalar on
Klein bubble spacetimg21,22 from which we obtain hypersurfaces of constagt

boundary conditions at the condition on the bubble surface.
Wick rotating back gives boundary conditions at the bulk

horizon for our problem. The Kaluza-Klein bubble spacetime Il. BRANE AND BULK GEOMETRY

is reviewed in Appendix B. A. Brane geometry: Charged black hole “initial data”
. . . The action for the Maxwell field on the brane is taken to
C. Metric and field equations be
We assume that the induced metric on the brane takes the
form S= f d*xy—hF,, F~, 3.1)
) 167 G,
ds?=—U(r)dt®+ d—r+r2d92 (2.13
U(r) ' ' giving energy-momentum tensor
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1
T P——hFeFP ] (32

FMPFV_4 v

"= 4nG,

The field strengthF is related to a potentiad by F=dA.
The equations of motion are satisfied if we talée
=—®(r)dt with &(r)=Q/r. This gives

Q2
—diagu,—U~*r?r2sirfet). (3.3
.

Tw=grG,

PHYSICAL REVIEW D 63 064015

-E —E __E+|_Q_2 (3 6)

N x=0 N x=0 b2 s’ .

c 1 1 Q?

— =———=— 3.

N V=0 I 2,4 @7
a(y=0,y)=b(0r)=c(0r)=0. (3.8

We shall study the following cases:
(i) No electromagnetic chargée.,Q=0. In this case, the

This can be substituted into the right hand side of the Israehduced metric on the domain wall is exactly RMO]. The
equation(2.12 to give an expression for the extrinsic curva- horizon radius is
ture. This can then be substituted into the Hamiltonian equa-

tion (2.17), along with our metric ansatz to give an equation

for U(r). Solving this equation givés

2G,M pB+Q? 1%Q*
+ + ,
r r2 20r®

U(ry=1— (3.4

r,=M+{M?-g.

The induced metric has a regular horizong&M?. Note
that there is nothing to stop us choosifigto be negative
which emphasizes the difference between the solutida@f
and a charged black hole. If we talgeto be negative then
the induced metric has only one horizon, instead of the two

(3.9

whereM and g are arbitrary constants of integration. Substi- horizons of a non-extreme RN black hole.

tuting into the Einstein equation on the domain wall gives

24
-E =(£4+|2%) diagU,—U"1,r? rZsirfg).

e
(3.5

It is interesting to compare E,, with 87wG,T ,, since these

guantities appear on an equal footing in the effective Einstein

equation(2.4). It is clear that the constant of integratignis
in some sense analogous@®3, which is why the authors of

(i) No tidal charge i.e., 8=0. In this case, the induced
metric on the domain wall is Reissner-Nordstrom with a cor-
rection term. Note that-E,, is non-zero but is of order
1/r8, which suggests that the total “tidal energy” on the wall
is zero.

We shall also consider the general cg§8:Both charges
non-zergi.e., B#0, Q+#0.

B. Bulk geometry
The bulk geometry is obtained by integrating E(&15

[10] obtained a RN solution. However, since their solutionand(2.16 in the y-direction numerically. We use the stan-
did not have a Maxwell field, it cannot really be regarded aglard “free-evolution” method, that is we do not solve the
a charged black hole in the usual sense. Rather it carri€gPnstraint equation§2.17) and (2.18 during the evolution,
“tidal” charge associated with the bulk Weyl tensog t_)ut instead use them to monitor the accuracy of the simula-
might be regarded asfive dimensional mass parameter.  tion.

We shall only consider initial data that corresponds to an We obtain the solution numerically in the region<r
object with an event horizofin the four dimensional sense <Te With re~5r . . Boundary conditions at=r , are speci-
on the domain wall. In some cases there may be more thaiied by first Wick rotatingy=iT, t=ir, which takes the
one horizon. We shall use, to denote the position of the Metric to a Kaluza-Klein bubble metricee Appendix B

outermost horizon, i.e., the largest solutiondffr)=0. This
has to be found numerically except whén=0.
Our “initial data” is given by

3It is interesting to compare this form fai(r) with the behavior

expected from the linear perturbation analysis of the second R

model[4,18-20. In linearized theorylJ (r)=1— ¢(r) wheree(r)

is the Newtonian potential. Far=>1, the leading order corrections
to ¢(r) are expected to be proportional &M 12/r® and|?Q?/r*.
Such terms are not present in our expressionlf¢r). However,
we shall be interested in black holes for whi@hM>1, so these
correction terms will be small compared with terms likg,M/r)3

and (G,MQ/r?)?, which would be neglected in linearized theory.

