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The ringdown part of gravitational waves in the final stage of the merger of compact objects tells us the
nature of strong gravity and hence can be used for testing theories of gravity. The ringdown waveform,
however, fades out in a very short time with a few cycles, and hence it is challenging to extract the ringdown
frequency and its damping timescale. We here propose to build up a suite of mock data of gravitational
waves to compare the performance of various approaches developed to detect the dominant quasinormal
mode from an excited black hole after merger. In this paper, we present our initial results of comparisons of
the following five methods: (1) plain matched filtering with ringdown part method, (2) matched filtering
with both merger and ringdown parts method, (3) Hilbert-Huang transformation method, (4) autoregressive
modeling method, and (5) neural network method. After comparing the performances of these methods, we
discuss our future projects.
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I. INTRODUCTION

Both in the year 2016 and 2017, the physics community
was very excited by the reports of direct detections of
gravitational waves (GWs) by the LIGO and Virgo
Collaborations [1–6]. The direct detections definitely prove
the correctness of the fundamental idea of general relativity
(GR), together with that of the direction of efforts of
theoretical and experimental research of gravity.

The LIGO andVirgo Collaborations have so far performed
their observations twice [observing runs 1 (O1), September
12, 2015–January 19, 2016 (48.6 days) and O2, November
30, 2016–August 25, 2017 (118 days)] and officially reported
[7,8] that they detected 11 events: ten binary black hole (BH)
events and one event of the merger of binary neutron stars
(GW170817 [6]). Both types of sources gave us certain
advances not only to physics, but also to astrophysics.
In late 2019, another ground-basedGWdetector, KAGRA,

will join the network of GW observation [9–11]. This will
make the source localizationmore precise, andwe also expect
to detect the polarization of GWs for each event. By
accumulating observations, we will be able to investigate
newaspects of physics andastronomy, such as thedistribution
of binary parameters, formation history of binaries, equation
of state of the nuclear matter, and cosmological parameters.
Among such possibilities, our interest lies in testing

various gravity theories. GR has passed all the tests in the
past century, and nobody doubts gravity is basically
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described by GR. However, almost of the tests so far have
been performed in the weak gravity regime (tests around
the Earth, in the Solar System, or using binary pulsars) [12],
and we still require tests in the strong gravity regime, which
is relevant to describe, say, BH mergers. Observations of
GWs from binary BHs will enable us to test the gravity
theories in this extreme regime.
The previous detections of BH mergers have shown that

the inspiral phase (premerger phase) is well described by
post-Newtonian approximation. But it is not entirely clear
whether or not the ringdown phase (postmerger phase),
which is expected to be well described by BH perturbation
theory, was detected in the GW data. This is because
identifying ringdown modes of a BH from noisy data is a
quite challenging task for data analysis. Ringdown modes
decay quite rapidly for a typical BH described by GR.
For example, for a typical BH formed after merger with
the total mass M ¼ 60M⊙ and the angular momentum
(normalized Kerr parameter) χ ¼ 0.75, the dominant ring-
down mode (l ¼ m ¼ 2) has the characteristic frequency
fR ¼ 300 Hz and the damping time τ ¼ 3.7 msec, which
indicates that the amplitude is reduced to about 40% after
one cycle of oscillation.
One way to give clear evidence of detection of the

ringdown mode would be just to improve the detector
sensitivity. However, it will also give a similar impact if we
can improve the significance of detection by implementing
an optimized data analysis method. There have already
been several technical proposals of methods to identify the
ringdown mode (see, e.g., Refs. [13–16] or reviews, e.g.,
Refs. [17,18]), but we think that a fair comparison of the
performance of different methods has not been presented
yet. To find the optimal method, we organize mock-data
tests. The idea is to extract the information of the ringdown
part [its frequency fR and damping time τ (imaginary part
of frequency fI or quality factor Q)] independent of the
other parts of the waveform. In order not to allow
identification of the properties of mergers from the inspiral
waveform using relations valid in GR, we prepare a set of
blind data, each of which has a randomly chosen fR and fI
different from the GR predicted value (see Sec. II A).
In general, the ringdown part includes not only the

dominant mode but also subdominant modes. The analysis
of various modes (BH spectroscopy) is also important for
tests of gravity theories (e.g., Ref. [19]). However, the
amplitudes of these subdominant modes are small com-
pared with one of the dominant mode [16]. Thus, in this
work, we focus on the case existing with only a single
mode.
We present our comparisons of the following fivemethods:

(1)matched filteringwith ringdownpart (MF-R), (2)matched
filtering with both merger and ringdown parts (MF-MR),
(3) Hilbert-Huang transformation (HHT), (4) autoregressive
modeling (AR), and (5) neural network (NN). Each method
will be explained separately in Sec. III.

In Sec. IV, we compare the results together with future
directions for improvement and we also discuss some
issues for application to the real data. The mock data we
use in this article are available from our web page [20].

II. BUILDING MOCK DATA

A. Quasinormal modes

The waveform of the ringdown gravitational waves
emitted from an excited BH is modeled as

hðtÞ ¼ Ae−ðt−t0Þ=τ cosð2πfRðt − t0Þ − ϕ0Þ; ð2:1Þ

where fR is the oscillation frequency, τ is the damping time,
and t0 and ϕ0 are the initial time and its phase, respectively.
The waveform (2.1) is then written as

hðtÞ ¼ ℜ½Ae−2πifqnmðt−t0Þ�; ð2:2Þ

where we call fqnm ¼ fR − ifI the quasinormal mode
(QNM, or ringdown) frequency (fI > 0 means decaying
mode). (Nakano et al. [21] use a different signature on fI.)
The parameter τ is also expressed using a quality factor Q
or fI

Q ¼ πfRτ or fI ¼
1

2πτ
¼ fR

2Q
: ð2:3Þ

In GR, the set of ðfR; fIÞ is determined by the (remnant
BH) massMrem and angular momentumM2

remχ of the black
hole. QNM is obtained from the perturbation analysis of
BHs, and its fitting formulas are given by [22]

fR ¼ 1

2πMrem
ff1 þ f2ð1 − χÞf3g; ð2:4Þ

Q ¼ fR
2fI

¼ q1 þ q2ð1 − χÞq3 ; ð2:5Þ

where fi and qi are the fitting coefficients. For the most
fundamental mode, which is of the spherical harmonic
index l ¼ 2, m ¼ 2, the fitting parameters are
f1 ¼ 1.5251, f2 ¼ −1.1568, f3 ¼ 0.1292, q1 ¼ 0.7000,
q2 ¼ 1.4187, and q3 ¼ −0.4990.
If we recover the units,

fRðM; χÞ½Hz� ¼ c3

2πGMrem
ff1 þ f2ð1 − χÞf3g; ð2:6Þ

where c and G are the speed of light and the gravitational
constant, respectively. From this equation, at linear order,
the uncertainties in fR and Q are related to those in mass
and angular momentum as
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ΔfR
fR

