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1. Introduction

In general relativity, there are two famous conjectures concerning the gravitational

collapse. One is the cosmic censorship conjecture [1] which states collapse driven

singularities will always be clothed by an event horizon and hence can never be visible

from the outside. The other is the hoop conjecture [2] which states that black-holes will

form when and only when a mass M gets compacted into a region whose circumference

C in every direction is C ≤ 4πM . These two conjectures have been extensively

studied in various methods, among them we believe the numerical works by Shapiro

and Teukolsky [3] showed the most exciting results; (a tendency of) the appearance

of a naked singularity. This was reported from the fully relativistic time evolution of

collisionless particles in a highly prolate initial shape; and the results of time evolutions

are agree with the predictions of the sequence of their initial data [4].

In recent years, on the other hand, gravitation in higher-dimensional spacetime is

getting a lot of attention. This is from an attempt to unify fundamental forces including

gravity at TeV scale, and if so, it is suggested that small black-holes might be produced

at the CERN Large Hadron Collider (LHC). The LHC experiments are expected to

validate several higher-dimensional gravitational models. In such an exciting situation,

the thoretical interests are also in the general discussion of black-hole structures. Our

discussion is one of them: in what circumstances black-holes are formed?

New features of higher-dimensional black-holes and black-objects are reported due

to additional physical freedoms. The four-dimensional black-holes are known to be S2

from the topological theorem. Also in the asymptotically flat and stationary space-time,

four-dimensional black-holes are known to be the Kerr black-hole from the uniqueness

theorem. On the other hand, in higher-dimensional spacetime, quite rich structures are

available, such as a torus black-hole (“black ring”) with S1 × S2 horizon [5, 6] or black

Saturn [7], black di-ring[8, 9] (see a review [10] for references). The uniqueness theorem

of axisymmetric spacetime in higher-dimension is known to be violated.

So far, the black-hole studies in higher-dimensional spacetime are mainly proceeding

using analytic stationary solutions. There are also many numerical attempts to seek

the higher-dimensional black-hole structures; e.g. collider-oriented dynamical features

[11, 12], a new stationary solution sequence [13], (here we selected the works with

asymptotically flat spacetime). However, fully relativistic dynamical features, such

as the formation processes, stabilities, and late-time fate of the black-objects are left

unknown. We plan to investigate such dynamical processes numerically, and this is the

first report on the constructions of the sequences of initial data for time evolution.

The hoop conjecture tries to denote “if” and “only if” conditions for the formation of

the horizon in the process of gravitational collapse. The “only if” part of the statement

would be replaced with the so-called Gibbons-Penrose isoperimetric inequality [14],

M ≥
√
A/16π, where M is the total mass and A is the area of the trapped surface. This

inequality is based on the cosmic censorship conjecture, so that its proof or disproof is

the important issue (see a precise formulation in [15] and a recent review [16]).
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The higher dimensional versions of the hoop conjecture and the isoperimetric

inequality have been discussed so far [17, 19, 20, 21]. While there are differences in

their coefficiencies, the hoop conjecture in D-dimensional spacetime would be basically

expressed as follows: a black-hole with horizons form when and only when a mass M

gets compacted into a region whose (D− 3)-dimensional area VD−3 in every direction is

VD−3 ≤ GDM, (1)

where GD is the gravitational constant in D-dimensional theory of gravity. Here VD−3

means the volume of (D−3)-dimensional closed submanifold of a spacelike hypersurface.

That is, the hoop C in four-dimensional space-time is replaced with the hyper-hoop

VD−3; if D = 5, then the hyper-hoop would be an area V2. However, in five-dimensional

spacetime, black-holes are not restricted to have a simply-connected horizon, therefore

the applicabilities of the hyper-hoop and the isoperimetric inequality to various black-

objects are left unknown. The validity of (1) was investigated in several idealized models

by Ida and Nakao [17] and Yoo et al. [18], who solved momentarily static, conformally

flat, five-dimensional axisymmetric homogeneous spheroidal matter and δ-function type

ring matter. Our purpose is to investigate the generality of the hyper-hoop conjecture

and the cosmic censorship conjecture in more general situations.