Therefore we can apply the numerical techniques that are
used in the study of Kaluza-Klein bubblga4], although the
physics of Kaluza-Klein bubbles is unrelated to the physics
of black holes. It was shown in the Appendix [@4] that at
the inner boundary =r ., a andb evolve synchronously,
that is,a(T,r,)=b(T,r,). Analytically continuing back to

ur original spacetime vyields the boundary condition

(x,r+)=Db(x,r;). The evolution equation for the trace of
K., and the momentum constraint are also used=at , .
At the outer boundary=r., we assume the components of
the extrinsic curvature[Eq. (2.195] fall off like —1A
+O(r 4 [cf. Eq.(3.7)]. We apply the geodesic gauge con-
dition (slicing condition, N=1.

We use the Crank-Nicholson integrating scheme with two

In other words, the RS correction are dominated by post-Newtoniaft€rations[25]. The numerical code passed convergence tests,

correctiong[20] so it is not appropriate to compaté(r) with the
linearized results beyond leading order.

and the results shown in this paper are all obtained to accept-
able accuracy.
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We were only able to solve numerically in a region nearis forM=5, Q=3 andB=0,£5,=10,+ 15, whereB=15 is
the domain wall with a maximum value fgr of O(1). This  close to the extremlecase for this choice of. The qualita-
is because the volume element of surfaces of constant tive features are combinations of the plots in Fig. 1. Note that
decreases exponentially as one moves away from the walB seems to have the greatest effect on the bulk evolution.
just as in pure AdS. The evolution was stopped wheng ~ Again, the case with negativ8 appears to be the natural

became too small to monitor accurately. choice since positivg gives a growing horizon.
We are interested in how charge affects the shape of the
horizon, in particular how far it extends into the fifth dimen- C. Bulk geometry: extent of the horizon

sion. This will be measured by the ratio of the physical size
of the apparent horizon, e“x"+)| to that of a black string
[6] with the same horizon radius. on the wall* The size of
the black string apparent horizon in the bulkrise *"', so

the ratio is

In this section, we shall estimate how far the horizon ex-
tends into the fifth dimension by combining analytical and
numerical work. Following the conjugate points theorem
[26], we shall show that for a charged black hole, the trace of
the extrinsic curvature diverges at a finite distance from the
R(x)=ectrra)+x/l, (3.10  brane. The trace of the evolutional equation is given by

We remark that the only apparent horizon that appears dur-
ing the y-evolution is atr=r, . Here we define apparent
horizon as the outermost region of negative expansion of the
outgoing null geodesic congruences, where we define th@here we used the Hamiltonian constraint in the second line.
expansion ratef, , as Now definek,,, as

K=®R-K2+ 1—6=—K kvt (3.19
12 - 12’ '

0, =0V _s2+CK-s3s? Gk, (3.11 1
K’;=:—|—h’;+k’;. (3.15
wheres®=(1/\/g,,)d, is an outwards pointing unit vector in
the 3-dimensional metric. We checked E§.11) during the
evolution and confirmed its positivity far>r . .
Our initial conditions give the behavior of the rafR{ x)

near the brane:

The trace part ok,,, k=K, is expected to measure the
volume expansion relative to the AdS “background” geom-

etry. In term ofk,,,, Eq.(3.14 can be written as

.2 1 o~
. | Q2 k—|—k+ Zkzz—k’uvk"“j$0, (3.1
R(X)|X=O:_§r_4$o' (312
+ ~
wherek,,, is the traceless part df,,. On the brane the
and “initial” condition is
.. 3 2+ |2 4 :~ =
R(X)|X:O: Q4 B_ 22 _ (3.13 k,uv|brane k;w|brane 47TGST,uvv (3.17
F+ F+ which implies
For model (I) (Q:O)1 R(X)|x=0201 but R()()|)(=0 k|brane:0- (318)