¼ −
ΔMrem

Mrem
þ f2f3ð1 − χÞf3−1
f1 þ f2ð1 − χÞf3 Δχ: ð2:7Þ

Similarly, from Eq. (2.5), we get

ΔQ ¼
�
ΔfR
fR

−
ΔfI
fI

�
Q ð2:8Þ

¼ q2q3ð1 − χÞq3−1Δχ: ð2:9Þ

In modified gravity theories, the final fate of binary
mergers may not be a black hole. There are various
possibilities of the modification of gravity. The most
generic test for the deviation from general relativity would
be just checking the consistency between the observed data
and the predicted waveform based on general relativity.
However, such a generic test will not be very sensitive.
If we focus on some class of modification, we would be
able to perform a much better test. Here, we assume that
even if the gravity is modified the ringdown waveform is
characterized by the set of ðfR; fIÞ. For the same inspiral-
merger waveform, which predicts the formation of a black
hole with M and χ in GR, however, the values of ðfR; fIÞ
may be different. Under this assumption, one can test GR
by comparing ðfR; fIÞ predicted from the data in the
inspiral-merger phase in GR with those directly extracted
from the data in the ringdown phase. For this purpose, we
wish to minimize the error in the determination of ðfR; fIÞ
from the data in the ringdown phase independent of the
information contained in the inspiral-merger phase.

B. Mock data

The fundamental question we raise here is whether or not
one can detect the deviation from the GR prediction, in case
only the ringdown frequency is modified. If the breakdown
of GR occurs only in the extremely strong gravity regime
such as the region close to the BH event horizon, modi-
fication of gravity might be completely irrelevant to the
evolution during the inspiral-merger phases. Even in such
cases, the deviation from the GR prediction may show up in
the ringdown waveform. This gives a good motivation to
develop a method to identify the ringdown frequency
without referring to the information from the inspiral-
merger phases.
There are many proposals for the method to extract the

ringdown frequency and its damping timescale. In order to
compare the performance of various methods by a blind
test, we construct some test data that have an artificially
modified ringdown frequency.
We adopt the following strategy for preparing the data.

We take the inspiral-merger waveform from the SXS
gravitational waveform database [23,24] [there are also
available catalogs for binary black hole (BBH) GWs in
Refs. [25–28] ], and the ringdown waveform modified from
the GR case is merged. Then, noise is added to reproduce

the ideal LIGO noise curve [with the signal-to-noise ratio
ðSNRÞ ¼ 20, 30, or 60]. In doing so, we focus on the fact
that the time evolution of the amplitude and the frequency
of the GR waveform is rather smooth if the spin precession
can be neglected. Our basic assumption is that this smooth-
ness is maintained even if we consider modification of the
complex QNM frequencies. Then, the modified waveform
cannot have a large variety.
We define a normalized time coordinate x ¼ ðt − tpÞ=M,

where tp denotes the time that the GW amplitude has its
peak and just modify the GW strain after the peak time.
This is a reasonable assumption because, if the inspiral-
merger parts are also modified, we can detect the deviation
from GR even in the case when we cannot extract the QNM
frequency from the gravitational wave data. Note that M is
the initial total mass of the binary, and we will specify it
later to generate themockdataset. In the following,we take the
simplification of considering only the ðl ¼ 2; m ¼ 2Þ GW
mode.
To create the mock data, the total mass M is randomly

selected from the range 50M⊙–70M⊙ with uniform prob-
ability. The parameters characterizing the ringdown wave-
form, fR and fI, are modified from the GR value within
�30% and �50%, respectively. Uniform probability dis-
tribution is assumed for both parameters. We present two
independent ways to generate the mock data below.

1. Set A

In the case of set A, the modification is strictly limited to
the time domain after the peak of the GW amplitude. First,
as for the GWamplitude A22 ¼ rjh22j=M, we introduce the
following fitting function:

A22ðtÞ ¼
AGR
22 ðtpÞ þ a0xþ a1x2

1 − ðMωI − a0=AGR
22 ðtpÞÞxþ a2x2

× expð−MωIxÞ; ð2:10Þ

where we have three fitting parameters a0, a1, and a2,
which are chosen to reproduce the amplitude of the SXS
waveform AGR

22 ðtÞ when the adjustable parameter ωI ¼
fI=ð2πÞ is set to the GR value ωGR

I calculated from the
remnant BH mass and spin by using Refs. [22,29]. (In the
following, the QNM frequency will often be written using
angular frequency ω ¼ 2πf.) For example, for SXS:
BBH:0174 [24], we have

a0 ¼ 0.0183650; a1 ¼ 0.000998244;

a2 ¼ 0.00184509; ð2:11Þ

with AGR
22 ðtpÞ ¼ 0.286987 and MωGR

I ¼ 0.0815196. The
above fitting function is chosen such that the first derivative
of the amplitude is zero at the peak (x ¼ 0). By changing
ωI, we can create mock data.
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Second, as for the GW frequency ω22ðtÞ, which is
defined by the time derivative of the GW phase and
supposed to be positive, we use the fitting function

Mω22ðtÞ ¼ ðMωGR
22 ðtpÞ −MωR þ b0xþ b1x2 þ b2x3Þ

× exp

� ðb0 þ b3Þx
MðωR − ω22ðtpÞÞ

�

þMωR; ð2:12Þ

where ωGRðtÞ is the frequency extracted from the phase of
the numerically determined GR template. With this fitting
function, the smoothness of the GW phase is C2 at the peak
time. The three fitting parameters are, again for SXS:
BBH:0174,

b0 ¼ −0.0507805; b1 ¼ −0.00276104;

b2 ¼ −0.000479913; b3 ¼ −0.00492361; ð2:13Þ

withMωGR
22 ðtpÞ ¼ 0.375598. The mock data are created by

changing the input ωR ¼ fR=ð2πÞ from the GR value
calculated from the remnant BH mass and spin, e.g.,
MωGR

R ¼ 0.582652 for SXS:BBH:0174.

