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Procedure of the Standard Numerical Relativity

■ 3+1 (ADM) formulation 

■ Preparation of the Initial Data
◆ Assume the background metric
◆ Solve the constraint equations

■ Time Evolution
do time=1, time_end
◆ Specify the slicing condition
◆ Evolve the variables
◆ Check the accuracy
◆ Extract physical quantities

end do

Need to solve elliptic PDEs
  -- Conformal approach
  -- Thin-Sandwich approach



Initial Data Construction Problem

Prepare all metric and matter components by solving the two constraints:

• The Hamiltonian constraint equation

(3)R + (trK)2 − KijK
ij = 2κρ + 2Λ (1)

• The momentum constraint equations

Dj(K
ij − γijtrK) = κJi (2)

We have 12 variables (γij, Kij) to fix, but only 4 constraints. ... How?



1st method Conformal Approach – York-ÓMurchadha (1974)

N.ÓMurchadha and J.W.York Jr., Phys. Rev. D 10, 428 (1974)

The key idea is solution γij = ψ4γ̂ij trial metric.

• the decomposition of Kij,

Kij ⇒





trK = γijKij trace part
Aij = Kij − 1

3γijtrK trace-free part

• conformal transformations:

γij = ψ4γ̂ij, γij = ψ−4γ̂ij,

Aij = ψ−10Âij, Aij = ψ−2Âij,

ρ = ψ−nρ̂, Ji = ψ−10Ĵ i,

• we suppose

trK = t̂rK̂, trA = t̂rÂ = 0.
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• we then get

Γi
jk = Γ̂i

jk + 2ψ−1(δi
jD̂kψ + δi

kD̂jψ − γ̂jkγ̂
imD̂mψ),

R = ψ−4R̂ − 8ψ−5∆̂ψ.

where ∆̂ = γ̂jkD̂jD̂k and R̂ = R(γ̂), and also DjAij = ψ−10D̂jÂij.

• decompose Âij to transverse-traceless (TT) part and longitudinal part:

Âij = Âij
TT︸ ︷︷ ︸

divergence-free
+ (̂lW )ij

︸ ︷︷ ︸

longitudinal

,

D̂jÂ
ij
TT = 0, t̂rÂTT = 0, and (̂lW )ij = D̂iW j + D̂jW i − 2

3
γ̂ijD̂kW

k.

• Using these terms, we can write

D̂jÂ
ij = D̂j (̂lW )ij ≡ (∆̂lW )i = (∆̂W )i + (1/3)D̂i(D̂jW

j) + R̂i
jW

j.

With above transformation, the two constraints becomes

• The Hamiltonian constraint equation

8∆̂ψ = R̂ψ − (ÂijÂ
ij)ψ−7 + [

2

3
(trK)2 − 2Λ]ψ5 − 16πGρ̂ψ5−n

• The momentum constraint equations

∆̂Wi +
1

3
D̂iD̂kW

k + R̂i
kW

k =
2

3
ψ6D̂itrK + 8πGĴi



Conformal approach (York-ÓMurchadha, 1974)
One way to set up the metric and matter components (γij, Kij, ρ, Ji) so as to satisfy
the constraints:

1. Specify metric components γ̂ij, trK, ÂTT
ij , and matter distribution ρ̂, Ĵ in the

conformal frame.

2. Solve the next equations for (ψ, W i)

8∆̂ψ = R̂ψ − (ÂijÂ
ij)ψ−7 + [(2/3)(trK)2 − 2Λ]ψ5 − 16πGρ̂ψ5−n (1)

∆̂Wi + (1/3)D̂iD̂kW
k + R̂i

kW
k = (2/3)ψ6D̂itrK + 8πGĴi (2)

where Âij = Âij
TT + D̂iW j + D̂jW i − (2/3)γ̂ijD̂kWk.

3. Apply the inverse conformal transformation and get the metric and matter com-
ponents γij, Kij, ρ, Ji in the physical frame:

γij = ψ4γ̂ij,

Kij = ψ−2[ÂTT
ij + (̂lW )ij] + (1/3)ψ4γ̂ijtrK,

ρ = ψ−nρ̂,

Ji = ψ−10Ĵ i



Comments

• Using the idea of conformal rescaling, we have a way to fix 12 components of
(γij, Kij) that satisfy 4 constraints.

• The Hamiltonian constraint, (3), is a non-linear elliptic equation for ψ, so that
we have to solve it by an iterative method.

• The momentum constraints, (3), are PDEs for Wi and coupled with (3). If
we assume trK = 0, then two constraints are decoupled. Normally people as-
sume trK = 0 (maximal slicing condition) or (trK) =const. (constant mean
curvature slicing) for this purpose.

• For simplicity, people assume the background metric γ̂ij is conformally flat γ̂ij = δij .

The physical appropriateness of conformal flatness is often debatable.

• Two freedom of ÂTT
ij corresponds to the one of gravitational wave. However,

there have been no systematic discussion how to specify them, except applying
tensor harmonics in a linearized situation.
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Numerical procedures – Several tips

Solving the Hamiltonian constraint

8∆̂ψ = R̂ ψ − K̂TF
ij K̂ij

TF ψ−7 +
2

3
K̂2 ψ5 − 16πG ρ̂ ψ5−n

1. Solve the non-linear equation directly.

2. Solve the linearized equation ψ = ψ0 + δψ iteratively

8∆̂ψ = E ψ + F ψ−7 + G ψ5 + H ψ−3 + I ψ−1

= [E − 7Fψ−8
0 + 5Gψ4

0 − 3Hψ−4
0 − 2Iψ−2

0 ] ψ + [8Fψ−7
0 − 4Gψ5

0 + 4Hψ−3
0 + 2Iψ−1

0 ]

Under an appropriate boundary condition, such as Robin BC ψ = 1 + const./r, or Dirichlet BC
ψ = 1 + Mtotal/2r.