=pBIr? . This givesR(x)|,-o<0 for the case with3<0,

which indicates that the ratio decreases, WH’-i’deX)|X:0
>0 for the case with3>0, which indicates that the ratio
increases. We have plotted the numerical results for this ratio
in Figs.Xa) and Xb) (henceforth we shall sé=G,=1 and
assumeM>1, as appropriate for an astrophysical black
hole). Figures 1a) and Xb) suggests that a negative value |~(| <0 (3.20
for B is the natural choice since the apparent horizon grows brane= '
(relz_att_ive to the black stringn the fifth dimension wheB is  This implies that there is g =y, such that
positive.

For model(ii) (8=0), R(x)|,=0<0 and the ratio always k=ko<0. (3.21)
decreasegsee Fig. 1c)]. Model (iii) (Q#0 and B8+#0) is ]
non-trivial. We present numerical results in Fig. 2. The plotFrom Eq.(3.16, one obtains

For the case witlQ+#0,

k, k*>0, (3.19

8 8
1+ ||—k|$ 1+ m ez(XO_X)“, (3.22
“The reason for measuring the size of the horizon relative to that 0
of the black string is because we want to distinguish the closing-off
of the horizon from the exponential collapse of hypersurfaces of
constanty arising from the AdS nature of the geometry. 5By extreme, we mean that(r) has a double root at=r , .
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FIG. 1. Ratio of the physical size of apparent horizon to size of black string apparent hét{zgr,cf. Eq.(3.10], plotted as a function
of x. Figure (a) is for model(i). Lines are of3=0,+0.2M?,+0.5M?,+0.9M? and =M?, whereM =10.0. We see that the qualitative
behavior ofR(y) depends on the sign @. Figure(b) is for the extremal case of mod@), 8= M? with different values oM. Results are
also plotted for8=—M?2. Figure(c) is for model(ii) for which R(x) is monotonically decreasing.

from which it follows thatk diverges beforgr= x.,i: » where

1+ e
kol /"

The divergence irk implies thatK also diverges. Neay
= Xcrit» |K| behaves like

Xcrit=Xo™t 5'09 (3.23

4
Xerit— X

k<

(3.29

The case withQ=0 is more difficult to analyze because
K|prane=0. We can use Eq2.15 (with N=1) to give

K-, =20, (3.25

2
arer ]

+2x/l atr=r . It is clear from this plot thak becomes
negative in the bulk whe3<0. In fact k also becomes
negative whenB>0. Thus, even in th&@ =0 case, there
exists ay= yo such thak=ky<0. The above argument can
then be used to show that whé&=0 and 8#0, K must
diverge beforey= x it » Whereyx,it is given by Eq.(3.23.
We have therefore proved that@+0 or 8+ 0 thenK di-
verges beforey= x¢;it -

It follows from Egs.(3.24) and(3.25 that

(a+C)|r=r+$2|09(Xcrit_X)u (3.20

which implies that\y—g tends to zero at least as fast as

(Xcrit_)()4 as x— Xcrit -
Conservatively, the divergence & indicates that the
geodesic slicing has broken dowwhenN=1, 4, is the

where we have used the synchronous evolution boundarangent vector of spacelike geode$jds other words a caus-

conditiona=b atr=r, . In Fig. 3, we have plotteé+c

tic has occurred. The numerical study therefore cannot be
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FIG. 3. The quantitya+c+2y/l atr=r, plotted for M =5,

FIG. 2. Ratio of physical size of apparent horizon to size of
Q=0 andB=0,—5,—-10,—25 and—50.

black string apparent horizoR(x) [cf. Eq. (3.10], for nonzeroQ
and 3. We have seM =5, Q=3 andB=0,%=5,+10,%= 15 for this
plot. The main features are a combination of plots in Fig. 1. even though thisncreasesthe horizon radius on the wall