In this article, we present two kinds of initial data; spheroidal and toroidal matter

configurations. We solve the Hamiltonian constraint equation numerically, and then

search apparent horizons. This study is the generalization of [17] and [18]; we reproduce

their results as our code checks, and present also finite-sized ring cases. The definition

of the hyper-hoop is not yet definitely given in the community, so that we propose to

define the hyper-hoop as a local minimum of the area by solving the Euler-Lagrange

type equation.

This article is organized as follows. In the next section, we explain how to set

initial data for five-dimensional space-time and how to search S3 and S1 × S2 apparent

horizons and hoops. In Sec. III, we show numerical results. The final section is devoted

to the summary and discussion. We use the unit c = 1 and G5 = 1, where c is the speed

of light, G5 is the gravitational constant of the five-dimensional spacetime.

2. Basic Equations & Numerical Issues

2.1. The Hamiltonian constraint equation

We consider the initial data sequences on a four-dimensional space like hypersurface.

A solution of the Einstein equations is obtained by solving the Hamiltonian constraint

equation if we assume the moment of time symmetry. We apply the standard conformal

approach[22] to obtain the four-metric γij. As was discussed in [23], in 4 + 1 space-time

decomposition, the equations would be simplified with a conformal transformation,

γij = ψ2γ̂ij, (2)

where γ̂ij is the trial base metric which we assume conformally flat,

ds2 = γ̂ijdx
idxj = dx2 + dy2 + dz2 + dw2. (3)
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The Hamiltonian constraint equation, then, becomes

∆̂ψ = −4π2G5ρ, (4)

where ρ is the effective Newtonian mass density, G5 is the gravitational constant in five-

dimensional theory of gravity. We numerically solve Eq.(4) in the upper-half coordinate

region (x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0) with setting the boundary conditions as

∇ψ = 0 (at inner boundaries), (5)

and,

ψ = 1 +
MADM

r2
(at outer boundaries), (6)

where

r =
√
x2 + y2 + z2 + w2 (7)

andMADM can be interpreted as the ADM mass of the matter. Practically, the boundary

condition, (6), is replaced with

(ψ − 1)r2 = const. (8)

and we apply

∂

∂xi

[
(ψ − 1)r2

]
= 0 (9)

on the outer edge of our numerical grid. The ADM mass MADM , then, is evaluated from

Eq.(6).

As is described below, we consider two models of the matter distribution :

spheroidal and toroidal configurations. By assuming the axis of symmetry, both are

reduced to effectively two-dimensional problems (Fig.1). For the spheroidal matter

[Fig.1(a)], we use the metric

ds2 = ψ(R, z)2
[
dR2 +R2(dϕ2

1 + sin2 ϕ1dϕ
2
2) + dz2

]
(10)

where

R =
√
x2 + y2 + z2, ϕ1 = tan−1

(
w√

x2 + y2

)
, and ϕ2 = tan−1

(
y

x

)
.

For the toroidal case [Fig.1(b)], on the other hand, we use the metric

ds2 = ψ(X,Z)2(dX2 + dZ2 +X2dϑ1 + Z2dϑ2) (11)

where

X =
√
x2 + y2, Z =

√
z2 + w2,

ϑ1 = tan−1
(
y

x

)
, and ϑ2 = tan−1

(
z

w

)
.

By assuming ϕ1 and ϕ2 (ϑ1 and ϑ2 for the toroidal case) are the angle around the axis

of symmetry, then the Hamiltonian constraint equation, (4), effectively becomes

∂2ψ

∂R2
+

2

R

∂ψ

∂R
+
∂2ψ

∂z2
= −4π2G5ρ, (12)
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and

1

X

∂

∂X

(
X
∂ψ

∂X

)
+

1

Z

∂

∂Z

(
Z
∂ψ

∂Z

)
= −4π2G5ρ, (13)

respectively. We solve (12) and (13) using normal the successive over-relaxation(SOR)

method with red-black ordering. We use 5002 grids for the range (R, z) or (X,Z) =

[0, 10] with the tolerance 10−6 for ψ for solving Eqs.(12) and (13). The presenting results

are the sequences of the constant MADM within the error O(10−2).

2.2. Matter distributions

We model the matter by non-rotating homogeneous spheroidal and toroidal

configurations with effective Newtonian uniform mass density. Our first model is the

cases with homogeneous spheroidal matter, which are expressed as

x2

a2
+
y2

a2
+
w2

a2
+
z2

b2
≤ 1, (14)

where a and b are parameters. This is the 4 + 1 dimensional version of the earlier study

of Nakamura et al. [4], and also the numerical reproduction of Ida-Nakao [17] and Yoo

et al. [18].

