Wormhole Evolutions in Higher-dim. Gravity

--- Effects of Gauss-Bonnet gravity terms

Hisaaki Shinkai & Takashi Torii (Osaka Inst. Technology, Japan) 真貝寿明 & 鳥居隆 (大阪工業大学)

Outline & Summary

(a) "Fate of Morris-Thorne (Ellis) wormhole" was numerically investigated in 2002. [HS & Hayward, PRD66, 044005]. The fate is either black-hole collapse or inflationary expansion, depending on the excessed energy.

(b) The higher-dimensional Ellis wormhole solutions are obtained.

Perturbation study suggests instability. Numerical evolutions confirm its instability. (c) The wormholes in 5-dim. Gauss-Bonnet gravity are numerically obtained. Evolutions suggest that positive GB term accelerates black hole collapse.

Motivations

Why wormholes? They make great science fiction – short cuts b Morris & Thorne 1988, Sagan "Contact" etc

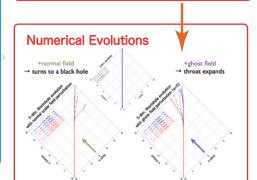
- They increase our understanding of gravity when the usual energy conditions are not satisfied, due to quantum effects (Casimir effect, Hawking radiation) or alternative gravity theories, brane-world models etc.
- They are very similar to black holes –both contain (marginally) trapped surfaces and can be defined by trapping horizons (TH).

Wormhole ≡ Hypersurface foliated by marginally trapped surfaces

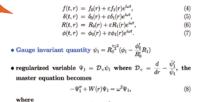
New duality?

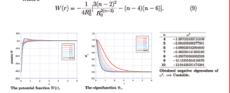
How the stability changes in 5-d GR? [2] How the stability changes in Gauss-Bonnet gravity?

BH and WH are interconvertible ? (New Duality?)

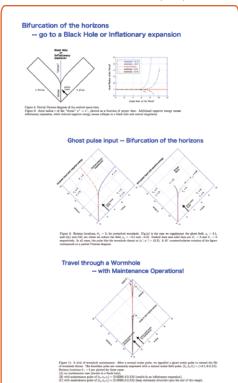

S.A. Hayward, Int. J. Mod. Phys. D 8 (1999) 373 They are very similar – both contain (marginally) and can be defined by trapping horizons (TH)
Only the causal nature of the THs differs, whether THs evolve in plus / minus density.

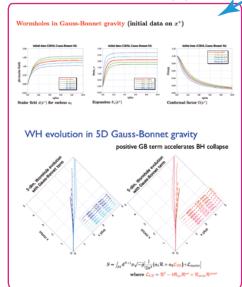
	I 80		
Locally	Black Hole Achronal(spatial/null)	Wormhole Temporal (timelike)	
defined by	outer TH	outer THs	
	⇒ 1-way traversable	⇒ 2-way traversable	_ \
Einstein eqs.	Positive energy density	Negative energy density	
	normal matter (or vacuum)	"exotic" matter	\wedge
Appearance	occur naturally	Unlikely to occur naturally.	
		but constructible ???	


N-dim. Ellis Wormhole sol.

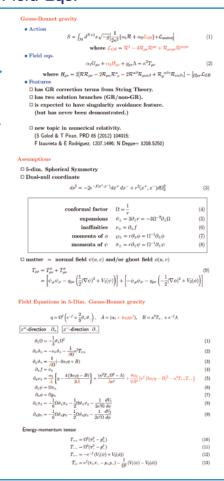

in prep.

Wormhole Solution (n-Dim, massless ghost scalar) spherical symmetry. $ds^2 \,=\, -f(t,r)e^{-2\delta(t,r)}dt^2 + f(t,r)^{-1}dr^2 + R(t,r)^2d\Omega^2$ with massless ghost scalar field φ. • static, $f \equiv 1$, and throat radius R(0) = a; Just solve $\frac{d^2R}{dr^2} = \frac{(n-3)a^{2(n-3)}}{R^{2n-5}}$ $=\sqrt{(n-2)(n-3)}\frac{a^{n-3}}{D^{n-2}}$ (a) and the scalar field φ (b) ar


Perturbation Analysis


Results in 4-dim. GR

PRD66 (2002) 044005



WH evolution in 5-dim. GB

in prep.

Field Eqs.