[see Eq.(3.9)]. The solid curve on this diagram has bdth
extended further using this slicing. This has, however, angr, fixed. It is clear thaty.,;; decreases along this curve
physical meaning because the apparent horizon is located §§Q or A increases.

constantr=r_ in the bulk. The horizon will encounter the The second graph of Fig. 4 plots the same cufed M
caustic before reaching the AdS Cauchy horizon. The caustignd fixedr ,) for different values oM. The trend seems to
can therefore be viewed as the endpoint of the horizon, i.e e the sarr:e in each case '

the tip of the b"?“?k cigar. Our analysis has only shoyvn th"’? The final graph of Fig. 4 is for fixed, (rather than fixed
the geodesic slicing must break down at the caustic so, "ﬂ/l) Increasinad appears to decrease .. whenO is small
principle, this point may be regular, i.e., there may exist i 96 app Kerit Q

coordinate chart that covers a neighborhood of this pﬁ)int%Ut has no significant effect wheQ is large. Wheng is
jnon-zero, increasin@ has the effect of initially slightly in-

However, we do not regard this as very likely. Our guess fo ; - ) _
the induced metric on the domain wall is unlikely to be ex-Cr€asiNgxcrit , but ultimately decreases it substantially. The

actly correct, so in general we would expect some patholog@f0Ss trend appears to be that increasing either type of charge

such as a naked curvature singularity to appear in the bulkeads to a decrease in the length of the horizon.

We cannot check whether curvature invariants divergg at  In most of these graphgit<r. , so the extent of the

= xrit SiNce our numerical evolution cannot be extended a§orizon in the fifth dimension is smaller than the horizon

far asx= xcrit - radius on the domain wall, just as for the uncharged black
Whether the bulk solution is regular or not, E®.23  cigar.

gives us an upper bound on the extent of the horizon in the

direction transverse to the domain wall, i.e., the length of the

black cigar. We have plotted this upper bound in Fig. 4 tak- IV. SUMMARY AND DISCUSSION
ing the values for, andkg at the endpoint of our numerical ) . ]
evolution. The first graph shows how,;; depends o1 and In this paper we have studied charged black holes in the

B whenM is fixed. Note that whe®= =0, the numerical second RS model. We have seen that two types of charge can

solution is simply the black stringwhich hasyi;=%. In- arise on the brane, one coming from the bulk Weyl tensor

creasingQ clearly has the effect of decreasing,;;, which ~ [10] and one from a Maxwell fieldrapped on the brane

is not surprising since increasir@ also shrinks the horizon Starting from an ansatz for the induced metric on the brane,

radius on the domain wall, . Perhaps more surprising is we have solved the constraint equations 6f+1)-

that making8 more negative also appears to decregsg dimensional gravity to find metrics describing charged
brane-world black holes. In the absence of Maxwell charge,
one can obtain a Reissner-Nordstrom solufio@]. If Max-

81t is not even clear from our analysis whether the caustic occurgve” ‘%harge is included then one can Obta'n a geometry that
at a single point or is spread over a region of spacetime. is Reissner-Nordstrom with small corrections.

The reader may find this surprising since the black string is un- Using these mduced mgtrlcs as “mltlal” data, we have
stable[6], and small numerical errors might be expected to act ass0lved the bulk field equations numerically. We have found
perturbations. However, the string is unstablddng wavelength ~ that the RN solution of10] has an apparent horizon that
perturbations, and the numerical errors will only be relevant at shorgrows (relative to the black string apparent horizan the
wavelengths. dimension transverse to the brane unless the *“charge
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x crit

15 -15

FIG. 4. Critical valuey.,;; [Eg. (3.23] plotted for non-zer® and 3(=<0) black holes[above left We have seM =5 for this plot. Note
that for the uncharged casg.i;=. The solid curve is for the special cases with=10.0. [above righ} Critical value x,; for
combinations of parameterQ(8) which produce a black hole with, =10.0.M =5.0,6.25,7.5,8.75 and 10.0 are chosen for these plots. The
black dots denote the ends of the linesBat 0 and the other ends projected onto fhe; =3 plane.[below] The same plot as fab), but
M is specified so as to fix, =10 for given Q,B).

