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Why & How we know there are black-holes?
Introduction to Einstein’s Relativity

Hisaaki Shinkai

Abstract:
Einstein’s theories of relativity explains that our space and time can bend like a tram-
poline. The theory predicts the possibility of time travel, the existence of black holes,
and the expansion of the Universe. The session picks up the following three subjects:
(1) delay of clocks in the rockets, (2) how we observe black holes, and (3) how we know
the Universe is expanding. The lecture introduces the basic idea of physics (equation of
motion, conservation laws), including its historical backgrounds.
Messages:
Physics explains the nature using equations. Physicists believes the nature can be ex-
plained in a simple form. Enjoy thinking how and why.

0 Homework before the session

Check out the following issues.

0.1 Kepler’s laws of planetary motion

Figure 1: Johannes
Kepler (1571-1630)

Figure 2: An ellipse
and two foci.

Johannes Kepler discovered the following laws on the motion of planets.

Kepler’s law (1609, 1618)� �
1st law The orbit of a planet is an ellipse with the Sun at one

of the two foci.
2nd law A line segment joining a planet and the Sun sweeps

out equal areas during equal intervals of time.
3rd law The square of the orbital period of a planet is propor-

tional to the cube of the semi-major axis of its orbit.� �

Figure 3: Kepler’s first, second and third law of planetary motion.
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0.2 Newton’s laws of motion

Figure 4: Isaac
Newton (1642–1726)

Isaac Newton formulated the basic laws of the motion.

Newton’s law of motion (1687)� �
1st law If there is no net force, an object either remains at

rest or continues to move at a constant velocity.
2nd law The force F produces the acceleration a to an object

([m/s2]). The relation (“equation of motion”) is

F = ma, (0.1)

where m is the mass of the object ([kg]).
3rd law When one body exerts a force on a second body, the

second body simultaneously exerts a force equal in
magnitude and opposite in direction on the first body.� �

　　

Figure 5: (Left) Newton’s first law. (Right) Newton’s third law
(action-reaction).

These laws derive some conservation laws.

Figure 6: Newton’s
cradle.

(A) conservation of linear momentum� �
When two objects (with mass mA,mB) interact each other
(such as collision, merger, separations, penetration)，then the
total linear momentum is conserved:

mAvA +mBvB = mAv
′
A +mBv

′
B (0.2)

where vA,vB are velocities of each object before interaction
([m/s] with its directional information), v′

A,v
′
B are those of

after interaction ([m/s] with its directional information).� �

Figure 7: On the ice, two standing
couple begin pushing each other. How
will they move?
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(B) conservation of energy� �
If there is no friction, the total energy of the system E (sum of
the potential energy and kinetic energy) is conserved:

E = mgh1 +
1

2
mv21 = mgh2 +

1

2
mv22 (0.3)

where m, g, h, v are the mass of an object ([kg]), gravitational ac-
celeration (=9.8 [m/s2]), height location of the object ([m]), and
the speed of the object ([m/s]), respectively.� �

Figure 8: Jet coaster does not have its engine. The initial potential energy decides its later velocity.

Figure 9: Figure
skater rotates faster
by shrinking her arms.

(C) conservation of angular momentum� �
If an object begins rotation, the angular momemtum,

r ×mv (0.4)

is conserved, where r,m,v are directional vector from rotating
axis ([m]), mass of an object ([kg]), and the velocity of an object
([m/s] with directional information), respectively.� �
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0.3 Least approaching time of life saver

The next problem is independent from the previous issues.
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Figure 10

(Prob.) Least approaching time of life saver� �
A beautiful girl has fallen out of a boat, and she is screaming for
help in the water (at C in the figure). We are at point A on land,
and we see the accident, and we can run and can also swim. We
can run 3 times faster than swim. If we plan to reach C as quick
as we can, we should run a little greater distance on land. Where,
then, is the point B on the shoreline at which we start to swim?
Let the coordinate A(0,−50) and C(100, 50), and find B(x, 0) us-
ing a software.� �
Hint. Procedures: Prepare a spreadsheet application like “Excel”.

