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Truncated post-Newtonian neutron star model
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As a preliminary step towards simulating the binary neutron star coalescing problem, we test a post-
Newtonian approach by constructing a single neutron star model. We expand the Tolman-Oppenheimer-
Volkov equation of hydrostatic equilibrium by the poweraf?, wherec is the speed of light, and truncate at
various orders. We solve the system using the polytropic equation of state with thdird#g, 2, and 3, and
show how this approximation converges together with mass-radius relations. Next, we solve the Hamiltonian
constraint equation with these density profiles as trial functions, and examine the differences in the final metric.
We conclude that the second “post-Newtonian” approximation is close enough to describe a general relativ-
istic single star. The result of this Brief Report will be useful for further binary studies.
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PACS numbes): 04.25.Nx, 04.25.Dm, 04.40.Dg

I. INTRODUCTION PN scheme to the general relativistic dd€]. In this Brief
Report, we construct a simple model and examine how this
Several Earth-based interferometers designed to deteeffort is justified. We solve the Tolman-Oppenheimer-
gravitational waves have been recently constructed. Deted/olkov (TOV) equation of hydrostatic equilibrium of a
tors such as the Laser Interferometric Gravitational Wavesingle neutron star, which is truncated at the various PN
Observatory(LIGO), VIRGO, GEO, and TAMA are ex- levels. We compare the mass and radius of a star as a func-
pected to begin operating within a few yedsee, e.g.[1]).  tion of central density using the polytropic equation of state.
In order to extract gravitational waveforms from noisy dataWe also solve the Hamiltonian constraint equation of the
and to discuss physical parameters, it is essential to predi&instein equations by substituting these density profiles as
waveforms in advance by both analytical and numerical aptrial functions, and discuss the differences in the metric.
proaches. This study is an extended one from earlier wgrk8—21]
Binary neutron star systems are one of the most plausiblgsing the first PN approximation. We intend to make a
sources of gravitational waves. They emit energy througiPridge between the Newtonian and general relativistic solu-
gravitational radiation, shrink their inspiral orbits gradually, tions of a neutron star model, both of which were first shown
and finally merge with strong emission of gravitational Numerically by Toopef22].
waves. The system is described by the post-Newt()(m In the actual calculations, we used geometrical units of
approximation(see, e.g.[2]) in the last several minutes be- ¢=G=Mg=1, wherec, G, andMg are the speed of light,
fore they merge, while in the last phase of coalescence diewton’s gravitational constant, and the solar mass, respec-
stars we need to solve the Einstein equations which are availively. However,c and G will appear in the text where they

able only through numerical integration. help understanding.
After the pioneering numerical works by Oohara and Na-
kamura in Newtonian gravity with a radiation reaction cor- Il. TRUNCATED TOV NEUTRON STARS

rection [3], several groups started developing numerical o .
codes to solve this problem in a more realistic way. Such In general relativity, we have the TOV equation for solv-

hydrodynamical simulations are categorized as in the New!'d & hydrostatic equilibrium star in spherically symmetric

tonian schemedwith or without a radiation reaction tepm spacetime. We start from the metric

[4-11), post-_N_evytoniar(Pl\l) approximation[12], and fully ds?= — e2®(Nd {2+ A2+ r2(d g2+ sirfad ¢?),
general relativisti¢GR) level [13—15. However, we do not 2.1)
have a method to construct physically satisfactory initial data

for inspiral binaries in general relativity. Most of the numeri- where e?*(=[1— 2Gm(r)/c?r]" 1. Then the TOV equa-
cal tests start their simulations under assumptions of a certaiifions are written as

quasiequilibrium and conformal flatness of spacetime, with a dm

particular choice of vorticity of fluide.g.,[16] and refer- —— =4mr?p,, 2.2
ences therein dr
One way to prepare initial data might be by patching the
p_ Gmp LA 4mprd 2Gm\| 1!
dr 12 p,C2 mc2 rcz |
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FIG. 2. Mass and radius relations for truncated neutron star
models. Mass is in units of the solar mass and radius]ikrir]. The
lines are the same as in Fig. 1.