2. Set B

The modification of the second set is not strictly
restricted to the time period after the peak of the amplitude.
As another smooth interpolation, we adopt the following
modified amplitude:

A22ðtÞ ¼
AGR
22 ðtÞ

1þ e4MωGR
I x

þ ARD
22 ðtÞ

1þ e−4MωGR
I x

; ð2:14Þ

with

ARD
22 ðtÞ ¼

A22

1þ e−MωGR
I x þ eMωIx

; ð2:15Þ

and the overall amplitude A22 determined so that the GR
case fits well.
The frequency is also given in a similar simple

manner by

ω22ðtÞ ¼
ωGR
22 ðtÞ

1þ e4MωGR
I x

þ ωRD
22 ðtÞ

1þ e−4MωGR
I x

; ð2:16Þ

with the GR frequency ωGR
22 ðtÞ and

ωRD
22 ðtÞ ¼ ωGRðtpÞ þ

ωR − ωGRðtpÞ
1þ e−2MωIx

: ð2:17Þ

For generation of the set B mock data, we used SXS:
BBH:0002, 0004, and 0007.

In Fig. 1, we show examples of sets A and B with a same
ringdown frequency. It is noted that the binary parameters
are different between SXS:BBH:0174 (set A) and SXS:
BBH:0002 (set B) in Fig. 1.

III. VARIOUS METHODS FOR IDENTIFYING
RINGDOWN MODE

A. Matched filtering with ringdown part

We perform the matched filtering analysis using simple
damped sinusoidal templates, which are given by

ĥðtÞ ¼
�

0 ðt < t0Þ
1
N e

−ωIðt−t0Þ cos½ωRðt − t0Þ − ϕ0� ðt ≥ t0Þ;
ð3:1Þ

where t0 and ϕ0 are the starting time and the initial phase of
the template, respectively. The normalization constant N is
chosen so as to satisfy ðĥjĥÞ ¼ 1, where the inner product is
defined by

ðh1jh2Þ ¼ 2

Z
∞

0

h̃�1ðfÞh̃2ðfÞ þ h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df: ð3:2Þ

Here, SnðfÞ is the noise spectral density, the Fourier
transform of hðtÞ is defined by h̃ðfÞ ¼ R

dte2πifthðtÞ,
and * denotes the complex conjugate. We consider to
maximize the inner product between the GW data sðtÞ,

-0.2 -0.1 0 0.1
t [s]

0

0.1

0.2

0.3

0.4

0.5

0 0.01 0.02 0.03
0

0.2

0.4

FIG. 1. Examples of sets A and B. (Inset) The ringdown part.
Here, set A [(red) thick] with SXS:BBH:0174 and set B [(blue)
thin] with SXS:BBH:0002 are shown. The solid lines denote the
modified amplitude A22ðtÞ, and the dashed lines are the GW
frequency ω22ðtÞ=ð2πÞ. The total mass is M ¼ 60M⊙, and the
real and imaginary parts of the ringdown frequency are 300 and
40 Hz, respectively. The real frequency is obtained by multiply-
ing by 538.609 Hz, and the real amplitude of set A is derived by
dividing by 1.37903. The large difference in the inspiral phase is
due to the difference of the binary parameters.
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which contains the signal and the noise, and the template
hðtÞ over the parameters ωR, ωI, t0, and ϕ0. The SNR
against the initial phase of the template can be maximized
by rewriting the template in the following form:

hðtÞ ¼ 1

N
ðhc cosϕ0 þ hs sinϕ0Þ; ð3:3Þ

where

hc ¼ e−ωIðt−t0Þ cos½ωRðt − t0Þ�;
hs ¼ e−ωIðt−t0Þ sin½ωRðt − t0Þ�: ð3:4Þ

Then, the maximum of the SNR against the initial phase ϕ0

can be given as [30]

ρ2jmaxϕ0
¼ðsjĥcÞ2þðsjĥsÞ2−2ðsjĥcÞðsjĥsÞðĥcjĥsÞ

1−ðĥcjĥsÞ2
; ð3:5Þ

where

ĥc ¼
hcffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhcjhcÞ

p ; ĥs ¼
hsffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhsjhsÞ

p : ð3:6Þ

The phase ϕ0 that gives the maximum ρ is given by

tanϕ0 ¼
ðhcjhsÞðhjhcÞ − ðhcjhcÞðhjhsÞ
ðhcjhsÞðhjhsÞ − ðhsjhsÞðhjhcÞ

: ð3:7Þ

Then, we are left with three parameters to explore. Since
the best choice of the starting time of QNM is unknown, we
vary t0 from the merger time tc to tcþ something. Then, we
search for the best fit values of the parameters ðf;QÞ for
each t0. Finally, we calculate the median values of
ffðt0Þ; Qðt0Þg, which we regard as our estimate of the
QNM frequency.

B. Matched filtering with both merger
and ringdown parts

The plain matched filtering using the damped sinusoidal
waveform, which was introduced in the preceding sub-
section, has difficulty in choosing the appropriate starting
time t0. On one hand, if t0 is chosen to be too early, we pick
up lower frequency oscillations before the QNM starts to
dominate. On the other hand, if t0 is chosen to be too late,
the signal has already become very faint and is buried in
noise. Therefore, it is likely that this method is not the
optimal method to determine the QNM frequency from
the data.
The basic idea for the improvement of matched filtering

is as discussed in Ref. [31]. If we know the modified
ringdown waveform in advance, we can construct the best
linear filter that produces the largest SNR by using it. As in
the construction of our mock data in Sec. II A, here we also

assume that this smoothness is maintained even for the
modified waveform. Then, the variety of the possible
waveforms would be effectively limited well.
To obtain a better fit, one may think it would be

necessary to introduce, at least, two more parameters in
addition to ðωR;ωIÞ, i.e., the amplitude of QNM relative to
that of the inspiral-merger phases and the transition rapidity
to reach the final QNM frequency. It might be reasonable to
perform the matched filtering using this generalized wave-
form including the inspiral-merger phases. To find the best
fit parameter values in the four parameter space is doable.
However, we adopt simplifications of neglecting these
additional parameters here, in order to reduce the computa-
tional cost in the present analysis, leaving this possible
extension to our future work. To reduce the impact of
neglecting the relative amplitude of the QNM, we make use
of the fact that the inspiral-merger parts are basically
unchanged for all modified templates. Namely, we intro-
duce the following sharp window function:

WðtÞ ¼ 1

1þ e−50ðt−tcÞωGR
I

; ð3:8Þ

to make the relative amplitude between the inspiral-merger
phase and the ringdown phase almost irrelevant, instead of
introducing one additional model parameter.
The procedure is summarized as follows. We first

calculate the whitened signal and template multiplied by
the window function, which are more explicitly defined by