(1) Prepare columns A, B, · · ·, F, putting coordinate a, b, c, and the
speed v1, v2, together with trial location x.

(2) At the cell G2, input “=SQRT(A2*A2+F2*F2)/D2”, which means
=

√
(A2)2 + (F2)2/D2.

Copy the cell G2 and past it to G3, then it automatically inputs
the value of the next line, “=SQRT(A3*A3+F3*F3)/D3”.

(3) Prepare the cell H2 with “=SQRT((B2-F2)*(B2-F2)+C2*C2)/E2”,
and the column H similarly.

(4) Prepare the cell I2 with “=G2+H2”, and the column I similarly.

(5) From x = 50 to x = 100, find out the one which minimizes t1+ t2.

Figure 11: Sample sheet of Excel.
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1 Special Relativity: Theory of time

1.1 Confusion from the Maxwell equations

Equations of electro-magnetic wave

Figure 12: James C.
Maxwell (1831-1879)

The theory of electro-magnetism, which was summarized by Maxwell
in 1864, predicted the existence of electro-magnetic wave (radio wave,
including light itself) which propagates at the speed of light even in the
vacuum space. These arise two questions.

• First one is why the wave propagates in the vacuum. We need
some medium, like molecules of air for sound wave. Physicists,
therefore, named the medium, Ether 1, and began experiments to
detect it.

• Second question is the appearance of the speed of light in the equa-
tions. The measure of speed certainly depends on the observers,
so physicists had to define some special observer.

Does Ether exist?

Figure 13: Albert
Michelson (1852-1931)

Albert Michelson began his experiments to find Ether in 1881. He
developed a new idea for measuring tiny distance, which are now called
“interferometer”. When two waves (like sound wave or light) overlap,
those are superposed. Depending on the location, superposed wave can
be stronger or weaker, sometimes two waves compensate each other and
disappear. This phenomena is called interference of wave. Michelson
applied this phenomenon for measuring a tiny distance up to the half
wavelength of light.

Figure 14: (Left) Michelson’s interferometer. (Right) Idea for finding Ether.

He invented the following device. Split one light beam in two and
each light ray travels in two different perpendicular directions. Two
beams reflect at the end-mirror and merge again together at the splitting

1Ether means the matter which fills everywhere in ancient Greek.

5



mirror. The interference of light will make pattern depending on the
difference of each path.

Suppose that the Universe is filled with Ether. Since the Earth cir-
culates the Sun with the speed 30 [km/s], two light rays of the interfer-
ometer will feel the different directional velocity of Ether. The difference
should cause the change of interference pattern through a year, because
the Earth will move uploading and downloading in the river of Ether,
which will prove the existence of Ether. These were the idea of Michel-
son. Edward W. Morley

(1838–1923)Michelson and his assistant Morley continued their experiments for
6 years, and finally concluded that Ether had not been detected. They
expressed themselves that they did not succeed the experiment.

Experiment Interference of waves H.W. Check out
how noise-canceling
head-set works?

Figure 15: Double-slit experiment of light.

Lorentz contraction

Figure 16: Hendrik
A. Lorentz
(1853–1928)

George F. FitzGerald
(1851–1901)

The result of Michelson and Morley made physicists in confusion.
The result indicated that the wind of Ether is not observable. Many
physicists proposed explanations for this fact which were ‘consistent’
with the existence of Ether. For example, if Ether will circulate together
with the Earth, the experiment had no contradiction. This explanation
predicts that Ether moves due to the gravity of the Earth. Michelson
tried his experiment again with the heavy gravity source at one arm of
interferometer, but there was no differences in the interference patterns.