FIG. 1. Total mass as the function of its central density for
truncated neutron star modéd), (b), and(c) are for different equa-
tions of state witH"=5/3, 2, and 3, respectively. Mass is in units of
the solar mass and the central density i§gfent]. The gray solid . . . .
line is of Newtonian solutions; the solid line is of general relativis- Obviously, the set of equations recovers the Newtonian limit

tic solutions. The dotted line, dashed line, and three-dotted line art! © — . ) ) )
of first, second, and third post-Newtonian approximated solutions, The idea of th'_S Brief Report is to expand the product of
respectively. the parentheses in EqR.3) and(2.4) and truncate them at

the order of 1¢%'. The ith truncation, then, gives the so-
together with the specified equation of state, for which wec@lled ith PN approximation(The case ofi=1 is briefly

use the polytropic equation of state mentioned in[23].) That is, we write Eqs(2.3) and (2.4)
schematically:

p:KpF:Kpl+1/n, (25)
dp
wherep and p are the pressure and energy density, respec- dr
tively, andp; is the total mass density:

——Er—";ﬂ(HA)(lJrB)(l—C)’1

Gmp,
= -~ (1+A+B+C

p

pr=p+ T-1)c (2.6

+AB+AC+BC+C2+...), (2.7
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1.6 ——rremp—r The radius of the starR, is measured at the point,
s E (@) I'=5/3 47 where densityp, drops low enougfiO(10 %) in geometri-
T [ n=1.5] E cal unitg, and given by the proper length,
14 B =
& : ; o) 26mr)| Y
& 13 = - R:f 1—T dr, (2.9
=2 c ] 0 cor
2/ =
1 E_ = 3 with appropriate truncation in the integrand. We express the
" E E mass of the statM, by M=m(r,).
1.0 £ n We use the fifth-order Runge-Kutta meth¢Behlberg
0% 10" 10”10 107 10" 10" method to integrate the equations. In order to check that this
P (K5 /K)*? approach is right, we also worked the TOV equations in the
harmonic gauge and confirmed that we get identical physical
L6 F 3 guantities in the results.
15 E 3 In Fig. 1, we show the total madg as a function of the
- 3 central density,. for the differentl”’s and PN levels. Mass is
4 F E in units of M, and central density is ifg/cn?], and both are
E 13 E 3 rescalable with the constaKtin the equation of state. Here
5 E 3 we useK in the calculations a¥g;;=4.35 (for I'=5/3),
12 T = K,=10? (for I'=2), andK ;= 10° (for '=3) in geometrical
. N o E units, whereK 5 is the number for the pure neutron equation
T E ] of state[24].
1.0 & We see clearly the convergence of this PN approximation
10 10" 10% 10 107 10" 107 in all the I"s. However, if the equation of state is stiff, then
p, (K,/K) the high density configuration differs from that of GR even
L6 at the higher PN approximation.
E o o3[ T T From the first PN approximation, we see the existence of
1.5 E [ 1n=05] N 3 the maximum mass. The central density which gives this
4 E 3 maximum becomes larger in the weak gravity approxima-
~ TF e tion.
ifL 13 E 3 In Fig. 2, we show the mass-radius relations. In the New-
= E 3 tonian limit, the asymptotic behaviors bf nearM =0 are as
12 = MxR ™3 (for [=5/3), MxR? (for I'=2), andMxR® (for
L1 E_ E I'=3). These represent the softndss I"'=5/3) and stiff-
E 3 ness(for I'=3) of the equation of state. We see that all the
1.0 BEan toond vl vl 1 cniod lines in Fig. 2 coincide with this Newtonian limit in the
10" 10" 10'? 10" 10"’ 10'® lower mass limit. The figure also shows us that the first PN
p. (K, /K)'? solution has the same feature as GR.