楕円型偏微分方程式の数値解法は，境界条件の設定が命

3+1次元空間なら，漸近的平坦は，

4+1次元空間なら，



Solving the momentum constraints

(∆W )i +
1

3
DiDjW

j + Ri
j Wj − 2

3
ψ6 D̂iK = 8πG Ĵi

1. Solve the non-linear equations directly

2. Bowen’s method for conformally flat case [GRG14(1982)1183]
Under the (∇iK = 0) condition,

∆Wi +
1

3
∇i∇jW

j = 8πSi.

By introducing a decomposition of Wi into vector and gradient terms Wi = V i − 1
4∇

iθ,

∆V i = 8πSi,

∆θ = ∇iV
i,

If the source is of finite extent, then the the asymptotic behavior of V i and θ are given by

V i = −2
∞∑

l=0

Qij1···jlnj1 · · ·njl

1

rl+1
,

θ = −
∞∑

l=1

Q{ij1···jl−1}ninj1 · · ·njl−1

1

rl−1
+

∞∑

l=0

2(l + 1)

(2l + 1)(2l + 3)
Qkj1···jl

k nj1 · · ·njl

1

rl+1
+

∞∑

l=1

2l − 1

2l + 1
M{ij1···jl−1}ninj1 · · ·njl−1

1

rl+1

where ni = xir−1 in the Cartesian cordinate, the multipoles Q and M are defined as

Qij1···jl ≡ (2l − 1)!!

l!

∫
Si(r)x{j1xj2 · · ·xjl}dV,

M ij1···jl ≡ (2l − 1)!!

l!

∫
r2Si(r)x{j1xj2 · · ·xjl}dV,

and where brackets denote the completely symmetric trace-free part

Z{ij1···jl} = Z(ij1···jl) − l

2l + 1
Zk(j1···jl−1

k δjli)



Conformal Approach to solve constraints : Eqs. for Initial Data construction

• We generalized the Conformal approach by York and ÓMurchadha (1974) to N-dim & for Gauss-Bonnet

gravity.

• Conformal transformation

solution γij = ψ2mγ̂ij γij = ψ−2mγ̂ij trial metric

this gives

R = ψ−2m
{

R̂ − 2(N − 1)mψ−1(D̂aD̂aψ) + (N − 1)
[
2 − (N − 2)m

]
mψ−2(D̂ψ)2

}
,

Rij = R̂ij − mγ̂ijψ
−1D̂aD̂aψ − (N − 2)mψ−1D̂iD̂jψ + (N − 2)m(m + 1)ψ−2D̂iψD̂jψ − m

[
(N − 2)m − 1

]
ψ−2(D̂ψ)2γ̂ij ,

Rijkl = ψ2m
{

R̂ijkl + mψ−1γ̂il

[
D̂jD̂kψ − (m + 1)ψ−1D̂jψD̂kψ

]
− mψ−1γ̂ik

[
D̂jD̂lψ − (m + 1)ψ−1D̂jψD̂lψ

]

+ mψ−1γ̂jk

[
D̂iD̂lψ − (m + 1)ψ−1D̂iψD̂lψ

]
− mψ−1γ̂jl

[
D̂iD̂kψ − (m + 1)ψ−1D̂iψD̂kψ

]
+ m2ψ−2(D̂ψ)2(γ̂ilγ̂jk − γ̂ikγ̂jl)

}
.

• Decompose the extrinsic curvature Kij as Kij ≡ Aij +
1

N
γijK, and assume

Aij = ψ!Âij, Aij = ψ!−4mÂij,

K = ψτK̂

• When matter exists, define also the conformal transformation

ρ = ψ−pρ̂, J i = ψ−qĴ i



Hamiltonian constraint

2(N − 1)mD̂aD̂
aψ − (N − 1)[2 − (N − 2)m]m(D̂ψ)2ψ−1

= R̂ψ − N − 1

N
εψ2m+2τ+1K̂2 + εψ−2m+2"+1ÂabÂ

ab + 2εκ2ρ̂ψ−p − 2Λ̂

+ αGB

(
M 2 − 4MabM

ab + MabcdM
abcd

)
ψ2m+1. (14)

Θ̂ =
(
M2 − 4MabM

ab + MabcdMabcd
)

= (N − 3)mψ−4m

{
4(N − 2)mψ−2

[
(D̂aD̂aψ)2 − D̂aD̂bψD̂aD̂bψ

]
− 4ψ−1

[
M̂ − (N − 2)