ŝðtÞ ¼ WðtÞ
Z

dfe−2πift
s̃ðfÞffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p ; ð3:9Þ

and

ĥðtÞ ¼ NWðtÞ
Z

dfe−2πift
h̃ðfÞffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p ; ð3:10Þ

where N is the normalization factor that is determined to
satisfy ðĥ; ĥÞðwÞ ¼ 1, where ð�; �ÞðwÞ is the inner product in
Eq. (3.2), with SnðfÞ replaced with unity. After this
preprocessing, the correlations between the data and
templates are calculated as in the case of standard matched
filtering, besides the point that the inner product ð�; �ÞðwÞ is
used instead of ð�; �Þ. Here, we simply choose the phase
that maximizes the signal-to-noise ratio ρ for each template,
instead of marginalizing over these parameters. The origin
of the time coordinate is not varied. To obtain the
distribution of the parameters ωR and ωI, we simply used
the probability given by ∝ expðρ2=2Þ, which corresponds to
the posterior distribution for the flat prior ansatz [32].
To perform the correlation analysis, we also need to

specify a template waveform that includes the real and
imaginary part of the QNM frequency as free parameters.
To obtain the necessary template waveform, we shall use
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the same prescription as set B that is used to generate half of
the mock data. We understand that this makes the com-
parison for set B unfair, but one purpose of testing the
improved matched filtering method arranged in this manner
is to give a relevant standard to evaluate the efficiency of
the other methods. The standard matched filtering using the
damped sinusoidal wave as templates might be too naive to
use it as the standard reference to assess the performance of
the other methods. This improved matched filtering method
is actually guaranteed to give the best linear filtering.
Therefore, we think that the results obtained by this method
offer a good reference to evaluate the performance of the
other methods.

C. Hilbert-Huang transformation method

1. Basic idea

The Hilbert-Huang transform is a time-frequency analy-
sis method [33], which is constructed with the aim to
manipulate nonstationary and/or nonlinear systems. Some
applications of the HHT to the data analysis of gravitational
waves have been proposed [34–38]. The HHT is based on a
signal analysis by the Hilbert transform. We describe the
concept of the signal analysis by the Hilbert transform and
its difficulty to be applied to real-world signals, and then
explain how the HHT overcomes the difficulty.
Letting šðtÞ be the Hilbert transform of a signal sðtÞ, it is

defined by

šðtÞ ¼ 1

π
PV

Z
dt0

sðt0Þ
t − t0

; ð3:11Þ

where PV denotes the Cauchy principal value. The com-
plex signal zðtÞ, which is defined by zðtÞ ¼ sðtÞ þ išðtÞ,
can be represented by the exponential form

zðtÞ ¼ aðtÞeiϕðtÞ; ð3:12Þ

where aðtÞ and ϕðtÞ are defined by

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðtÞ2 þ šðtÞ2

q
; ð3:13Þ

ϕðtÞ ¼ arctan
�
šðtÞ
sðtÞ

�
: ð3:14Þ

Therefore,

sðtÞ ¼ aðtÞ cosϕðtÞ ð3:15Þ

is established. Only when the signal sðtÞ is monochromatic
over short periods of time, zðtÞ is an analytic signal of sðtÞ;
in other words, the Fourier components of zðtÞ are the same
as sðtÞ in the positive frequency range and zero in the
negative frequency range [39], and then aðtÞ and ϕðtÞ are
called the instantaneous amplitude (IA) and instantaneous

phase (IP) of sðtÞ, respectively. The monochromaticity of
sðtÞ over short periods of time means that aðtÞ has only
lower frequency components than cosϕðtÞ, or aðtÞ and
cosϕðtÞ are the modulator and the carrier of the signal sðtÞ,
respectively. In that case, the local meanmðtÞ of sðtÞ, which
is defined by

mðtÞ ¼ uðtÞ þ lðtÞ
2

; ð3:16Þ

where uðtÞ and lðtÞ are the upper and lower envelopes of
sðtÞ, respectively, is zero at any point. We call this feature
the “zero mean.” An instantaneous frequency (IF) of sðtÞ is
defined by

fðtÞ ¼ 1

2π

dϕðtÞ
dt

: ð3:17Þ

This analysis to estimate the IA and IF from a signal is
called the Hilbert spectral analysis (HSA). The HSA has an
advantage of higher resolution than the other time-
frequency analyses, such as the short-time Fourier trans-
form and the wavelet transform. However, it cannot be
applied to most real-world signals, because they are
basically composites of some components and are not
monochromatic. Huang et al. [33] overcame the difficulty
by combining a mode decomposition part with the HSA,
and the method of combining them is the HHT.
Huang et al. developed a method to decompose the input

data xðtÞ into zero-mean components and a nonoscillatory
component. They named the method the empirical mode
decomposition (EMD) and also named the decomposed
zero-mean components intrinsic mode functions (IMFs) of
the input data. Algorithm 1 shows the procedure of the
EMD, where ciðtÞ and rðtÞ are the ith IMF and a non-
oscillatory component of xðtÞ, respectively. The first step is
forming the upper envelope ui;jðtÞ and the lower envelope
li;jðtÞ, connecting the maxima and the minima of the data

Algorithm 1. Empirical mode decomposition.

1: i ¼ 1, x1ðtÞ ¼ xðtÞ.
2: while xiðtÞ contains oscillatory components do
3: j ¼ 1, xi;1ðtÞ ¼ xiðtÞ
4: while the local mean of xi;jðtÞ is not zero do
5: ui;jðtÞ ¼ ðthe upper envelope of xi;jðtÞÞ.
6: li;jðtÞ ¼ ðthe lower envelope of xi;jðtÞÞ.
7: mi;jðtÞ ¼ ðui;jðtÞ þ li;jðtÞÞ=2.
8: xi;ðjþ1ÞðtÞ ¼ xi;jðtÞ −mi;jðtÞ.
9: j ¼ jþ 1
10: end while
11: ciðtÞ ¼ xi;jðtÞ
12: xiþ1ðtÞ ¼ xiðtÞ − ciðtÞ.
13: i ¼ iþ 1.
14: end while
15: rðtÞ ¼ xiðtÞ
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by cubic splines. Then, the mean mi;jðtÞ of these envelope
is subtracted from the input data to obtain the residual
xi;ðjþ1Þ. When the mean mi;jðtÞ becomes approximately
zero after several iterations, xi;j is adopted as the IMF ciðtÞ,
since it can be considered to be zero mean. This criteria ϵe is
a parameter of the EMD. After all oscillatory components
are extracted, the residual rðtÞ is a nonoscillatory compo-
nent of xðtÞ. Letting NIMF be the number of IMFs of xðtÞ,
xðtÞ is recovered by