The second is the cases with homogeneous toroidal matter configurations, described

as (√
x2 + y2 −Rc

)2

+
(√

w2 + z2
)2

≤ R2
r , (15)

where Rc is the circle radius of torus, and Rr is the ring radius [Fig.1(b)]. This case

is motivated from the “black ring” solution [5] though not including any rotations of

matter nor of the spacetime. Nevertheless we consider this is the first step for toroidal

configuration, since this is the generalization of [17] to the finite-sized matter cases.

2.3. Kretchmann invariant

After obtaining the initial data, we evaluate the Kretchmann invariant,

I(4) = RabcdR
abcd, (16)

where Rabcd is the four-dimensional Riemann tensor, in order to measure the strength

of gravity. This is most easily evaluated in Cartesian coordinates as

I(4) = 16
∑
i6=j

[
2

(
∂ψ

∂xi

)(
∂ψ

∂xj

)
− ψ

∂2ψ

∂xi∂xj

]2

+ 8
∑
i6=j

( ∂ψ
∂xi

)2

−
(
∂ψ

∂xj

)2
2

+ 4ψ2
∑
i6=j

[
∂2ψ

∂xi2
+
∂2ψ

∂xj2

]2

+ 8ψ

∑
i

(
∂ψ

∂xi

)2
 [∑

i

∂2ψ

∂xi2

]
− 32ψ

∑
i

(
∂ψ

∂xi

)2 (
∂2ψ

∂xi2

)
.
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2.4. Apparent Horizons

For investigating the validity of the censorship conjecture and hyper-hoop conjecture,

we search the existence of apparent horizons. An apparent horizon is defined as a

marginally outer trapped surface, and the existence of the apparent horizon is the

sufficient condition for the existence of the event horizon. On the four-dimensional

spacelike hypersurface, an apparent horizon is a three-dimensional closed marginal

surface.

In order to locate the apparent horizon for the spheroidal configurations, after

obtained the solution of (12), we transform the coordinate from (R, z) to (r, θ), using

r =
√
R2 + z2, (17)

θ = tan−1
(
R

z

)
, (18)

and search the apparent horizon on the R-z section [17, 18]. The location of the apparent

horizon, rM(θ), is identified by solving

r̈M − 4ṙ2
M

rM

− 3rM +
r2
M + ṙ2

M

rM

[
2ṙM

rM

cot θ − 3

ψ
(ṙM sin θ

+rM cos θ)
∂ψ

∂z
+

3

ψ
(ṙM cos θ − rM sin θ)

∂ψ

∂R

]
= 0, (19)

where dot denotes θ-derivative. We solve (19) for rM(θ) using Runge-Kutta method

starting on the z-axis (θ = 0) with a trial value r = r0 and integrate to θ = π/2, with

interpolating the coefficients ψ and
∂ψ

∂xi
from the data on the grid points. We apply the

symmetric boundary condition on the both ends. If there is no solution satisfying both

boundary conditions, we judge there is no horizon.

For toroidal cases, we transform the coordinate from (X,Z) to (r, φ), using

r =
√
X2 + Z2, and φ = tan−1

(
Z

X

)
. (20)

The location of the apparent horizon, rm(φ), is then identified by solving

r̈m − 4
˙rm

2

rm

− 3rm − r2
m + ˙rm

2

rm

[
2

˙rm

rm

cot(2φ) − 3

ψ
( ˙rm sinφ

+r cosφ)
∂ψ

∂X
+

3

ψ
( ˙rm cosφ− rm sinφ)

∂ψ

∂Z

]
= 0, (21)

with the symmetric boundary condition ṙ = 0 at both φ = 0 and π/2. When the matter

is in torus shape, an additional S1 × S2 apparent(ring horizon) horizon may exist. In

order to find a ring horizon, we adopt the coordinate as

r =
√

(X −Rc)2 + Z2, and ξ = tan−1
(

Z

X −Rc

)
. (22)

This marginal surface is obtained by solving the equation for r(ξ),

r̈m − 3 ˙rm
2

rm

− 2rm − r2
m + ˙rm

2

rm

×
[

˙rm sin ξ + rm cos ξ

rm cos ξ +Rc

− ˙rm

rm

cot ξ +
3

ψ
( ˙rm sin ξ + r cos ξ)

∂ψ

∂x
− 3

ψ
( ˙rm cos ξ − r sin ξ)

∂ψ

∂z

]
= 0, (23)
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where dot denots ξ-derivative, with the symmetric boundary condition on the both ends

at ξ = 0 and π.