[
(N − 3)m − 2

]
mψ−2D̂aψD̂aψ

]
D̂aD̂aψ

+ 8ψ−1
[
M̂ab + (N − 2)m(m + 1)ψ−2D̂aψD̂bψ

]
D̂aD̂bψ + (N − 1)2m

2
[
(N − 4)m − 4

]
ψ−4(D̂aψD̂aψ)2 − 2ψ−2

[
(N − 4)m − 2

]
M̂D̂cψD̂cψ

− 8(m + 1)ψ−2M̂abD̂aψD̂bψ

}
+ ψ−4m(Υ̂2 − 4Υ̂abΥ̂

ab + Υ̂abcdΥ̂abcd),

where Υ̂ = R̂ − ε

[
N − 1

N
ψ2m+2τ K̂2 − ψ2"−2mÂabÂ

ab

]
, Υ̂ij = R̂ij − ε

[
N − 1
N2

ψ2m+2τ γ̂ijK̂
2 +

N − 2
N

ψ"+τ K̂Âij − ψ2"−2mÂiaÂa
j

]
,

Υ̂ijkl = R̂ijkl − ε

[
1

N2
ψ2m+2τ (γ̂ikγ̂jl − γ̂ilγ̂jk)K̂2 +

1
N
ψ"+τ (Âikγ̂jl − Âilγ̂jk + Âjlγ̂ik − Âjkγ̂il) + ψ2"−2m(ÂikÂjl − ÂilÂjk)

]
.

(A) If we specify τ = "− 2m and m = 2/(N − 2), then (14) becomes

4(N − 1)
N − 2

D̂aD̂aψ = R̂ψ − εψ2!+1−4/(N−2)
(
K̂2 − K̂abK̂

ab
)

+ 2εκ2ρ̂ψ−p − 2Λ̂ + αGBΘ̂ψ1+4/(N−2). (15)

(B) If we specify τ = 0 and m = 2/(N − 2), then (14) becomes

4(N − 1)
N − 2

D̂aD̂aψ = R̂ψ − ε
N − 1

N
ψ1+4/(N−2)K̂2 + εψ2!+1−4/(N−2)ÂabÂ

ab + 2εκ2ρ̂ψ−p − 2Λ̂ + αGBΘ̂ψ1+4/(N−2). (16)



Momentum constraint

• Introduce the TT part and the longitudinal part of Âij, and its vector potential as

D̂jÂ
ij
TT = 0, Âij

L = Âij − Âij
TT , Âij

L = D̂iW j + D̂jW i − 2

N
γ̂ijD̂kW

k.

• Conformal transformations: DjA
j

i = ψ!−2m
{
D̂jÂ

j
i + ψ−1[#+ m(N − 2)]Â j

i D̂jψ
}

D̂aD̂
aWi +

N − 2

N
D̂iD̂kW

k + R̂ikW
k

+ψ−1[#+ (N − 2)m]
(
D̂aW b + D̂bW a − 2

N
γ̂abD̂kW

k
)
γ̂biD̂aψ

−ψ2m−! N − 1

N
D̂i(ψ

τK̂) + ψ2m−!2αGBΞ̂i = κ2ψ4m−!−qĴi (See next page for Ξ̂i.) (17)

(A) If we specify τ = "− 2m and m = 2/(N − 2), then (17) becomes

D̂aD̂aWi +
N − 2

N
D̂iD̂kW k + R̂ikW k + ψ−1("+ 2)

(
D̂aW b + D̂bW a − 2

N
γ̂abD̂kW k

)
γ̂biD̂aψ

−N − 1
N

[(
"− 4

N − 2

)
(D̂iψ)K̂ + D̂iK̂

]
+ ψ−!+4/(N−2)2αGBΞ̂i = κ2ψ8/(N−2)−!−qĴi (18)

(B) If we specify τ = 0 and m = 2/(N − 2), then (17) becomes

D̂aD̂aWi +
N − 2

N
D̂iD̂kW k + R̂ikW k + ψ−1("+ 2)

[
D̂aW b + D̂bW a − 2

N
γ̂abD̂kW k

]
γ̂biD̂aψ

−ψ4/(N−2)−! N − 1
N

D̂iK̂ + ψ4/(N−2)−!2αGBΞ̂i = κ2ψ8/(N−2)−!−qĴi (19)



Ξi = ψ!−4m

{
R̂ − 2(N − 3)mψ−1D̂bD̂

bψ − (N − 3)m
[
(N − 4)m + 2

]
ψ−2D̂bψD̂bψ − N2 − 3N + 4

N2
εψ+2m+2τ K̂2 − εψ2!−2mÂbcÂ

bc

}
D̂aÂa

i

+ψ!−4m

{
−2R̂b

i + 2(N − 3)mψ−1D̂bD̂iψ − 2(N − 3)m(m + 1)ψ−2D̂iψD̂bψ +
2(N − 3)

N
εψ!+τ K̂Â b

i − 2εψ2!−2mÂ c
i Â b

c

}
D̂aÂa

b

+ψ!−4m

{
2R̂ab − 2(N − 3)mψ−1D̂bD̂aψ − 2(N − 1)m(m + 1)ψ−2D̂aψD̂bψ − 2(N − 3)

N
εψ!+τ K̂Âab + 2εψ2!−2mÂa

cÂ
cb

}(
D̂iÂab − D̂aÂib

)

+2εψ3!−6mÂ a
i Âbc

(
D̂aÂbc − D̂bÂac

)
+ Ri + Di + A(1)D̂iψ + A(2)D̂iK̂ + A(3)D̂aψÂa

i

−2(N − 2)3
N2

εψ!−2m+2τ K̂(D̂aK̂ + τψ−1K̂D̂aψ)Âa
i +

2(N − 3)

N

[
(N − 4)m + 2$+ τ

]
εψ2!−4m+τ−1K̂D̂bψÂb

aÂa
i

+
2(N − 3)