xðtÞ ¼
XNIMF

n¼1

cnðtÞ þ rðtÞ: ð3:18Þ

IMFs, c1ðtÞ; c2ðtÞ;…; cNIMF
ðtÞ, are in order from the high-

est to lowest frequency components. After the above
decomposition, the IA and IP of each IMF can be estimated
by the HSA. Consequently, letting anðtÞ and ϕnðtÞ be the
IA and IP of nth IMF, the data can be expressed as

xðtÞ ¼
XNIMF

n¼1

anðtÞ cosϕnðtÞ þ rðtÞ: ð3:19Þ

In this study, we used the ensemble EMD (EEMD) as the
mode decomposition method. In the beginning of the
EEMD, Ne white noises fwðmÞðtÞg with the standard
deviation being σe are created, and then the IMFs of the
noise-added data xðmÞðtÞ ¼ xðtÞ þ wðmÞðtÞ are calculated by
the EMD,

xðmÞðtÞ ¼ xðtÞ þ wðmÞðtÞ ð3:20Þ

¼
XNIMF

n¼1

cðmÞ
n ðtÞ þ rðmÞ: ð3:21Þ

The IMFs of an input data xðtÞ are estimated as the mean of
the corresponding IMFs of fxðmÞðtÞg,

cnðtÞ ¼
1

Ne

XNe

m¼1

cðmÞ
n ðtÞ: ð3:22Þ

The EEMD has two parameters ðσe; ϵeÞ: σe is a standard
deviation of added white noise, and ϵe is a convergence-
condition constant. The details of EEMD is shown in
Refs. [37,40].
The basic concept of HHT for the QNM is as follows. If

the QNM is perfectly extracted in the jth IMF, the IA and IP
of the IMF must be expressed by

ajðtÞ ¼ Ae−ðt−t0Þ=τ; ð3:23Þ

ϕjðtÞ ¼ 2πfRðt − t0Þ þ ϕ0: ð3:24Þ

Therefore, we can estimate the QNM frequency by fitting
the IA and IP individually.
In reality, the IMF also contains other modes before the

QNM starts, and noise components become dominant after
the QNM is sufficiently damped. Equations (3.23) and
(3.24) do not hold in the merger phase and the noise-
dominant segment. Therefore, to estimate the QNM fre-
quency with Eqs. (3.23) and (3.24), we need to estimate the
segment where IA and IP most properly fits the equations.
We constructed amethod to estimate the segment, named the
“QNM-dominant segment” (QDS), and theQNM frequency
[38]. In the method, a bandpass filter, whose higher cutoff
frequency is properly configured, will be applied as a
preprocessing to extract a QNM into the first IMF.

2. QDS estimation

Here, we briefly describe how to estimate QDS
½n̂0; n̂0 þ N̂�. Note that we represent discrete sequences
with brackets, such as t½n� and a1½n�. Assuming the QNM is
extracted in the first IMF, and its merger time t½nm� is
known, we first search for the longest segment ½nb; ne�
after nm where the a1½n� decreases monotonically. For
every possible subsegment ½n0; n0 þ N� of ½nb; ne�, where
Nmin ≤ N ≤ ne − nb, we calculate root-mean-squared
errors RMSEðn0; NÞ of fitting ln a1½n� with bt½n� þ c,

RMSEðn0; NÞ ¼ min
b;c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn0þN−1

n¼n0

ðln a1½n� − bt½n� − cÞ2
vuut :

ð3:25Þ
We set Nmin to five, the same configuration as in Ref. [38].
The optimal n0 for each N is determined by

n̂0ðNÞ ¼ argmin
n0

RMSEðn0; NÞ; ð3:26Þ

and we define eðNÞ as

eðNÞ ¼ RMSEðn̂0ðNÞ; NÞ: ð3:27Þ

The optimal N is determined as the transition point of a
slope of the N–eðNÞ plot,

N̂ ¼ argmin
N

½ErrðNmin; NÞ þ ErrðN þ 1; ne − nbÞ�; ð3:28Þ

where ErrðN1; N2Þ is an error of the fitting eðNÞ with
aN þ b,

ErrðN1; N2Þ ¼ min
a;b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN2

N¼N1
ðeðNÞ − aN − bÞ2
N2 − N1

s
: ð3:29Þ

Consequently, by letting n̂0 ¼ n̂0ðN̂Þ, the QDS ½n̂0; n̂0 þ
N̂� is estimated. Then, the QNM frequency fqnm can be
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estimated by fitting the IA and IP with Eqs. (3.23) and
(3.24) in the QDS.

3. Method

Here, we briefly explain the whole method to estimate
QNM frequency from observed strain data h½n�. The outline
of the method is described in Algorithm 2.
First, we have to determine candidate sets F, E, and Σ,

which are sets of a higher cutoff frequency fH of a bandpass
filter, a convergence criteria ϵe of the EEMD, and a
standard deviation σe of the added noise in the EEMD,
respectively. In this study, we determined the sets as
follows:

F ¼ f220; 225; 230;…; 500g Hz; ð3:30Þ

E ¼ f1 × 10−1; 4 × 10−2; 2 × 10−2;…; 1 × 10−3g; ð3:31Þ

Σ ¼ f1 × 10−3; 4 × 10−4; 2 × 10−4;…; 1 × 10−5g; ð3:32Þ

and fL is set to 20 Hz. For each parameter candidate
ðfH; ϵe; σeÞ, a series of processing, including a bandpass
filter with cutoff frequency ðfL; fHÞ, the HHT, and the
search of QDS, is applied to the input strain data h½n�. After
that, the optimal set of the parameters will be selected under
an objective function O. We used the slope of the linear
function obtained by fitting f1½n� in the range of the
searched QDS as the objective function O, since the IF
must be flat in the QDS if a QNM is properly extracted.