2.5. Area of horizons

From the obtained sequence of initial data, we calculate the surface area A3 of the

apparent horizons. If the obtained horizon is spheroidal configuration, the surface area

of the horizon, A3, becomes

A
(S)
3 = 8π

∫ π/2

0
ψ3r2

M sin2 θ
√

˙rM
2 + r2

M dθ, (24)

where dot denotes ξ-derivative. As for the toroidal cases, the surface area of S3 and

S1 × S2 apparent horizons become

A
(T1)
3 = 4π2

∫ π/2

0
ψ3r2

m cosφ sinφ
√

˙rm
2 + r2

m dφ, (25)

and

A
(T2)
3 = 4π2

∫ π

0
ψ3(Rc + rm cos ξ)rm sin ξ

√
˙rm

2 + r2
m dξ, (26)

where dot denotes φ-derivative and ξ-derivative, respectively.

2.6. Hyper-Hoop

We also calculate hyper-hoop for five-dimensional hoop-conjecture which is defined

by two-dimensional area. We try to verify the necessary condition of the black-hole

formation examined in [18],

V2 ≤
π

2
16πG5M. (27)

However, the definition of V2 is not so far defined apparently. We, therefore, propose

to define the hoop V2 as a surrounding two-dimensional area which satisfies the local

minimum area condition,

δV2 = 0. (28)

When the area of the space-time outside the matter is expressed by a coordinate r, then

Eq.(28) leads to the Euler-Lagrange type equation for V2(r, ṙ).

For the spheroidal configuration, we express the area V2 using r = rh(θ) as

V
(A)
2 = 4π

∫ π/2

0
ψ2
√
ṙh

2 + r2
hrh sin θ dθ, (29)

or

V
(B)
2 = 4π

∫ π/2

0
ψ2
√
ṙh

2 + r2
hrh cos θ dθ, (30)

where dot denotes θ-derivative. V
(A)
2 expresses the surface area which is obtained by

rotating respect to the z-axis, while V
(B)
2 is the one with R-axis rotation. Then the
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hyper-hoop V
(A)
2 is derived by

r̈h −
3ṙh

2

rh

− 2rh +
r2
h + ṙh

2

rh

[
ṙh

rh

cot θ − 2

ψ
(ṙh sin θ

+rh cos θ)
∂ψ

∂z
− 2

ψ
(rh sin θ − ṙh cos θ)

∂ψ

∂R

]
= 0, (31)

while the hyper-hoop V
(B)
2 is by

r̈h −
3ṙh

2

rh

− 2rh −
r2
h + ṙh

2

rh

[
ṙh

rh

tan θ +
2

ψ
(rh sin θ

−ṙh cos θ)
∂ψ

∂R
+

2

ψ
(rh cos θ + ṙh sin θ)

∂ψ

∂z

]
= 0. (32)

We search the location of the minimum V2 by solving (31) and (32), applying the same

technique and the boundary conditions with those of horizons.

For the toroidal cases, the hoop is expressed using r = rh(φ) as

V
(C)
2 = 4π

∫ π/2

0
ψ2
√
ṙh

2 + r2
hrh cosφ dφ, (33)

or

V
(D)
2 = 4π

∫ π/2

0
ψ2
√
ṙh

2 + r2
hrh sinφ dφ. (34)

V
(C)
2 expresses the surface area which is obtained by rotating respect to the Z-axis, while

V
(D)
2 is the one with X-axis rotation. Then, the minimum V

(C)
2 satisfies the equation

r̈h −
3ṙh

2

rh

− 2rh +
r2
h + ṙh

2

rh

[
ṙh

rh

cotφ− 2

ψ
(ṙh sinφ

+rh cosφ)
∂ψ

∂X
− 2

ψ
(rh sinφ− ṙh cosφ)