The theory of Ether became difficult. FitzGerald and Lorentz began
changing the Newton’s physics. They proposed that all the matter will
shrink its length if they move at large speed, which is called the Lorentz-
FitzGerald contraction. If we suppose that the matter of length L at
the speed v = 0 will change its length if it moves with the speed v in its
moving direction as

L′ =
√
1− (v/c)2L (1.5)

where c is the speed of light, then there is no contradiction with the
experiments. This relation can be interpreted also as the clock timing
of the observer who moves at the speed v will be longer with the factor
1/

√
1− (v/c)2.
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【Detail explanation】(you can skip this part)
Lorentz explained this proposal with coordinate transformation
(1904). That is, if we change our coordinate (t, x, y, z) into the
new coordinate (t′, x′, y′, z′) which moves in x-direction with the
speed v, then we obtain Lorentz transforma-

tion

t′ =
t− (v/c2)x√
1− (v/c)2

x′ =
x− vt√
1− (v/c)2

, (1.6)

y′ = y,

z′ = z.

These relation can be written in a matrix form as
t′

x′

y′

z′

 =


1√

1−(v/c)2
−v/c2√
1−(v/c)2

0 0

−v√
1−(v/c)2

1√
1−(v/c)2

0 0

0 0 1 0
0 0 0 1




t
x
y
z

 . (1.7)

This proposal sounds strange, and did not have any principle. However,
Lorentz transformation is consistent with the Maxwell equations. If this
is true, then we can not observe Ether by Michelson’s interferometer
because our measure scale will change along our movements which com-
pensates Ether effect. This ‘first-aid’ was accepted by most physicists
by 1905.

1.2 Einstein’s Special Relativity

Two principles by Einstein
Albert Einstein proposed a new interpretation to the problem. He starts

Figure 17: Albert
Einstein (1879-1955)

from proposing two principles, which derive the Lorentz transformation
(1.7), and also conclude that we do not need Ether for explaining the
Maxwell equations. Two principles are the followings:

(a) Principle of Relativity：All the physics laws should be the same
equation, independent from the observers’ coordinate.

(b) Principle of the constant speed of light：The speed of light
in vacuum is the constant at any coordinate in the Universe.

The first principle came from the beauty of physics which Einstein
believed. The second one, however, is totally new and brave idea which
was never thought by anybody except Einstein. Einstein’s strategy was
to believe the simple or minimal assumptions which can derive the laws
of real nature.

Einstein named this theory Principle of Relativity in 1905. This
theory explained Lorentz contraction as one of the interpretations, and
we do not need Ether at all. The truth is that light moves constant
speed as the Maxwell equations says.
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c+ c = c
At first sight, it is hard to believe Einstein’s conclusion that light prop-
agates at the constant speed from any observer. The speed of light is
c = 300,000 [km/s]2. Einstein says even if we observed that light from
a high-tech rocket moving at 100,000 [km/s] 3, light is still the speed c.

In our daily life, if we throw a ball with speed v1 in the train with
speed v2, then the ball moves at the speed v1 + v2 (measured from the
ground observer). Einstein’s theory, however, says that this is not true.
The true additive calculation should be

v1 + v2 =⇒ v1 + v2
1 + (v1v2/c2)

(1.8)

which is derived from Lorentz transformation, (1.7). This rule says if
the speed is small compared with c, then v1 + v2 is approximately true.
Actually, this approximation is valid unless speed is close to c.
Exercise 1 Using the additive rule (1.8), fill in the blanks. Ex.1 c+ c = c.

v1 v2 v1 + v2

0.1% of light 0.1% of light 0.1999998% of light

0.10c 0.10c

0.50c 0.50c

0.90c 0.90c

0.99c 0.99c

c c

1.3 Time is relative

Thought experiment of a light-clock
Try an experiment in our brain, which Einstein called “thought exper-
iment”. If we make a clock using light, then we can measure the time
precisely. For example, suppose we set two mirrors apart 50 [cm], and
make light back and forth between these mirrors. One return is 1 [m],
so that after 299,792,458 returns of light, we can declare one second (see
Fig. 18)．

Suppose that we put this light-clock in a high-speed rocket. Light,
then, has to move back and forth between mirrors with additional dis-
tance. Therefore one second in the rocket is apparently longer than
one second on the Earth ground. However, Einstein’s principle says the
light speed is constant. This means that for the people in the rocket,
this light-clock shows the right one second.