D. Autoregressive modeling method

1. Basic idea

The autoregressive method is well-known time-sequence
analysis method that is used in, e.g., acoustic signal
processing [41]. Suppose we have the signal data of a
segment, xn ¼ xðnΔtÞ, ðn ¼ 1; 2;…; NÞ. The main idea is
to express the signal xn with its previous Mð< NÞ data,

xn ¼
XM
j¼1

ajxn−j þ ε; ð3:33Þ

where aj andM are the coefficients and the order of the AR
model, respectively, and ε is the residual treated as white
noise in this modeling. If the data xn are damped sinusoidal
waves without noise, then we analytically can express xn
with M ¼ 2. Even when the data include noise, we expect
to extract the actual signals by tuning N and M. There are
various methods proposed to determine aj and M. In this
article, we present the results using the Burg method for aj
and the final prediction error (FPE) method for M. The
details and other trials are in Ref. [42].
Once the model (3.33) is fixed, we then reconstruct the

wave signal from Eq. (3.33) and analyze it. By setting
zðfÞ ¼ e2πifΔt, the power spectrum of the wave signal can
be expressed as

pðfÞ ¼ σ2
����1 −XM

j¼1

ajz−j
����
−2

; ð3:34Þ

where σ is the variance of ε. The resolution of frequency in
Eq. (3.34) is not limited by the length of the original
dataset, so that AR method is expected to identify signal
frequency more precisely than the standard (short-) Fourier
decomposition.
From Eq. (3.33), the (local) maximums of the spectrum

pðfÞ are given at

FðzÞ ¼ 1 −
XM
j¼1

ajz−j ≈ 0: ð3:35Þ

This is anMth-order polynomial equation. The solutions of
the characteristic equation, FðzÞ ¼ 0, also express the
fundamental modes that consist of the data segment. By
interpreting theM solutions as zk ¼ e2πifkΔt (k ¼ 1;…;M),
we get the fundamental frequencies from the real part of fk
and damping rates from the imaginary part of fk. [Actually,
jzkj ≤ 1 is expected for the expression (3.33) to be stable.]
Therefore, the AR method can determine the frequencies
and damping rates of quasinormal modes from the data
themselves.

Algorithm 2. Estimation method of the QNM frequency with the HHT

Require: Strain h½n� contains a BBH signal and merger time tm is known
1: for all ðfH; ϵe; σeÞ ∈ F ⊗ E ⊗ Σ do
2: h½n� → hfiltered½n�: apply a bandpass filter with cutoff frequency ðfL; fHÞ
3: hfiltered½n� → a1½n�;ϕ1½n�: apply the HHT with parameters ðϵe; σeÞ.
4: ½n̂0; n̂0 þ N̂�: search the QNM-dominant segment (QDS) in a1½n�
5: f̂qnmðfH; ϵ̂e; σ̂eÞ: estimate the QNM frequency by fitting a1½n�, ϕ1½n� in the QDS
6: end for
7: ðf̂H; ϵ̂e; σ̂eÞ ¼ argmin

fH;ϵe;σe

OðfH; ϵ̂e; σ̂eÞ: select the set of parameters that optimizes an objective function O.

8: f̂qnm ¼ f̂qnmðf̂H; ϵ̂e; σ̂eÞ: the value of the selected combination is the estimated value of this method.
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2. Method

We divided the given mock data into segments of the
length of ΔT ¼ 1=128 sec (N ¼ 32). The neighboring
segments are largely overlapping shifted only by 4 points.
For each segment, we modeled the data with Eq. (3.33)
with Burg and FPE methods. Normally M falls into the
range 2–5.
We then get the power spectrum pðfÞ from Eq. (3.34) at

each segment and locate its local maximums f1; f2;…with
their one-sigma widths. We also solve Eq. (3.35) at each
segment (which is at most a 5th-order polynomial equation)
and identify the solution zk of which the real part of the
frequency is the closest to f1; f2;….
We list these solutions zk of each segment and check

whether they remain almost unchanged over several seg-
ments. If the successive segments have a common fre-
quency mode within one-sigma width, then we make a
short list as the candidates for ringdown modes.
We see sometimes a segment is full of noises and shows

quite different numbers from neighboring segments. In
most cases, however, after the time of a black hole merger,
we can identify one common frequency that overlaps
within one-sigma width for several data segments.

E. Neural network method

1. Convolutional neural network

In this challenge, we use a “convolutional neural net-
work” (CNN), which can extract local patterns of the data.
CNNs are often used for the image recognition and we
expect CNNs can be applied to the GW data analysis [43].
We try various CNNs that have different structure, layers,
neurons, and filters. The final configuration of the CNN
that is used here is shown in Table I.
In general, the input and output data of a convolutional

layer have multichannels. The data with multichannels have
multivalues in each pixel (e.g., RGB components of
images). In a convolutional layer, convolutions of the data
containing L channels and the L0 filters h,

z0i;l0 ¼
XL
l¼1

XH
p¼1

ziþp;lhlp;l0 þ bi;l0 ; ð3:36Þ

are calculated to extract the local patterns. Here, z and z0 are
the input and output vectors of the layer, respectively. The
number and the length of the filters, L0 and H, are fixed
before training and the coefficients h and biases b are
optimized in the training procedure. In this work, we use
four convolutional layers. The lengths of the filters are 32,
16, 8, and 8, and the numbers of the filters are 64, 128, 256,
and 512, respectively.
A pooling layer, often placed after a convolutional layer,

compresses information, combining a few pixels into one
pixel. In this work, we use the max pooling,

z0i ¼ max
k¼1;…;p

zsiþk: ð3:37Þ

Here, s is the stride and p is the size of the pooling filter. We
set s ¼ p ¼ 2.
In most cases, dense layers, which are linear trans-

formations,

z0i ¼
XN
j¼1

wijzj þ bi; ð3:38Þ

with N being the number of input values, are located after
convolutional layers. The weights w and biases b are
optimized in training.
An activation function plays an important role to carry

out nonlinear transformations. In this work, we use the
rectified linear unit (ReLU),

z0 ¼ hðzÞ ¼ maxðz; 0Þ; ð3:39Þ

as activation functions.
For an accurate estimation, weights and biases in dense

layers and filters in the convolutional layers need to be
optimized using training data. In the case of supervised
learning, the training data include a pair of input data and a
target vector. In our work, the input data are the time series
of gravitational wave signals with noise and the target

vector is composed of the QNM frequency ðfðinjÞR ; fðinjÞI Þ.
For an input, the neural network returns an estimated vector

ðfðpredÞR ; fðpredÞI Þ and compares it with a target vector. The
loss function is computed to evaluate the error between the
estimated and target vectors. In batch learning, a group of
data, called a “batch” with its size Nb fixed before training,

TABLE I. The configuration of the CNN we use. ðx; yÞ means
that the data each layer returns have x points and y channels. Each
input data have only one channel, hþ, which are composed of
512 points. The “Flatten” layer reshapes two-dimensional data to
one-dimensional data.