∂ψ

∂Z

]
= 0, (35)

and V
(D)
2 satisfies

r̈h −
3ṙh

2

rh

− 2rh −
r2
h + ṙh

2

rh

[
ṙh

rh

tanφ+
2

ψ
(rh sinφ

−ṙh cosφ)
∂ψ

∂X
+

2

ψ
(rh cosφ+ ṙh sinφ)

∂ψ

∂Z

]
= 0. (36)

We also calculate hyper-hoop with S1 × S1 topology for the toroidal cases, V
(E)
2 ,

V
(E)
2 = 2π

∫ π

0
ψ2
√
ṙh

2 + r2
h(rh cos ξ +Rc) dξ. (37)

The minimum V
(E)
2 satisfies the equation,

r̈h −
3ṙh

2

rh

− 2rh −
r2
h + ṙh

2

rh

[
−Rc + ṙh sin ξ

Rc + rh cos ξ
+

2

ψ
(ṙh sin ξ

+rh cos ξ)
∂ψ

∂X
+

2

ψ
(rh sin ξ − ṙh cos ξ)

∂ψ

∂Z

]
= 0. (38)
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3. Numerical results

3.1. Spheroidal configurations

First, we show the cases with spheroidal matter configurations. In Figure 2, we display

matter distributions and the shape of the apparent horizon (if it exists). When the

matter is spherical, a = b [ the cases of (a), (d) in Fig.2], the horizon is also spherically

symmetric and locates at the Schwarzschild radius, rs. The horizon becomes prolate as

the value b/a increases. We can not find the apparent horizon when length b is larger

than b = 1.5 for a = 0.5 and b = 2.0 for a = 0.1. We see from (b) and (e) of Fig.2

that the matter configurations can be arbitrarily large but the apparent horizon does

not cover all the matter regions. This behavior is the same with 3 + 1 dimensional

cases [4] and our numerical results reproduce the results in [18]. If we compare our 5-

dimensional results with 4-dimensional ones (ref.[4]), the disappearance of the apparent

horizon can be seen only for the highly prolate cases. (E.g., for the eccentricity 0.999

cases, the disappearance of the apparent horizon starts at the prolate radius 0.7 M in

4-dimensional case, while 2.0 rs in our case.) Therefore we expect that an appearance

of a singular behaviour is “relaxed” in 5-dimensional case, and this tendency would be

the same for the higher-dimensional cases.

The asterisk in Fig.2 is the location of the largest Kretchmann invariant, Imax =

max{R(4)
abcdR

(4)abcd}. For all cases, we see the locations of Imax are always outside the

matter, except the cases of b = a.¶ We show the contours of I(4) in Fig.3. Fig.4 displays

Imax as a function of b/a. We see that Imax monotonically increases even if there is

no apparent horizon. In the 3 + 1 dimensional cases, the extremely elongated spindle

evolves into a naked singularity [4]. Our results suggest such evolutions also in the 4+1

dimensional cases.

In Fig.5, we show the surface area of the apparent horizon A3. We observe A3

becomes the largest when the matter is spherical. If we took account the analogy of the

thermodynamics of black-hole, this may suggest that the final state of 5D black-hole

shakes down to spherically symmetric.

In order to check the validity of the hyper-hoop conjecture, we prepared Fig.6. The

hyper-hoop V
(A)
2 and V

(B)
2 are shown with the normalized value with the right-hand side

of Eq.(27), i.e. the validity of the conjecture indicates the value is less than unity. The

area of the hyper-hoops V
(A)
2 and V

(B)
2 increase with b/a but V

(A)
2 remains smaller than

unity if the horizon exists. Therefore the necessary condition of black-hole formation

[Eq.(27)] is satisfied for V
(A)
2 . We conclude that hyper-hoop conjecture is valid for the

spheroidal cases.

¶ The Kretchmann invariant expresses the strength of the curvature, which is determined by the
gradient of metric. For example, when we solve a single star with uniform density, the maximum value
of the metric appears at the center of matter configuration, but the maximum value of the metric
gradient appears off-center and likely at the outside of matter region. Therefore, our results of the
location of the maximum Kretchmann invariant is not strange.
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3.2. Toroidal configurations

We next show the results of the homogeneous toroidal matter configurations. Fig.7

shows the two typical shapes of apparent horizons. We also show the contours of I(4) in

Fig.8. We set the ring radius of toroidal configurations as Rr/rs = 0.1 and search the

sequence by changing the circle radius Rc. When Rc is less than 0.78rs, we find that

only the S3-apparent horizon (“common horizon” over the ring) exists. On the other

hand, when Rc is larger than Rc = 0.78rs, only the S1 × S2 horizon (“ring horizon”,

hereafter) is observed. Unlike the cases of δ-function matter distributions[17], we could

not find an example which shows both two horizons exist together.