squared” parameteg is taken to be negativelt therefore  have found that the trace of the extrinsic curvature diverges
seems unlikely that this solution really corresponds to eat a finite distance from the brane, with the volume element
charged brane-world black hole. Of course, if a bulk gaugef the spacetime tending to zero. F8=<0, we have inter-
field is included then the work dfi0] (with 3>0) has a preted this as the end point of the horizon of the black hole.
natural interpretation as the induced metric on the brane aridur results suggest that increasing the charges of a brane-
ing from the charged black string solution [df4,15. world black hole will decrease the length of its horizon in the
If <0 and/orQ#0 then the horizon shrinks relative to fifth dimension, even when the horizon radius on the brane is
the black string horizon. For all caséscluding 3>0), we  kept fixed. This implies that, by adjustir@, one can change
the five dimensional horizon area while keeping the four
dimensional horizon area fixed. One might think that this
8n [24], the evolution of Kaluza-Klein bubbles was studied nu- Would lead to a difference between the entropies calculated
merically and it was found that even though negative mass bubble§0m these horizon areas, which would be bad news for
start off with accelerating expansidi23], the acceleration ulti- hopes of recovering general relativity as the effective four
mately becomes negative. It is conceivable that something analdlimensional theory of gravity on the brane. However, the
gous could happen here but we have found no evidence for sucBxponential decrease in the volume element as one moves
behavior. away from the brane implies that the dominant contribution
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to the five dimensional area comes from the region of thd=e Summer Workshop on “Supersymmetry, Branes and Ex-
horizon that is closest to the braf@]. Changes near the tra Dimensions” for hospitality while this work was being
other end of the horizon give only subleading corrections tacompleted. H.S. appreciates the hospitality of the CGPG
the five dimensional area, allowing the four and five dimen-group, and was supported in part by NSF grant PHY-
sional entropies to agree at leading order. 9800973, and the Everly research funds of Penn State. H.S.

We suspect that our solutions will generically have a curwas supported by the Japan Society for the Promotion of
vature singularity at the point where the trace of the extrinsicScience. T.S. thanks D. Langlois for discussions. His work is
curvature diverges. This is because it seems rather improlpartially supported by the Yamada foundation. Numerical
able that our ansatz for the induced metric on the braneomputations were performed using machines at CGPG.
should turn out to be exactly right. However, we expect that

for each value of) there will be some value g8 for which APPENDIX A: BRANE BENDING AND THE BLACK

a small change in our initial data would smooth out this STRING

singularity, leading to a regular geometry describing a brane-

world black hole carrying Maxwell charg®. This smooth- One candidate for a black hole formed by gravitational

ing would probably not significantly affect the position of the collapse of charged brane-world matter on a domain wall in
“tip” of the horizon, for which we have obtained an upper AdS is the black string solution in AdS, which has the metric
bound on the distance from the brane. This is to be con- 2
trasted with the uncharged case in which one takes the in- B 2 142 242 2

duced metric on the brane to be Schwarzschild. Evolving this d§_§[_ U(ndt"+U(r)"“dr+rdQ;+dz’]

into the bulk gives the black string metric, for which the (A1)
singularity occurs at the AdS horizon, which is iafinite

proper distance from the brane along spacelike geodesics. whereU(r)=1—-2G,M/r. As discussed if6], surfaces of
small perturbation of the metric on the brane takes one frontonstant trivially satisfy the Israel matching conditions pro-
the black string to the black cigar, which has a regular AdSided that the tension satisfies= +6/«2l. Thus, we may
horizon and a black hole horizon with a tip at finite distancesjice the spacetime along such a surface of constaand

from the brane. match to a mirror image, in order to obtain the Schwarzs-
For the black string, the stability analysis [8] shows  child solution on the domain wall.
that the horizon extends a distance of orderllog(G4;M/l) We now want to consider what happens when we allow