N
εψ2!−4m+τ D̂bK̂Âb

aÂa
i − 2

[
(N − 6)m + 3$

]
εψ3!−6m−1D̂cψÂc

bÂ
b
aÂa

i,

where

Ri =

{[
(N − 3)m + $

]
ψ!−4m−1Â a

i D̂aψ − N − 3
N

ψ−2m+τ (D̂iK̂ + τψ−1K̂D̂iψ)

}
R̂

+

{
2(N − 3)

N
τψ−2m+τ−1K̂D̂aψ +

2(N − 3)

N
ψ−2m+τ D̂aK̂ − 2

[
(N − 3)m + $

]
ψ!−4m−1Â b

a D̂bψ

}
R̂ a

i

−2(m − $)ψ!−4m−1(ÂabD̂iψ − ÂibD̂aψ)R̂ab + 2(m − $)ψ!−4m−1D̂aψÂbcR̂
cab

i ,

Di =

{
N2 − 8N + 11

N
mψ−2m+τ−1(D̂iK̂ + τψ−1K̂D̂iψ) − 2m

[
(N2 − 6N + 7)m + (N − 3)$

]
ψ!−4m−2D̂bψÂb

i

}
D̂aD̂aψ

−
{

2(N − 2)3
N

mψ−2m+τ−1(D̂aK̂ + τψ−1K̂D̂aψ) − 2m
[
(N2 − 4N + 5)m + (N − 2)($− 2)

]
ψ!−4m−2D̂bψÂb

a

}
D̂aD̂iψ

+2(N − 3)m(m − $)ψ!−4m−2(ÂabD̂iψ − ÂiaD̂bψ)D̂bD̂aψ,

A(1) = 2

{
−N − 2

N
m(m + 1)ψ−2m+2τ−2(D̂aK̂ + τψ−1K̂D̂aψ)(D̂aK̂ + τψ−1K̂D̂aψ)

+
(N − 2)2

N
m(m + 1)ψ−2m+τ−2D̂aK̂D̂aψ +

N − 2
2N

m
[
(N2 − 4N + 5)m + 2

]
τψ−2m+τ−3K̂D̂aψD̂aψ

− (N − 2)3m
2(m + 1)ψ!−4m−3D̂aψD̂bψÂab +

N − 3
N

(m − $− τ)εψ2!−4m+τ−1K̂ÂabÂ
ab − (m − $)εψ3!−6m−1Â b

a Â c
b Â a

c

}
,

A(2) =
1
N

{
(N − 2)3m

[
(N − 3)m − 2

]
ψ−2m+τ−2D̂aψD̂aψ − (N − 1)2(N + 1)

N2
εψ3τ K̂2 − (N − 3)εψ2!−4m+τ ÂabÂ

ab

}
,

A(3) = −m
[
(N − 2)2(N − 5)m2 + (N − 2)3($− 2)m + (N − 1)(3$− 2)

]
ψ!−4m−3D̂aψD̂aψ

− 1
N2

[
(N − 1)(N2 − 8)m + (N2 − N + 2)$

]
εψ!−2m+2τ−1K̂2 +

[
(N − 6)m + 3$

]
εψ3!−6m−1ÂabÂ

ab.



(A) Hamiltonian constraint

4(N − 1)

N − 2
D̂aD̂

aψ = R̂ψ − εψ2!+1−4/(N−2)(K̂2 − K̂abK̂
ab) + 2εκ2ρ̂ψ−p − 2Λ̂ + αGBΘ̂ψ1+4/(N−2).

(A) momentum constraint

D̂aD̂
aWi +

N − 2

N
D̂iD̂kW

k + R̂ikW
k + ψ−1(&+ 2)

(
D̂aW b + D̂bW a − 2

N
γ̂abD̂kW

k
)
γ̂biD̂aψ

−N − 1

N

[(
&− 4

N − 2

)
(D̂iψ)K̂ + D̂iK̂

]
+ ψ−!+4/(N−2)2αGBΞ̂i = κ2ψ8/(N−2)−!−qĴi

Procedures to construct the initial hypersurface data (γij, Kij, ρ, J i)

1. Give the initial assumption (trial values) for γ̂ij, trK, ÂTT
ij and ρ̂, Ĵ .

2. Solve above 2 equations for ψ and W i.

3. inverse conformal transformations,

γij = ψ4/(N−2)γ̂ij, Kij = ψ![ÂTT
ij + (̂lW )ij] +

1

N
ψ!−4/(N−2)γ̂ijtrK,

ρ = ψ−pρ̂, J i = ψ−qĴ i



Numerical Relativity – open issues Box 1.2

0. How to foliate space-time
Cauchy (3 + 1), Hyperboloidal (3 + 1), characteristic (2 + 2), or combined?

⇒ if the foliation is (3 + 1), then · · ·

1. How to prepare the initial data

Theoretical: Proper formulation for solving constraints? How to prepare realistic initial data?
Effects of background gravitational waves?
Connection to the post-Newtonian approximation?

Numerical: Techniques for solving coupled elliptic equations? Appropriate boundary conditions?

2. How to evolve the data

Theoretical: Free evolution or constrained evolution?
Proper formulation for the evolution equations? ⇒ see e.g. gr-qc/0209111
Suitable slicing conditions (gauge conditions)?

Numerical: Techniques for solving the evolution equations? Appropriate boundary treatments?
Singularity excision techniques? Matter and shock surface treatments?
Parallelization of the code?