How can we solve this paradox?
The only solution is to admit that one second is different between two

observers. That is, time proceeds differently depending on observer’s
speed. The ‘one second’ in the rocket is longer than ‘one second’ on the
Earth, and the difference becomes larger when the rocket is moving fast.
However, each observer believes their own clock is right, and that is right
actually.

Before Einstein proposed the principle of constant light speed, people
had believed that time proceeds homogeneously in all the Universe. Such

2The real (and defined) speed is c =299,792,458 [m/s].
3The maximum speed of rocket in our technology is 70 [km/s].
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Figure 18: (Left) A light-clock. (Right) When the clock is in a rocket at
large speed, a light-ray has to move longer distance for traveling between two
mirrors, which means one second in a rocket is longer than that on the Earth.

a notion of ‘absolute time’ turned out wrong. What Einstein found is
that we have to consider space and time as a set of coordinate, and time
is relative to observers.

Time travel to the future
Actual difference of time can be expressed by the equation

T ′ =
√
1− (v/c)2 T (1.9)

where T is the clock time (say, one second) in a rocket moving at speed
v and T is the time (say, one second) at rest observer.

The right table is examples of the value of
√
1− (v/c)2. This table

v
√
1− (v/c)2

0.1 c 0.99499
0.5 c 0.86603
0.9 c 0.43589
0.99c 0.14107

shows that the difference of time will crucially large when the speed v
is close to c.

Exercise 2a The ISS (International Space Station) circulates around Ex.2 Time travel to
the future.the Earth with a speed 7.8 [km/s], which is 0.000026c. How much is the

difference of time for a staff who stayed a year in ISS comparing to a
person on the Earth?

Exercise 2b According to a story of Mr. Taro Urashima, a famous
fairy-tale in Japan, Mr. Urashima spended three-years travel to Ryugu
castle and traveled back to his town, but he found that he suddenly got
old and all the people he knew turned out to have died. If we interpreted
this story as a time travel to the future (say 300 years) using a rocket,
what is the speed of the rocket? Use the approximation,√

1− (v/c)2 ≈ 1− 1

2

(
v

c

)2

(1.10)

if your calculator is not smart.
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2 General Relativity: Theory of gravity

2.1 Starting point of general relativity

The theory of Einstein in 1905 concluded that time is relative to ob-
servers, which was one of the big revolutions in physics. However, he
knew the weak point of the theory as well. The relativity theory in 1905
could not treat observers who are moving with acceleration (changing
his/her speed). Einstein began constructing his new generalized theory
of relativity.

What he seek was the equation of motion which were common to all
the observers in the Universe. He again started from two principles:

(a) Principle of General Relativity：All the physics laws should
be the same equation, independent from the observers movements.

(b) Principle of the constant speed of light：The speed of light
in vacuum is the constant at any coordinate in the Universe.

The main problem was how to treat the equation of motion in the
coordinate with acceleration. For example, in the accelerating train, we
feel the additional backward force. On the contrary, in the stopping
train, we feel the additional forward force. These are due to the moving
effects called inertial force, and this deos not exist for observers who
stay at rest. Such an inertial force, therefore, is not a physical one.

His question focused to the origin of acceleration. The most com-
mon accelerating phenomenon is gravity such as falling apples. Einstein
began thinking the origin of the gravity. It took another 10 years for
him.

2.2 Gravity occurs from the bending of space and time

Einstein’s most exciting finding in his life
When Einstein was considering what the origin of gravity, he got an

Figure 19: Einstein
in 1912.

excellent idea which he wrote himself as the most exciting finding in his
life: a thought experiment of a free-falling elevator.