into the fifth dimension, sd<r ., . Our results give only an  the black hole to be electrically charged with respect to some
upper bound fod in the charged case. It would be nice if the U(1) gauge field living on the brane. Thus, we must add in

stability analysis could be extended to the charged casen extra term to the brane-world stress energy tensor of the
However, the instability only sets in when the proper radiusiorm

of the horizon becomes smaller than the anti—de Sitter length
scale and we were not able to extend our numerical evolution 1
this far. Our upper bound seems rather on the large side, Tm:m F P 29mF e (A2)
since it appears to give~r, for smallQ and 8. However,
for large Q and/or B, Fig. 4(c) shows thatd<r., so our where the electric gauge potential has the form
upper bound is probably tighter in this case.

The main outstanding problem remains to find the exact A=—O(r)dt (A3)
bulk metric that describes a brane-world black hole. This
was solved for uncharged black holes in the 3 dimensionaso that
RS model by using the 4 dimensional AdS C-metric in the
bulk [9]. Unfortunately, the higher dimensional generaliza- F=®'(r)dt/\dr (A4)
tion of this metric is not known. It would be interesting to ) o ]
see whether charged black holes in the 3 dimensional R@here ' denotes differentiation with respect to _
model could be constructed by using the same bulk 49Jin Now, as a first guess we might try to support this stress-
but simply slicing along a different hypersurface. It would €nergy on the brane by allowing the brane to bend in the
also be interesting to use the methods[b8—2Q to find black string background in such a way that the extrinsic cur-
linearized solutions describing spherical distributions of matvatures would still satisfy the Israel equations.
ter charged with respect to a brane-world gauge field. In other words, we allow the position of the brane to

depend on the radial direction Solving the Maxwell equa-
tions yields
ACKNOWLEDGMENTS

A.C. thanks Dan Freedman, Andreas Karch, Philip Man- D' (r)=— 9(1+z’2U)1’2. (A5)
nheim, Joe Minahan and Lisa Randall for useful conversa- r?

tions. A.C. is partially supported by the U.S. Dept. of Energy

under cooperative research agreement DE-FCO02¥o compute the extrinsic curvature of the timelike hypersur-
94ER40818. H.S.R. thanks Stephen Hawking for useful conface swept out by=2z(r), we introduce an orthonormal ba-
versations. A.C. and H.S.R. thank the organizers of the Santss which consists of a unit normal vector
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It is straightforward to show that it is impossible to solve

€
n= ———=—(dz—2'dr), (A6)  these three equations simultaneously unless one @ke8
zy1+Uz'? and z=const, which is the uncharged solution [6f]. It is

therefore not possible to support the stress energy of a point

wheree==x1, a unit timelike tangent charge by simply allowing the brane to bend in the black

7 p string background. It follows that thbulk has to change
u=-u-¥2—, (A7)  once the brane-world charge is introduced. In other words,
| at brane-world charge will induce changes in the bulk Weyl
and the spacelike tangents tensor, and this is exactly what we have found in our numeri-
cal analysis.

z U J 0
t=—\/— z'—+ —, A8 : -
| 1+UZ'2( 9z 8r) (A8) APPENDIX B: KALUZA-KLEIN BUBBLE

The double Wick rotation¢—it,t—ir) of the metric of

z d Eq. (2.13 gives us the Euclidean induced metric:
€p=T 7 T (A9)
Ir sing d¢ dr?
_ 2402
. ds?=U(r)dr+ TGRS dQs. (B1)
eg—ﬁ (9—0 (AlO)

The largestr =r . such thatU(r,)=0 is interpreted as the
It follows that the non-vanishing components of the extrinsicPosition of the bubble surface. Arounerr ., , the metric can

curvature in this basis are be expanded
K < 1+1u' ) (A11) ds?=U"(r ) (r—r,)dr?+ ” +r2d0?2
= =U'zZ |, = — Tt .
u [J1+Uz'? 2 ’ . U'(ry)(r—ry) e
(B2)
—€ U .
K, =K, =—— 1+—zz’), Al2 In term of the new coordinatB:=r—r
0=Kss wmz( r AL -
U'(ry)r)\?
€U U'zz ds*= — R2d< (2*) +dR2|+r3dQ3.
Ky=————|2zZ+2'2+U 1+ ) u'(r)
I(1+Uz'%)3? (B3)
(A13)

) ) We can see easily that the metric will be regular if we as-
Under the assumption at, symmetry, the Israel equations syme that the r direction is periodic with period
reduce to Eq(2.12. The three independent components of4z/u’(r ).