3. How to extract the physical information

Theoretical: Gravitational wave extraction? Connection to other approximations?

Numerical: Identification of black hole horizons? Visualization of simulations?
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Procedure of the Standard Numerical Relativity

■ 3+1 (ADM) formulation 

■ Preparation of the Initial Data
◆ Assume the background metric
◆ Solve the constraint equations

■ Time Evolution
do time=1, time_end
◆ Specify the slicing conditions
◆ Evolve the variables
◆ Check the accuracy
◆ Extract physical quantities

end do

Need to solve elliptic PDEs
  -- Conformal approach
  -- Thin-Sandwich approach

singularity avoidance,
simplify the system, 
GW extraction, ... 



How to choose gauge conditions?

The fundamental guidelines for fixing the lapse function α and the shift vector βi:

• to avoid hitting the physical and coordinate singularity in its evolution.

• to make the system suitable for physical situation.

• to make the evolution system as simple as possible.

• to enable the gravitational wave extraction easy.

よい座標条件とは

できるだけ特異点を回避できること．

できるだけ物理的な状況設定に近いものを再現すること

できるだけ単純なこと

重力波の抽出が簡単にできること（漸近的平坦であること）



Lapse conditions

geodesic slice α = 1 GOOD
BAD

simple, easy to understand
no singularity avoidance

harmonic slice ∇a∇axb = 0 GOOD
GOOD
BAD

simplify eqs.,
easy to compare analytical investigations
no singularity avoidance or coordinate
pathologies

maximal slice K = 0 GOOD
BAD

singularity avoidance
have to solve an elliptic eq.

maximal slice
(K-driver)

∂tK = −c2K G&B
GOOD

same with maximal slice,
easy to maintain K = 0

constant
mean curvature

K = const. G&B
GOOD

same with maximal slice,
suitable for cosmological situation

polar slicing Kθ
θ + Kϕ

ϕ = 0, or
K = Kr

r

GOOD
BAD

singularity avoidance in isotropic coord.
trouble in Schwarzschild coord.

algebraic α ∼ √
γ,

α ∼ 1 + log γ
GOOD
BAD

easy to implement
not avoiding singularity

Lapse 関数の候補



Maximal slicing condition

• A singularity avoiding gauge condition.

• The name of ‘maximal’ comes from the fact that the deviation of the 3-volume
V =

∫ √
γd3x along to the normal line becomes maximal when we set K = 0.

• This is simply written as
K = 0 on Σ(t).

Practically, we solve

DiDiα = { (3)R + K2 + 4πG(S − 3ρH) − 3Λ}α,

or by using the Hamiltonian constraint further,

DiDiα = {KijK
ij + 4πG(S + ρH) − Λ}α.

• This is an elliptic equation. When the curvature is strong (i.e. close to the
appearance of a singularity), the RHS of equation become larger, hence the lapse
becomes smaller. Therefore the foliation near the singularity evolves slowly.



Maximal Slicing Condition 
     In Schwarzschild geometry, K=0 slicing conditions allows us to evolve r=1.5M. 



Maximal slicing versus Harmonic slicing 
A. Geyer and H. Herold, PRD31 (1995) 6182

Harmonic slicing hits singularity!
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slicing conditions (lapse)
Maximal slicing condition

BC at far region
" singularity avoidance " 



Lapse conditions

geodesic slice α = 1 GOOD
BAD

simple, easy to understand
no singularity avoidance

harmonic slice ∇a∇axb = 0 GOOD
GOOD
BAD

simplify eqs.,
easy to compare analytical investigations
no singularity avoidance or coordinate
pathologies

maximal slice K = 0 GOOD
BAD

singularity avoidance
have to solve an elliptic eq.

maximal slice
(K-driver)

∂tK = −c2K G&B
GOOD

same with maximal slice,
easy to maintain K = 0

constant
mean curvature

K = const. G&B
GOOD

same with maximal slice,
suitable for cosmological situation

polar slicing Kθ
θ + Kϕ

ϕ = 0, or
K = Kr

r

GOOD
BAD

singularity avoidance in isotropic coord.
trouble in Schwarzschild coord.

algebraic α ∼ √
γ,

α ∼ 1 + log γ
GOOD
BAD

easy to implement
not avoiding singularity

Lapse 関数の候補



Shift conditions

geodesic slice βi = 0 GOOD
BAD

simple, easy to understand
too simple

minimal
distortion

min ΣijΣij GOOD
BAD

geometrical meaning
elliptic eqs., hard to solve

minimal strain min ΘijΘij G&B same with minimal distorsion

Shift 関数の候補



Minimal distortion condition, Minimal strain condition

L.Smarr and J.W.York,Jr., Phys. Rev. D 17, 2529 (1978)

• Against the grid-streching, minimize the distor-
tion in a global sense.

• The expansion tensor Θµν: Let the
coordinate-constant congruence tµ = αnµ+βµ.
Using the projection operator ⊥a

b = δa
b + nanb,

Θµν = ⊥∇(νtµ)

= −αKµν +
1

2
D(µβν)

• The distortion tensor Σij:

Σij = Θij −
1

3
Θγij

= −2α


Kij −
1

3
γijK



 +
1

2



D(iβj) −
1

3
Dkβk



 .



The minimal distortion condition

• minimize ΣijΣij

δS[β] = δ{1

2

∫
ΣijΣ

ijd3x} = 0.