Layer Dimension

Input (512, 1)
Convolution (481, 64)
Pooling (240, 64)
ReLU (240, 64)
Convolution (225, 128)
Pooling (112, 128)
ReLU (112, 128)
Convolution (105, 256)
Pooling (52, 256)
ReLU (52, 256)
Convolution (45, 512)
Pooling (22, 512)
ReLU (22, 512)
Flatten 16 × 512
Dense 256
ReLU 256
Dense 2
Output 2
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is used to define the loss function. As the loss function, we
adopt the mean relative error,

J ¼ 1

Nb

XNb

n¼1

X
A∈fR;Ig

jfðpredÞn;A − fðinjÞn;A j
fðinjÞn;A

: ð3:40Þ

We set Nb ¼ 64. As an optimization method, we use the
Adam [44]. The hierarchical training, proposed in
Ref. [43], is adopted. The training starts from using the
injected data, whose peak SNR [45] is 20.0, and gradually
decreasing the peak SNR. At the final stage of training, we
use the signal of which the peak SNR ranges from 10.0
to 3.0.
We use PYTORCH software [46]. For accelerating learn-

ing with NVIDIA GPU, we employ the CUDA deep neural
network library [47].

2. Training dataset

First, we construct the template bank for the training
using the modified waveform, which is based on the same
method as Eqs. (2.14) and (2.16). For the template bank,
fR and fI are uniformly placed in the range 209–378 and
23–69 Hz. The template bank contains 21 × 21 waveforms.
Next, each waveform is whitened using Advanced

LIGO’s design sensitivity (aLIGOZeroDetHighPower).
From each signal, we pick up the segment that consists
of 512 points starting from the coalescence time, and these
whitened waveforms are injected into the white Gaussian
noises. The realization of noises is varied for each training
step in order to prevent the neural network from being
overfitted with some particular noise patterns. Finally, we
normalize each segment to have mean 0.0 and variance 1.0.

IV. COMPARISON AND SUMMARY

A. Overview

We prepare 120 mock data in total by using the method
described in Sec. II B. Half of them are generated using
Eqs. (2.10) and (2.12), and the others are generated using
Eqs. (2.14) and (2.16). We refer to the former as set A and
the latter as set B. For both sets, we generated 20 mock
data, respectively, with overall SNR, ρall ¼ 60, 30, and 20.
The SNR for the ringdown part ρrd turned out to be roughly
1=5 ∼ 1=3 of ρall. We listed the details of a part of the mock
data in Table II. We calculated ρrd by the standard inner
product for the injected waveform after the peak of the
amplitude without noise.
The five challenging groups received 120 data files of

hðtÞ, together with rough information of the merger time t0
for each of the data, but not with the frequency of the

injected ringdown waveform, ðfðinjÞR ; fðinjÞI Þ. The mock data
themselves are provided with both the þ mode and ×
mode, but this time we used only the þ mode. Since

ðfðinjÞR ; fðinjÞI Þ are randomly shifted from the values in

TABLE II. A partial list of mock data. Set A was generated
using Eqs. (2.10) and (2.12), while set B was from Eqs. (2.14)
and (2.16). The overall SNR ρall, SNR of the ringdown part ρrd,

and injected value of the ringdown waveform ðfðinjÞR ; fðinjÞI Þ are
shown.

SNR Injected

Data ρall ρrd fðinjÞR fðinjÞI

A-01 60.0 11.87 260.68 44.58
A-02 60.0 12.82 345.16 50.49
A-03 60.0 13.31 382.53 32.58
A-04 60.0 12.49 284.18 44.73
A-05 60.0 14.25 346.20 23.07
A-06 30.0 6.18 272.85 33.40
A-07 30.0 6.07 272.85 44.54
A-08 30.0 6.05 301.89 42.24
A-09 30.0 6.75 324.60 27.25
A-10 30.0 6.08 282.55 37.45
A-11 20.0 4.59 314.24 30.58
A-12 20.0 3.85 382.10 48.60
A-13 20.0 4.01 249.36 47.97
A-14 20.0 3.98 299.32 41.88
A-15 20.0 4.09 319.42 31.55
B-01 60.0 15.93 352.56 36.20
B-02 60.0 15.62 210.78 42.77
B-03 60.0 15.31 258.83 48.42
B-04 60.0 18.34 271.13 25.40
B-05 60.0 15.92 291.99 34.20
B-06 30.0 8.55 411.57 29.48
B-07 30.0 6.78 295.78 59.38
B-08 30.0 7.03 312.39 59.24
B-09 30.0 7.68 198.34 57.91
B-10 30.0 7.81 323.32 37.86
B-11 20.0 5.79 208.80 39.75
B-12 20.0 5.76 246.66 27.85
B-13 20.0 4.46 323.71 62.51
B-14 20.0 5.62 215.15 33.15
B-15 20.0 5.99 335.20 25.11

TABLE III. We show the values of δ log fR, σðfRÞ, δ log fI, and
σðfIÞ for various methods. The results limited to set A are given
on the first law of each method, while those limited to set B are on
the second.

δ log fRð%Þ σðfRÞð%Þ δ log fIð%Þ σðfIÞð%Þ
MF-R A −12.88 28.36 −71.51 97.79

B −0.82 27.53 −46.11 75.48

MF-MR A 6.25 17.27 −12.62 37.9
B 2.47 10.41 7.18 27.61

HHT A −13.38 21.91 −44.11 61.58
B −8.08 19.81 −28.78 49.61

AR A 0.2 9.93 4.88 38.75
B 1.91 8.57 6.2 34.64

NN A −6.64 16.48 −15.23 33.96
B −6.65 11.97 9.96 23.76
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general relativity, the challengers cannot use the informa-
tion of inspiral part for their estimation of ðfR; fIÞ. Some
methods (MF-R/MR, AR) can derive the estimation value
ðfR; fIÞ with their error bars, while some (HHT, NN)
cannot. Therefore, we simply compare the results of the
estimated (central) values.

B. Results and comparison

For 120 data, each challenging group handed in ðfR; fIÞ
as the result of their blind analyses. In order to compare five
methods, we introduce the logarithmic average and vari-
ance defined by

δ logQ ¼ 1

N

XN
n¼1

�
log

QðestimateÞ
n

QðinjÞ
n

�
;

σðQÞ ¼
�
1

N

XN
n¼1

�
log

QðestimateÞ
n

QðinjÞ
n

�2�1=2
; ð4:1Þ

as indicators of the bias and the average magnitude of the

parameter estimation error, whereQðestimateÞ
n is the estimated

value of the quantity Q for the nth data and QðinjÞ
n is the

corresponding injected values. In Table III, we show
the values of δ log fR, σðfRÞ, δ log fI, and σðfIÞ for the
methods we tried. We show the results limited to set A on
the first law and those limited to set B on the second law.
We should recall that, in the actual implementation of the

MF-MR described in Sec. III B, we adopt the same
modified template that is used to generate set B mock
data. Also, the NN method introduced in Sec. III E uses the
template bank generated in the same way as set B mock
data to train the network.
The error of MF-R using the simple damped sinusoidal

waveform is relatively large, as expected. In fact, the error
of the estimates of fR and fI is the largest among the five
methods. The results of the HHT method are not so good,
either. At least, the current way of using MF-R or HHT for
the estimate of imaginary part of QNM frequency does not
seem to be competitive compared with the other methods.