If an elevator lost its wire, then it falls down with the accel-
eration with 9.8 [m/s2]. A person in the elevator also falls
down with the same acceleration, so that the inside space
of elevator becomes the space with no gravity. That is, the
gravity can be cancelled out in a local space.

The main message is that we can not distinguish the gravity from an
inertial force, which is called the principle of equivalence. Using this
principle, we can treat the speciality of accelerated frame. We can rec-
ognize gravity is not a kind of force, but something else which cause the
effects to a coordinate.
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Figure 20: Inside of a free-falling elevator became a space with no-gravity.

In a free-falling elevator, we can cancel out the effect of the gravity.
However, we cannot erase the gravity overall. Suppose that we prepare
an Earth-size huge elevator (Fig. 21). Gravity force directs to the center
of the Earth, so that even in the free-falling frame, we cannot erase the
gravity in such a huge scale.

That is, the gravity can be cancelled out in a small region, but that
cancellation is not possible in large scale. Einstein began thinking that
gravity can be expressed by a sort of “geometry”.

Figure 21: Gravity can be cancelled out in a local space, but not in larger
space. Suppose an Earth-size elevator. Gravity force has direction, so that we
cannot erase gravity in one coordinate.

Einstein, at his age 33, asked to his mathematician friend Mar-
cel Grossmann how to treat such a problem. Grossmann introduced Marcel Grossmann

(1878–1936)Riemann’s geometry which is the geometry for curved space. He also
Georg F.B. Riemann
(1826–66)

suggested to Einstein that this mathematics is speculative and not ap-
propriate for physicists. However, Einstein got into the deep inside of
Riemannian geometry, and devoted his next three years for looking for
the relation of curved space-time and gravity.

Curved space
We learn the geometry in our elementary school, such as the total angles
of any triangle is 180◦. This is the result in the flat space, and this
geometry is called Euclidian geometry. Euclid

(B.C.365?–B.C.275?)Take a look at the meaning of curved space. Actual space is 3-
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dimensional, but it would be better start imagining a globe, as an ex-
ample of 2-dimensional curved space.

Figure 22: Flight
route from Japan to
US.

Airplane route from Japan to United State takes Kuril Islands and
Alaska. If we map this route on a globe, this is almost the minimum
distance between two points, which is called a great circle, an intersection
of the sphere (globe) and a plane that passes through the center point
of the sphere (globe). A great circle is relevant to a straight line on the
sphere.

If we do not have a view from outside, then we naturally regard a
great circle as a straight line. Is it, then, possible to get them know this
straight line is bending or they live on a sphere?

The answer is yes. Let them write a triangle and calculate the total
inner angles of it. If they live on a flat space, then it is 180◦, while on a
sphere it is larger than 180◦. That is, measuring the total inner angles
of a triangle tells us how our space is curved.

Figure 23: Riemannian geometry treats such a curved space. When we draw
a triangle on a globe, the total inner angles of a triangle is greater than 180◦.
If we draw a triangle on a horse back, then it will be less than 180◦. If you
hold a flag and walk on this triangle, then you will find the direction of the
flag is different when you come back to the starting point. These facts
suggests the space is curved.

This analysis can be also expressed as a person who holds a flag and
make a circle turn around a point (Fig.23). When he/she returns to the
starting point and finds that the direction of the flag is different, then
we can judge the space is curved.

Curvature in Riemannian geometry is the generalization of this idea.
If we hold a flag (a vector in precisely) and go around a point, and if
we find the direction of a flag (vector) is the same with the initial one
then we judge the space is flat. Otherwise we say the space is curved.
Einstein tried to express the effect of gravity by an idea of “massive

Figure 24: Imagine
trampoline for curved
space.

object make surrounding space-time curved”.
Imagine a trampoline. If we put nothing, then a trampoline keeps

flat surface. If we put an object, then the surface of trampoline begins
bending until its tension compensates against the mass of the object. If
we put a drop of water on the bended trampoline, it will move to the
object along the curved surface. Therefore we can regard the effect of
gravity as the curved surface of trampoline.