• This condition can be written as DjΣij = 0, or

DjDjβi + DjDiβj −
2

3
DiDjβ

j = Dj


2α


Kij −
1

3
trKγij







 ,

or

∆βi +
1

3
Di(D

jβj) + Rj
iβj = Dj



2α


Kij −
1

3
trKγij







 ,

where ∆ = DiDi.

The minimal strain condition

• minimize ΘijΘij, similarly.
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2
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Procedure of the Standard Numerical Relativity

■ 3+1 (ADM) formulation 

■ Preparation of the Initial Data
◆ Assume the background metric
◆ Solve the constraint equations

■ Time Evolution
do time=1, time_end
◆ Specify the slicing conditions
◆ Evolve the variables
◆ Check the accuracy
◆ Extract physical quantities

end do

Need to solve elliptic PDEs
  -- Conformal approach
  -- Thin-Sandwich approach

singularity avoidance,
simplify the system, 
GW extraction, ... 



Procedure of the Standard Numerical Relativity

■ 3+1 (ADM) formulation 

■ Preparation of the Initial Data
◆ Assume the background metric
◆ Solve the constraint equations

■ Time Evolution
do time=1, time_end
◆ Specify the slicing conditions
◆ Evolve the variables
◆ Check the accuracy
◆ Extract physical quantities

end do

Need to solve elliptic PDEs
  -- Conformal approach
  -- Thin-Sandwich approach

singularity avoidance,
simplify the system, 
GW extraction, ... 

Robust formulation ?
 -- modified ADM
 -- hyperbolization
 -- asymptotically constrained  
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Numerical Simulations using Ashtekar variables

HS and G. Yoneda, Class. Quant. Grav. 17 (2000) 4799

Class. Quant. Grav. 18 (2001) 441

Objective

Compare numerical stability between three types of hyperbolic formulations.

Strategy

• plane symmetric, vacuum spacetime

true freedom of gravitational wave of two polarized (+ and ×) modes.

• the same initial data ———– solve ADM constraints using the standard conformal approach

• the same boundary conditions —– periodic boundary conditions

• the same slicing conditions —— N∼ = 1, N i = 0, Aa
0 = Aa

i N
i = 0

• the same evolution scheme —— Brailovskaya predictor-corrector/iterative Crank-Nicholson

• with different set of dynamical equations

– ADM / Ashtekar (original / strongly hyperbolic / symmetric hyperbolic)

– λ-system, “adjusted system”, · · ·
• The results are analyzed by monitoring the violation of constraint equations which are again compared

expressed using the same (or transformed if necessary) variables.



Numerical Simulations using Ashtekar variables: Initial Data

• Metric

ds2 = (−N 2 + NxN
x)dt2 + 2Nxdxdt + γxxdx2 + γyydy2 + γzzdz2 + 2γyzdydz

• Initial data – York-O’Murchadha’s Conformal Approach

Input quantities

– 3-metric γ̂ij =





1 0 0

1 + ae−b(x−c)2 0

1 − ae−b(x−c)2




or





1 0 0

1 ae−b(x−c)2

1





– trK = K0 (constant)

– TT part of the extrinsic curvature, ÂTT = 0

• Solve the Hamiltonian constraint

8∆̂ψ := 8
1√
γ̂
∂i(γ̂

ij
√

γ̂∂jψ) = R̂ψ +
2

3
(K0)

2ψ5

conformal transformation

γij = ψ4γ̂ij, Kij =
1

3
ψ4γ̂ijK0



The Ashtekar formulation:

PRL 57, 2244 (1986); PRD 36, 1587 (1987).

• New variables

Aa
i := ω0a

i − i

2
εa

bcω
bc
i = −KijE

ja − i

2
εa

bcω
bc
i and Ẽi

a := eEi
a

• The evolution equations for a set of (Ẽi
a,Aa

i ) are

∂tẼ
i
a = −iDj(ε

cb
a N∼ Ẽj

c Ẽ
i
b) + 2Dj(N

[jẼi]
a ) + iAb

0εab
c Ẽi

c, (13)

∂tAa
i = −iεab

c N∼ Ẽj
bF

c
ij + NjFa

ji + DiAa
0 + 2ΛN∼ ẽa

i , (14)

where DjXji
a := ∂jXji

a − iεab
cAb

jX
ji
c , and Fa

ij := 2∂[iAa
j] − iεa

bc Ab
iAc

j.

• Constraint equations: (Hamiltonian, momentum and Gauss constraints)

CASH
H := (i/2)εab

c Ẽi
aẼ

j
bF

c
ij − 2Λ detẼ ≈ 0, (15)

CASH
Mi := Fa

ijẼ
j
a ≈ 0, (16)

CASH
Ga := DiẼ

i
a ≈ 0. (17)

• Gauge variables: N∼ , Ni, and the “triad lapse” Aa
0.



evolution

Σ0Σ0

Σt
Σt

t = t

initial data
construction

γij ,Kij Ẽi
a,Aa

i

ADM 2 Ashtekar



evolution

Σ0Σ0

Σt
Σt

t = t

initial data
construction

γij ,Kij Ẽi
a,Aa

i

Ashtekar 2 ADM
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Hyperbolic formulations and numerical relativity:
experiments using Ashtekar’s connection variables

Hisa-aki Shinkai† and Gen Yoneda‡
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Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on
Ashtekar’s connection variables. The primary advantage for using this connection formulation in
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity.
Our numerical code demonstrates gravitational wave propagation in plane-symmetric spacetimes,
and we compare the accuracy of the simulation by monitoring the violation of the constraints.
By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

PACS numbers: 0420C, 0425, 0425D

1. Introduction

Numerical relativity—solving the Einstein equation numerically—is now an essential field in
gravity research. As is well known, critical collapse in gravity systems was first discovered by
numerical simulation [1]. The current mainstream of numerical relativity is to demonstrate the
final phase of compact binary objects related to gravitational wave observations†, and these
efforts are now again shedding light on the mathematical structure of the Einstein equations.