FIG. 2. Plots of the base 10 logarithm of the error in the estimate for all test data [(a) and (b) for the real part for sets A and B,
respectively, and (c) and (d) for the imaginary part for sets A and B, respectively]. The data number is sorted for each method in
ascending order of the magnitude of the error.
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The performances of the other three methods, i.e., MF-MR,
AR, and NN methods, are almost comparable for the
imaginary part, while the determination of the real part
by AR looks better than the other two methods. Here, we
should recall that the comparison with MF-MR and NN is
not fair in the case of set B mock data, since their base
templates are constructed from set B data. The results of
MF-MR and NN are better for set B, as expected.
The variance might be determined by a small number of

data with a large error. To check if that is the case or not, we
give plots of the absolute magnitude of the error

j logðQðestimateÞ
n =QðinjÞ

n Þj sorted in ascending order for each
method in Fig. 2. Although the number of data are small,
these figures tell us that the tendencies mentioned above are
not the ones that hold only for the data with a large error.
To show how the errors depend on SNR, we present

several plots of the averaged values within each level of
SNR: high, middle, and low, i.e., ρall ¼ 60, 30, and 20. The

variances of the differences δ log fR ¼ log fR − log fðinjÞR

and δ log fI ¼ log fI − log fðinjÞI are shown in Fig. 3, respec-
tively. The solid lines denote the results for the real partwhile
the dashed lines are those for the imaginary part. The
estimations of fI are generally about 0.5 order worse than
those of fR. This tells us the difficulty of identifying the

damping rate. As expected, the differences are smaller for
larger ρall, with some exceptions. The main message we can
read from Fig. 3 combined with Table II is that we would be
able to estimate fR within 7% (8%) from the injected value
for the data ρrd ∼ 15 (8), if we adopt an appropriate method.
On the other hand, the estimate of fI has an error at least of
Oð30%Þ even for the data with ρrd ∼ 15.
The averages of δ log fR and δ log fI are also shown in

Fig. 4. For all five methods, we see the estimated values of

fR are roughly distributed around the injected one fðinjÞR ,

while there are some tendencies that fðinjÞI is over- or
underestimated, depending on the method. These results
would be suggestive in the interpretation of the future
application of each method to real data.

C. Error estimate

MF-MR and AR methods give the error estimates as
explained in Sec. III. The consistency of these error
estimates is briefly checked below.
In the case of the MF-MR method for set B data, the

expected result is obtained. Namely, there are 120 guesses
in the present test (60 real parts and 60 imaginary parts).
The 90% confidence interval is given by cutting 5%
probability regions on both small and large value sides.

FIG. 3. The root-mean-square error in percent of each method for three levels of SNR [(a) for both sets A and B, (b) for only set A, and
(c) for only set B]. The solid and dashed lines represent the real and imaginary parts, respectively.
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This estimate of the confidence interval just takes into
account the statistical error. The true value fell outside of
the confidence interval 27 times out of 120. This is slightly
worse than the expectation. The estimate of the confidence
interval may need modification. For set A data, this
happened 45 times, which means that the contribution of
the systematic bias is significantly large.
For the AR method, the true value becomes outside the

90% confidence interval 21 times out of 120 guesses for the
imaginary part, while it happened 51 times for the real part.

V. CONCLUDING REMARKS

We implemented five methods for extracting ringdown
waves solely and tested them with mock data by a method
of “blind analysis.”
Comparison tells us that the AR method, which can pick

up the frequency of ringdown wave fR with 10% root-
mean-square difference from the injected one for the SNR
of the ringdown part greater than 7 or so, showed the best
performance in determining the real part. The ARmethod is
superseded by the NN or MF-MR method for set B data
with high SNR of the ringdown part greater than 12 or so.
The same template as set B data is used as the training data
for the NN method and as the template to be matched for
the MF-MR method. On the other hand, the imaginary part
of the frequency fI (related to the damping period) is rather
difficult to determine, and AR, NN, and MF-MR methods
showed comparable performance. The data tell us that the
root-mean-square difference of fI from the injected one for
high SNR data can be less than about 30%, although the
result would apply only in modifications of the ringdown
waveform limited to the one smoothly connected to the
merger phase. We believe that the possibility and the
limitation of independent estimation of the ringdown mode

was shown in this paper, and this opens a way of testing
gravity theories.
When the error circles derived by using some combi-

nation of several methods are overlapping, we might be
able to more confidently claim that the QNM frequency is
determined by the observational data. However, currently,
only two of our analysis methods (MF-MR, AR) reported
error circles, and the estimated error circles also contain
some errors. Once we have various methods whose error
estimate is reliable, there might be a possibility to combine
the estimates properly.
Through the mock-data challenges, we also learned the

directions for further improvements of each method.
(i) The MF methods do not have much room for further

improvement. As for MF-MR, one possible exten-
sion is to adopt a little wider class of templates that
depend on parameters other than the QNM fre-
quency. However, the preliminary trial calculations
suggest that the extension in this direction will not
be so successful.

(ii) The AR method, presented here, used the Burg
method for fitting data and the final prediction error
method for fixing the length of data sequence. We
think that it will be interesting to compare with
similar but slightly different approaches, such as
those proposed by Berti et al. [14].

(iii) In the HHT method, there exists the mode-splitting
problem of the EMD [48].We are planning to resolve
the problem by taking into account the sparsity in the
frequency domain to the EMD. It may improve the
accuracy of the extraction of a QNM since the
instantaneous frequency of the QNM is constant.

(iv) First, the neural network is trained with waveforms
generated by the same method as set B. So, the results
for set A seem to contain bias in the high SNR

FIG. 4. The averaged error in percent of each method for three levels of SNR [(a) for both sets A and B, (b) for only set A, and (c) for
only set B]. The solid and dashed lines represent the real and imaginary parts, respectively.
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regime. The improvement of the training algorithm or
preparing the dataset will reduce the bias. Second, the
NN method can give only the central value for the
current estimation. We need to find a method to
estimate the prediction errors.

After implementations of such improvements, we are
planning to apply our methods to the real GW data, to
discuss the validity of general relativity.
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