We also checked the causality constrap/dp<1 (see,

FIG. 3. The conformal factoy; at the origin is displayed as a e g.,[25]) in all of the models, and confirmed that the con-
function of central density, of which we used a trial configuration straint is always valid.

for solving Hamiltonian constraint equation. The central density is
in units of [g/cnt]. Each line indicates the trial profile as input,

using the same notation as Fig. 1. Ill. METRIC OUTPUT VIA THE HAMILTONIAN

CONSTRAINT
do 1dp . We next solve the Hamiltonian constraint equation in GR
ar Ea(lJrA) with the trial density profiles obtained above. Our aim is to
compare the difference of the output metric and to examine a
1dp s 3 matching scheme of PN data to the general relativistic one.
= Ea(l_A“LA —ATE-). (2.8 We use the O'Murchadha-York conformal appro426]

to solve the Hamiltonian constraint. Defining the conformal

i i i _ factor ¢ and settingy;; = ¢*;; , the constraint becomes
If we use these equations with terms on the right-hand side 4 @i =¥

(RHS) of up to two products ofA,B,C (such asAB or A?), 3R e (3B ~ 3

then we say the system is in the second PN approximation. 85 Ay Ry—16mGpy =, 3.
W lyI'=5/3, 2, and 3 for th ti f stat N ~ . . .

compare the solutions of Newtonian, GR, and up to the third@nd Ricci scalar curvature, respectively, defined/yy Here

PN approximation. we assumed;; =K;; =0.
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We choose our trial metrié,ij as Conforma”y flat, and equations Oflstates. If we use Seclond PN denSityI Configura-
: : . . . 2 tions as trial functions, we get closer metric solutions to
solve Eq.(3.1) with a trial density configuration gb=p,. ’ e .
We use the incomplete Cholesky conjugate gradifd€G) those from GR through the Hamiltonian constraint. Although

method [27] with the Robin boundary conditiony=1 EE?SkSttl;\d)t/ Iti re?tricted tﬁ a hygrostatic single star trr:odell, \f[ve
+C/r, whereC is a constant, for solving E¢3.1). Ink that the Tigures shown here are convenient templates

In Fig. 3, we show the conformal factgr at the origin as for,itsjrtshheorvx?r:J ri]r11?1r|;:]('iltrffaugligts:.ontinuous matching surface of
a function of the central density of the trial configuration. ' 9

The three-metric at the center will be given by—y*a; . iy e i 8 B TREE SRR, T o e o,
We see that using the Newtonian configuration as input give?‘hgrefore we expect that hi heFr)PN initial datag\]/vill smootHI
us quite different solutions from the expected ones of GR P 9 y

while all PN trials give similar solutions with GR. Indepen- evolve in the fully relativistic simulations, although there are

dently of I, we can say that the second PN approximationnmuaggr;gﬁnogqisfgc(:% r;s %Sr tnootw r\]lsfahzrresgli)r\]/vlr;tla: (ijnatatrﬁge
provides closer values for the output metric to those of GR, y y O ) . W applying th

approach to construct a binary model including their velocity
corrections together with fully general relativistic hydrody-

namical evolutions. This effort will be reported elsewhere.

In order to justify the recent post-Newtonian approaches
to the binary neutron star problem, we constructed a simple
model. By solving the hydrostatic equilibrium equation of a
star at thath PN approximation, we showed the convergence The author thanks Stephen B. Selipsky, Wai-Mo Suen,
of this approach, the mass and radius relations, and resultaand Cliff. M. Will for discussions. He also thanks Ed Seidel
metric output via the Hamiltonian constraint equation. and Doug Swesty for comments on the causality constraint.

We conclude that the second PN approximation provide§his work was partially supported by Grants Nos. NSF
quite similar density profiles to those of GR, independent ofPHYS 96-00049, 96-00507, and NASA NCCS 5-153.

IV. DISCUSSION
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