Ky give three independent equations: In the case olJ(r)=1—r3/r? with \=A=0, the exact
42 five dimensional solution for time-symmetric initial data
1 z°Q —0)
Kp=—— = (K.=0) is
tt
L 2184
dsi=—r2dt>+ U(r)d72+U " (r)dr?+r2cositdQ3.
1 z*Q? B4
K”U:_T—’_ZIT(?.A (Al4) (B4)
This is the Witten-bubble spacetini2l]. Another example
1 402 of initial data for a Kaluza-Klein bubble spacetime was given
Kyp=—+ ﬂ in Ref.[22] and its classical time evolution has been inves-
I 2184 tigated in Refs[23,24].

[1] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 136 (1983; M. Visser,ibid. 159B, 22 (1985; M. Gogberash-

429 263(1998. vili, Mod. Phys. Lett. A14, 2025(1999.
[2] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, [6] A. Chamblin, S. W. Hawking, and H. S. Reall, Phys. Rev. D
Phys. Lett. B436, 257 (1998. 61, 065007(2000.
[3] L. Randall and R. Sundrum, Phys. Rev. L&B8, 3370(1999. [71 R. Gregory and R. Laflamme, Phys. Rev. LetD, 2837
[4] L. Randall and R. Sundrum, Phys. Rev. L&B8, 4690(1999. (1993; R. Gregory, Class. Quantum Grab7, L125 (2000.

[5] V. A. Rubakov and M. E. Shaposhinikov, Phys. Let&2B [8] A. Chamblin, C. Csaki, J. Erlich, and T. J. Hollowood, Phys.

064015-10



CHARGED BRANE-WORLD BLACK HOLES PHYSICAL REVIEW D63 064015

Rev. D62, 044012(2000. [19] M. Sasaki, T. Shiromizu, and K. Maeda, Phys. Rev6D)
[9] R. Emparan, G. T. Horowitz, and R. C. Myers, J. High Energy 024008(2000.
Phys.01, 007 (2000. [20] S. B. Giddings, E. Katz, and L. Randall, J. High Energy Phys.
[10] N. Dadhich, R. Maartens, P. Papadopoulos, and V. Rezania, 03, 023(2000.
Phys. Lett. B487, 1 (2000. [21] E. Witten, Nucl. PhysB195, 481 (1982.
[11] T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev6®  [22] D. Brill and G. T. Horowitz, Phys. Lett. 262, 437 (1991).
024012(2000. [23] S. Corley and T. Jacobson, Phys. Rev4®) 6261 (1994.

[12] S. S. Gubser, Phys. REV.(D) be publlsheﬁ hep-th/9912001. [24] H. Shinkai and T. Shiromizu, PhyS Rev.@, 024010(2000

[13] N. Kaloper, E. Silverstein, and L. Susskind, hep-th/0006192. [25] For example, S. A. Teukolsky, Phys. Rev. &, 087501
[14] H. Lu and C. N. Pope, hep-th/0008050. (2000

[15] I. Oda, hep-th/0008055. [ . .
o . 26] S. W. Hawking and G. F. R. EllisThe Large Scale Structure
[16] T. Shiromizu and M. Shibata, Phys. Rev6 127502(2000. of Space-timgCambridge University Press, Cambridge, En-

[17]W. Israel, Nuovo Cimento Soc. Ital. Fis., 8, 1 (1966; 48, gland, 1973 R. M. Wald, General Relativity(University of

463E) (1967. ) .
[18] J. Garriga and T. Tanaka, Phys. Rev. L8#, 2778(2000. Chicago Press, Chicago, 1984

064015-11