We find that the value of Imax appears at the outside of matter configuration as

well as the spheroidal cases. Interestingly, Imax is not hidden by the horizon when Rc

is larger [see the case (c) of Fig.7]. This tendency is analogous to the spheroidal cases.

Therefore, if the ring matter shrinks itself to the ring, then a “naked ring” (or naked

di-ring) might be formed.

We show the surface area of the apparent horizons A3 in Fig.9. In Fig.9, typical

two horizon monotonically decrease with Rc/rc, the largest one is when the matter is

in the spheroidal one (Rc/rc = 0). We also observe that the common-horizon area is

always larger than S1 × S2 horizon area and two are smoothly connected in the plot.

If we took account the analogy of the thermodynamics of black-hole, this may suggest

that if the black-ring evolves to shrink its circle radius then the ring horizon will switch

to the common horizon at a certein radius.

Fig.10 shows the hyper-hoop V
(C)
2 , V

(D)
2 , and V

(E)
2 for these matter configurations.

We plot the points where we found hyper-hoops. We note that Rc/rs = 0.78 is the

switching radius from the common apparent horizon to the ring apparent horizon, and

that V
(C)
2 and V

(D)
2 are sufficiently smaller than unity if there is a common apparent

horizon. Therefore, Eq.(27) is satisfied for the formation of common horizon. On the

other hand, for the ring horizon, we should consider the hoop V
(E)
2 in Eq.(27). In Fig.10,

in the region Rc/rs > 0.78, V
(E)
2 exists only a part in this region and becomes larger

than unity. Hence, for S1×S2 apparent horizon, the hyper-hoop conjecture, (27), is not

a proper indicator. We conclude that the hyper-hoop conjecture, (27), is only consistent

with the formation of common horizon in toroidal case as far as our definition of the

hyper-hoop is concerned.

4. Summary and Future Works

With the purpose of investigating the fully relativistic dynamics of five-dimensional

black-objects, we constructed sequences of initial data and discussed the formation of

the apparent horizons, the area of the horizons, and the validity of the hoop conjecture.

We modeled the matter in two cases; non-rotating homogeneous spheroidal shape,

and toroidal shape under the momentarily static assumption. Two models are still

highly simplified ones, but the results are well agreed with the previous semi-analytic
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works (both with 3+1 and 4+1 dimensional studies) and we also obtained new sequences

for finite-sized matter rings.

We examined the so-called hyper-hoop conjecuture, where the hoop is the area in

4+1 dimensional version. We defined the hyper-hoop V2 as it satisfies δV2 = 0, and

searched the hoops numerically.

For the spheroidal matter cases, our results are simply the extensions of the

previous studies. The horizon is not formed when the matter is highly thin-shaped,

the hyper-hoop conjecture using our V2 is properly satisfied, and the maximum of the

Kretchmann invariant Imax appears at the outside of the matter. As was shown in the

3+1 dimensional case [4, 3], this suggests also the formation of a naked singularity when

we start time evolution from this initial data.

While for the toroidal matter cases, both horizons and hoops can take two

topologies, S3 and S1×S2, so that we considered both. The apparent horizon is observed

to switch from the common horizon (S3) to the ring horizon (S1×S2) at a certain circle

radius, and the former satisfies the hyper-hoop conjecture, while the latter is not. This

is somewhat plausible, since the hoop conjecture was initially proposed only for the 3+1

dimensional gravity where only the simply-connected black-hole is allowed.

From the area of the horizon and from the thermo-dynamical analogy of black holes,

we might predict the dynamical feature of the black-ring. As we showed in Fig.9, the

common horizon has larger area than the ring horizon, so that if the dynamics proceed

to shrink its circle radius, then a black-ring will naturally switch to a single black-hole.