General relativity is the generalization of this trampoline (2-dimensional
surface) to 4-dimensional space and time. Einstein found out that the
origin of gravity is the curvature of space-time.
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2.3 Riemannian Geometry
You can skip this sub-
section, §2.3.Let’s get some feeling of Riemannian Geometry from equations (you can skip

this subsection).
We now write 3-dimensional space and time coordinate unitedly as xµ =

(ct, x1, x2, x3). The index µ moves 0, 1, 2, 3 and indicates each component of
space and time from now on. The time t [s] times c [m/s] (the speed of light)
become the dimension of space [m], so that ct is useful combination for treating
time with spacial coordinate.

First, we express the flat space-time (Minkowskii space-time). In the flat
space-time, the distance ds between two points in space and time with each
coordinate differences c dt, dx, dy, dz are written as

(ds)2 = −(cdt)2 + (dx)2 + (dy)2 + (dz)2. (2.11)

In order to write (2.11) shorter, we express this equation as ηµν : metric tensor of
the flat space-time

ds2 =
3∑

µ=0

3∑
ν=0

ηµνdx
µdxν , where ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.12)

We also write
3∑

µ=0

as
∑
µ

, hereafter.

When space-time is curved, we generalize metric tensor as a function of
coordinate as gµν(x). Therefore the distance between two points can be written
as

ds2 =
∑
µ

∑
ν

gµν(x)dx
µdxν , gµν(x) =


g00(x) g01(x) g02(x) g03(x)
g01(x) g11(x) g12(x) g13(x)
g02(x) g12(x) g22(x) g23(x)
g03(x) g13(x) g23(x) g33(x)

 .

(2.13)
The metric tensor gµν(x) is symmetric (gµν = gνµ), so that we have 10 inde-
pendent components in 4-dimensional space-time.

　　

Figure 25: The metric function gµν expresses how the space-time is curved.

Metric gµν expresses how space-time curves at each point. From metric,
we can calculate curvature at each point. Elwin B. Christoffel

(1829–1900)
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We omit the details, but the procedure of calculating curvature is following:
Define Christoffel symbol Γα

µν as

Γα
µν =

∑
β

1

2
gαβ

(
∂gβµ
∂xν

+
∂gβν
∂xµ

− ∂gµν
∂xβ

)
, (2.14)

and define Riemann’s curvature tensor Rµ
ναβ Riemann curvature

tensor

Rµ
ναβ =

∂Γµ
νβ

∂xα
− ∂Γµ

να

∂xβ
+

∑
σ

Γµ
σαΓ

σ
νβ −

∑
σ

Γµ
σβΓ

σ
να. (2.15)

We also prepare Ricci tensor and Ricci scalar by contracting (summing up the Gregorio Ricci-
Curbastro (1853–
1925)

internal indice) as

Ricci tensor Rµν =
∑
α

Rα
µαν , (2.16)

and Ricci scalar R =
∑
µ

∑
ν

gµνRµν . (2.17)

2.4 The Einstein equation

After many trials and errors, on November 25, 1915, Einstein reached his
conclusion. He found the fundamental equation of the gravity, which we
call the field equation or the Einstein equation. The massive object will
bend the space and time, which produces gravity. He named this theory
as the general theory of relativity (general relativity), and he called his
theory of 1905 as the special theory of relativity (special relativity) since
the previous one was limited to no acceleration cases. The field equation

(The Einstein equa-
tion)

The field equation (The Einstein equation)� �
The origin of the gravity is the curvature of space-time. The relation
is expressed as

Rµν −
1

2
gµνR =

8πG

c4
Tµν (2.18)

• The left-hand side expresses how space-time is curved using
Riemannian geometry.

• The right-hand side expresses how the matter distributes in
space-time. (Tµν is called the energy-momentum tensor, and
Tµν = 0 if vacuum.)