Up to a couple of years ago, the standard Arnowitt–Deser–Misner (ADM) decomposition
of the Einstein equation was taken as the standard formulation for numerical relativists.
Difficulties in accurate/stable long-term evolutions were supposed to be overcome by choosing
proper gauge conditions and boundary conditions. Recently, however, several numerical
experiments show that the standard ADM is not the best formulation for numerics, and finding
a better formulation has become one of the main research topics‡.

† The latest reviews are available in [2].
‡ Note that we are only concerned with the free evolution system of the initial data; that is, we only solve the constraint
equations on the initial hypersurface. The accuracy and/or stability of the system is normally observed by monitoring
the violation of constraints during the free evolution.

0264-9381/00/234799+24$30.00 © 2000 IOP Publishing Ltd 4799
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N
˜
, Ni, Aa

0, which we call the densitized lapse function, shift vector and the triad lapse function.
The system has three constraint equations,

CASH
H := (i/2)εab

c Ẽi
aẼ

j
bF c

ij ≈ 0, (7)

CASH
Mi := −Fa

ij Ẽ
j
a ≈ 0, (8)

CASH
Ga := Di Ẽ

i
a ≈ 0, (9)

which are called the Hamiltonian, momentum and Gauss constraint equations, respectively.
The dynamical equations for a set of (Ẽi

a, Aa
i ) are

∂t Ẽ
i
a = −iDj (ε

cb
aN
˜
Ẽj

c Ẽi
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0εab
c Ẽi

c, (10)

∂tAa
i = −iεab

cN
˜
Ẽ

j
bF c

ij + NjF a
ji + DiAa

0, (11)

where Fa
ij := 2∂[iAa

j ] − iεa
bc Ab

i A
c
j is the curvature 2-form.

We have to consider the reality conditions when we use this formalism to describe the
classical Lorentzian spacetime. As we review in appendix A.2, the metric will remain on its
real-valued constraint surface during time evolution automatically if we prepare initial data
which satisfy the reality condition. More practically, we also require that the triad be real-
valued. However, again this reality condition appears as a gauge restriction on Aa

0, (A11),
which can be imposed at every time step. In our actual simulation, we prepare our initial data
using the standard ADM approach, so that we have no difficulties in maintaining these reality
conditions.

The set of dynamical equations (10) and (11) (hereafter we call these the original equations)
does have a weakly hyperbolic form [19], so that we regard the mathematical structure of
the original equations as one step advanced from the standard ADM. Furthermore, we can
construct higher levels of hyperbolic systems by restricting the gauge condition and/or by
adding constraint terms, CASH

H , CASH
Mi and CASH

Ga , to the original equations [19]. We extract only
the final expressions here.

In order to obtain a symmetric hyperbolic system†, we add constraint terms to the right-
hand side of (10) and (11). The adjusted dynamical equations,

∂t Ẽ
i
a = −iDj (ε

cb
aN
˜
Ẽj

c Ẽi
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0εab
c Ẽi

c + P i
ab CASH

G
b, (12)

where

P i
ab ≡ Niδab + iN

˜
εab

cẼi
c,

∂tAa
i = −iεab

cN
˜
Ẽ

j
bF c

ij + NjF a
ji + DiAa

0 + Qa
i C

ASH
H + Ri

ja CASH
Mj , (13)

where

Qa
i ≡ e−2N

˜
Ẽa

i , Ri
ja ≡ ie−2N

˜
εac

bẼ
b
i Ẽ

j
c

form a symmetric hyperbolicity if we further require the gauge conditions,

Aa
0 = Aa

i N
i, ∂iN = 0. (14)

We note that the adjusted coefficients, P i
ab, Q

a
i , Ri

ja , for constructing the symmetric
hyperbolic system are uniquely determined, and there are no other additional terms (say,
no CASH

H , CASH
M for ∂t Ẽ

i
a , no CASH

G for ∂tAa
i ) [19]. The gauge conditions, (14), are consequences

of the consistency with (triad) reality conditions.

† Iriondo et al [34] presented a symmetric hyperbolic expression in a different form. The differences between ours
and theirs are discussed in [19, 20]
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Figure 2. Images of gravitational wave propagation and comparisons of dynamical behaviour of
Ashtekar’s variables and ADM variables. We applied the same initial data of two +-mode pulse
waves (a = 0.2, b = 2.0, c = ±2.5 in equation (21) and K0 = −0.025), and the same slicing
condition, the standard geodesic slicing condition (N = 1). (a) Image of the 3-metric component
gyy of a function of proper time τ and coordinate x. This behaviour can be seen identically both
in ADM and Ashtekar evolutions, and both with the Brailovskaya and Crank–Nicholson time-
integration scheme. Part (b) explains this fact by comparing the snapshot of gyy at the same proper
time slice (τ = 10), where four lines at τ = 10 are looked at identically. Parts (c) and (d) are of the
real part of the densitized triad Ẽ

y
2 , and the real part of the connection A2

y , respectively, obtained
from the evolution of the Ashtekar variables.