However, if the local gravity is strong, then the ring might begin collapsing to a ring

singularity, that might produce also to the formation of ‘naked ring’ since Imax appears

on the outside of the ring (actually double-rings, both on the top and the bottom of

matter may be formed) for a certain initial configuration. This is still a speculation and

requires full dynamics in the future.

The initial-data sequences we showed here do not include rotations in matter and

space-time, which is one of our next subjects. We now began studying the generalization

of our models including the known exact solutions, that we hope to report elsewhere

soon. We are also developing our code to follow the dynamical processes in five-

dimensional spacetime, there we expect to show the validity of the cosmic censorship

and hyper-hoop conjecture for various black objects.
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Figure 1. Axis of symmetry of our models: (a) spheroidal (spindle) configuration, and
(b) toroidal configuration. We consider the matter with uniform density. We adopt
the coordinate as Eq.(10) for the case (a), while we use Eq.(11) for the case (b).
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Figure 2. Matter distributions (shadows) and apparent horizons (lines) for spheroidal
matter distributions. The sections of axis-equator plane are shown. The sequence (a)-
(c) is of a = 0.5, and (d)-(f) is of a = 0.1 [ see Eq.(14) ], of which we fix the total mass
MADM = 1. We can not find an apparent horizon when b is larger than b = 3a for
a = 0.5[Fig.(c) ] and b = 20a for a = 0.1[Fig.(f) ]. The asterisks indicate the location of
the maximum Kretchmann invariant, Eq.(16). We see the maximum point is outside
of the horizon for the case (b) and (e).
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Figure 3. Contours of Kretchmann invariant, log10 I(4), corresponding to Fig.2.
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Figure 4. The maximum value of Kretchmann invariant Imax as a function of b/a

for the sequences of Fig.2. Plots are normalized with the value of the spherical case,
a = b. We see that Imax increases monotonically both cases.
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Figure 5. The area of the apparent horizon A3 for the sequence of Fig.2 is shown.
The sequence of a = 0.5 and 0.1 is shown in (a) and (b), respectively. Plots are
normalized with the area of the spherical case, a = b. In both cases, the horizon area
monotonically decreases with b/a.
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Figure 6. The ratio of the hyper-hoop V2 to the mass MADM is shown for the
sequence of Fig.2. The ratio less than unity indicates that the validity of the hyper-
hoop conjecture, Eq.(27). We plot the hoops V

(A)
2 and V

(B)
2 both for the sequences of

a = 0.5 and 0.1 in Fig.(a) and (b), respectively. At large b/a, the hoops do not exist,
but that range always includes the cases with apparent-horizon formation. Figure
shows that the hoop V

(A)
2 represents the hyper-hoop conjecture properly.
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Figure 7. Matter distributions (shaded) and the location of the apparent horizon
(line) for toroidal matter configurations (with fixing the ring radius Rr = 0.1). The
axis-equator plane is shown for three circle-radius cases:(a) Rc = 0.07, (b) Rc = 0.78,
and (c) Rc = 1.78 [ see Eq.(15) ]. Line is the location of the apparent horizon. We found
the common horizon (S3) for (a) and (b), while we found the ring horizon (S1×S2) for
(c). The asterisk indicates the location of the maximum Kretchmann invariant, Imax.
We see the maximum point is outside of the horizon for the case (c).
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Figure 8. Contours of Kretchmann invariant, log10 I(4), corresponding to Fig.7.
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Figure 9. The area of the apparent horizon A3 for the toroidal matter distribution
cases Rc/rc = 0.1. Plots are normalized by the area of spherical case (Rc = 0). Two
types of horizons do not exist simultaneously. We see both horizons’ area are smoothly
connected at Rc/rs = 0.78, and both monotonically decrease with Rc/rs.
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Figure 10. The ratio of the hyper-hoops V2 to the mass MADM are shown for the
sequence of Fig.6. The ratio less than unity indicates that the validity of the hyper-
hoop conjecture, Eq.(27). We plot the hoops V

(C)
2 , V

(D)
2 and V

(E)
2 where they exist.

The horizon switches from the common horizon to ring horizon at Rc/rs = 0.78.
Figure shows that the hoop V

(C)
2 and hoop V

(D)
2 represent the hyper-hoop conjecture

for common apparent horizons properly, while V
(E)
2 is not for the ring horizon.


