「徹底攻略 微分積分」(共立出版, 2012)の訂正

2013.7.22 真貝寿明

初版4刷(2012/2/25)について、たいへん申し訳ありませんが、次の訂正・修正があります。このお知らせは、http://www.is.oit.ac.jp/~shinkai/book/にて更新しています。

	場所	誤	正
p108	公式 3.7	F(x) = f'(x) であるとき	F'(x) = f(x) であるとき
p211	問題 2.23	$S(\theta) = \frac{L}{2} \frac{\theta}{(\theta+2)^2}, \ S'(\theta) = \frac{L}{2} \frac{2-\theta}{(\theta+2)^3}$	$S(\theta) = \frac{L^2}{2} \frac{\theta}{(\theta+2)^2}, \ S'(\theta) = \frac{L^2}{2} \frac{2-\theta}{(\theta+2)^3}$
p220	問題 5.7(3)	解答差し替え	$z = (x^2 + y^2)^{-1/2} \ \xi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
			$z_x = -x(x^2 + y^2)^{-3/2},$
			$z_{xx} = -(x^2 + y^2)^{-3/2} + 3x^2(x^2 + y^2)^{-5/2},$
			$z_y = -y(x^2 + y^2)^{-3/2},$
			$z_{yy} = -(x^2 + y^2)^{-3/2} + 3y^2(x^2 + y^2)^{-5/2} \sharp \mathfrak{h},$
			$\Delta z = z_{xx} + z_{yy} = \frac{1}{(x^2 + y^2)^{3/2}}$