When the pulses collide, then the amplitude seems simply to double, as they are superposed,
and the pulses keep travelling in their original propagation direction. That is, we observe
something like solitonic wave pulse propagation.

As we mentioned in section 3.2, we have to assume our background not to be flat, therefore
there are no exact solutions. The reader might think that if we set | tr K| to be small and pulse
wave shapes to be quite sharp then our simulations will be close to the analytic colliding
plane-wave solutions which produce the curvature singularity. However, from the numerical
side, these two requirements are contradictory (e.g. sharp wave input produces large curvature
which should be compensated by | tr K| in order to construct our initial data). Thus it is not
so surprising that our waves propagate like solitons, not forming a singularity.

In figure 2(a), we plot an image of wave propagation (a metric component gyy) up to
τ = 10, of +-mode pulse waves initially located at x = ±2.5. We took a small negative K0,
so that the background spacetime is slowly expanding.

Figure 2(b), then, tells us that our ADM evolution code and Ashtekar’s variable code give
us identical evolutions. We plotted a snapshot of gyy on the initial data (which is common to
all models here), and its snapshot at τ = 10.0. The fact that all four lines (ADM/Ashtekar, of



Adjusted-Ashtekar system works as well.
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Abstract
We study asymptotically constrained systems for numerical integration of the
Einstein equations, which are intended to be robust against perturbative errors
for the free evolution of the initial data. First, we examine the previously
proposed ‘λ system’, which introduces artificial flows to constraint surfaces
based on the symmetric hyperbolic formulation. We show that this system
works as expected for the wave propagation problem in the Maxwell system
and in general relativity using Ashtekar’s connection formulation. Second, we
propose a new mechanism to control the stability, which we call the ‘adjusted
system’. This is simply obtained by adding constraint terms in the dynamical
equations and adjusting their multipliers. We explain why a particular choice
of multiplier reduces the numerical errors from non-positive or pure-imaginary
eigenvalues of the adjusted constraint propagation equations. This ‘adjusted
system’ is also tested in the Maxwell system and in the Ashtekar system. This
mechanism affects more than the system’s symmetric hyperbolicity.

PACS numbers: 0420C, 0425, 0425D

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Numerical relativity, an approach to solving the Einstein equations numerically, is supposed
to be the only way to study highly nonlinear gravitational phenomena. Although the attempt
already has decades of history, we still do not have a definite recipe for integrating the Einstein
equations that will give us accurate and long-term stable time evolutions. Here and hereafter,
we mean by ‘stable evolution’ that the system keeps the violation of the constraints within a
suitable small value in its free numerical evolution.

0264-9381/01/030441+22$30.00 © 2001 IOP Publishing Ltd Printed in the UK 441
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Figure 5. Demonstration of the adjusted system in the Ashtekar equation. We plot the violation of
the constraint for the same model as figure 3(b). An artificial error term was added at t = 6, in the
form of A2

y → A2
y(1 + error), where error is + 20% as before. (a), (b) L2 norm of the Hamiltonian

constraint equation, CH , and momentum constraint equation, CMx , respectively. The full curve is
the case of κ = 0, that is the case of ‘no adjusted’ original Ashtekar equation (weakly hyperbolic
system). The dotted curve is for κ = 1, equivalent to the symmetric hyperbolic system. We see
that the other curve (κ = 2.0) shows better performance than the symmetric hyperbolic case.
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Figure 4. Demonstrations of the adjusted system in the Maxwell equation. We perform the same
experiments with section 2.2.3 (figure 1). Constraint violation (L2 norm of CE ) versus time are
plotted for various κ (= pj

i = sj
i ). We see that κ > 0 gives a better performance (i.e. negative

real part eigenvalues for the constraint propagation equation), while excessively large positive κ
makes the system divergent again.

3.3. Example 2: Einstein equations (Ashtekar equations)

3.3.1. Adjusted system for controlling constraint violations. Here we only consider the
adjusted system which controls the departures from the constraint surface. In the appendix,
we present an advanced system which controls the violation of the reality condition together
with a numerical demonstration.

Even if we restrict ourselves to adjusted equations of motion for (Ẽi
a, Aa

i ) with constraint
terms (no adjustment with derivatives of constraints), generally, we could adjust them as

∂t Ẽ
i
a = −iDj (ε

cb
aN∼ Ẽj

c Ẽi
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0ε
c

ab Ẽi
c + Xi

aCH + Y ij
a CMj + P ib

a CGb,

(3.14)

∂tAa
i = −iεab

cN∼ Ẽ
j
bF c

ij + NjF a
ji + DiAa

0 + $N
∼
Ẽa

i + Qa
i CH + Ri

jaCMj + Zab
i CGb, (3.15)

where Xi
a, Y

ij
a , Zab

i , P ib
a , Qa

i and R
aj
i are multipliers. However, in order to simplify the

discussion, we restrict multipliers so as to reproduce the symmetric hyperbolic equations
of motion [10, 11], i.e.

X = Y = Z = 0,

P ib
a = κ1(N

iδb
a + iN

∼
εa

bcẼi
c),

Qa
i = κ2(e

−2N
∼
Ẽa

i ),

Ri
ja = κ3(ie−2N

∼
εac

bẼ
b
i Ẽ

j
c ).

(3.16)