• The indice µ, ν indicate the coordinate (t, x, y, z), so that
(2.18) consists of 10 equations.

This equation tells us that if the matter exists then the surround-
ing space-time curves. If space-time curves, then the matter moves
along the curve (geodesics).� �
General relativity describes strong gravitational field, such as com-

pact objects (neutron stars, black holes) and/or the whole Universe.
The Einstein equation (2.18) is the equation for the metric gµν . By

imposing the matter distribution, we can solve how space-time curves.
The equation (2.18) predicted the existence of black-holes, and the Uni-
verse is expanding, both of which interestingly Einstein did not believe
at their first appearances.
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2.5 How and Why we know there is a black hole

Figure 26: Karl
Schwarzschild
(1873–1916)

Figure 27:
Black-hole is the
bended trampoline to
infinity.

Schwarzschild solution (black-hole solution)� �
The solution of the Einstein equation (2.18) of spherically symmet-
ric, static, and vacuum space-time.

ds2 = −
(
1− 2GM

c2r

)
c2dt2 +

dr2

1− 2GM
c2r

+ r2(dθ2 + sin2 θ dφ2)

(2.19)

where G and c are gravitational constant and speed of light, M is
the mass at the center, r is radial coordinate.� �

This solution was derived by Schwarzschild in 1916, and after 50 years
it is finally understood that this metric describes a black-hole.

A black hole is a region of space-time with strong gravitational effects
that nothing, including the fastest light, can escape from its inside. The
theory of general relativity predicts that a sufficiently compact mass can
deform space-time to form a black hole.

Discussion Black holes, therefore, do not show themselves. Then, how
can we know there is a black hole? And why we believe there are black
holes? Let’s think on these issues at the session.

Exercise 3 The radius of black-hole, RBH can be given by Ex.3 Size of black-
hole.

RBH =
2GM

c2
, (2.20)

where M is the mass of black-hole, G = 6.67×10−11[m3/kg/s2] is gravi-
tational constant, and c = 3.0×108[m/s] is the speed of light. Calculate
the size of

• an Earth-mass black hole (M = 6.0× 1024[kg])

• a Sun-mass black hole (M⊙ = 2.0× 1030[kg])

• a black-hole of the center of our galaxy (M = 4.2× 106M⊙)
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2.6 How we know the Universe is expanding

If we apply general relativity to describe the whole Universe, we obtain
the following solution: Alexander A. Fried-

man (1888–1925)
Georges-Henri
Lemaitre
(1894–1966)
Howard P. Robertson
(1903–1961)
Arthur G. Walker
(1909–2001)

The Expanding Universe (FLRW solution)� �
If we suppose the Universe is filled with normal single matter ho-
mogeneously and isotropically, then the Universe can be expressed
as

ds2 = −c2dt2 + a2(t)

{
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

}
(2.21)

where a(t) is the scale factor (the radius of the Universe), and k is
the total curvature of space-time [space-time is open (k > 0), flat
(k = 0), or closed (k < 0)].� �

This solution was independently obtained by Friedman, Lemaitre, Robert-
son and Walker. The scale factor a(t) indicates the dynamical behavior
of the Universe is inevitable: the Universe is expanding or shrinking
depending on the total energy.

Figure 28: Edwin P.
Hubble(1889–1953)

Einstein did not admit the Universe is dynamical. He believed that
the Universe stays itself from infinite past to infinite future. In order to
realize such a solution, Einstein modified his field equation by adding a
constant term, which he called the cosmological constant. However, in
1929, Edwin Hubble reported that the Universe is expanding by observ-
ing galaxies in far region.

Homework How did Hubble find that the Universe is expanding? Use HW The Universe is
expanding.the word Doppler effect for explanation.

Figure 29: Left: Observation result by Hubble (1929). The backward moving
velocity of galaxies as a function of the distance is plotted. Right: Far galaxies move
faster, which does not mean that our galaxy is the center of the Universe.
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