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Outline
e Three approaches: ADM/BSSN, hyperbolic formulation, attractor systems

e Proposals : | A unified treatment as Adjusted Systems

Analytic Support: Constraint Propagation eqs.
Some predictions and Numerical experiments
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1. Introduction

2. Three approaches
(1) Arnowitt-Deser-Misner / Baumgarte-Shapiro-Shibata-Nakamura
(2) Hyperbolic formulations
(3) Attractor systems — “Adjusted Systems”

3. Adjusted ADM systems
Flat background
Schwarzschild background

4. Adjusted BSSN systems
Flat background

5. Summary



Numerical Relativity and “Formulation” Problem

Numerical Relativity|— Necessary for unveiling the nature of strong gravity

— Gravitational Wave from colliding Black Holes, Neutron Stars, Supernovae, .

— Relativistic Phenomena like Cosmology, Active Galactic Nuclei, .
— Mathematical feedbacks to Singularity, Exact Solutions, Chaotic behaviors, .

— Laboratory of Gravitational theories, Higher dimensional models, .

Gravitational Waves

Neutron Stars /
Black Holes

LIGO/VIRGO/GEO/TAMA, ...



Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

Many (too many) trials and errors, not yet a definit recipe.

Blow up

error

time

Constrained / Surface
(satisfies / Einstein's constraints)




Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

Many (too many) trials and errors, not yet a definit recipe.

Blow up Blow up

ADM

error

BSSN

|

time
Mathematically equivalent formulations, but differ in its stability!

strategy 0: Arnowitt-Deser-Misner formulation

strategy 1: Shibata-Nakamura's (Baumgarte-Shapiro’s) modifications to the standard ADM
strategy 2: Apply a formulation which reveals a hyperbolicity explicitly

strategy 3: Formulate a system which is “asymptotically constrained” against a violation of constraints

By adding constraints in RHS, we can kill error-growing modes
= How can we understand the features systematically?




strategy 0 The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

341 decomposition of the m_omnmz:dm shift vector, Ni

Evolve 12 variables (v;;, K surface normal line| : :
Ni dt coordinate constant line

AL

with a choice of gauge no:n__ﬁ_o: >
\ A" A
2(t+dt) \

lapse function, N — 6y 4t \

)

2(t) \
\ t = constant hypersurface
Maxwell egs. ADM Einstein eq.
constraints Mn“ w M Mﬁb MMMM%NMHNM WAMWMS = 2Kkpp + 2\

L OB = ot B — 2T | 9 = —2NKyj + D;N; + D;N;;,

¢ ¢ | 8iK;j = N( R, + tKK;;) —2NKyK'; — D;D;N

| + (D;N™ K i + (DiN™ K,; + N™ D, K — Ny A
OB = —rotE — ka{ S+ 3vij(pr — t15)}

evolution egs.




strategy 1 Shibata-Nakamura's (Baumgarte-Shapiro’s) modifications to the standard ADM
— define new variables @Q@N&QHJ. instead of the ADM's (;;,K;;) where

~

i =y, Ay =K = (13)yK), TP =T,

use momentum constraint in ["-eq., and impose det¥;; = 1 during the evolutions.
— The set of evolution equations become
(0 — Ls)¢ = —(1/6)aK,
(00— L) = —204y;,
0y — Lo)K = aAj ;A7 4+ (1/3)aK? — 47 (V;V;a),
(0 — Ls)Ay = —e (V;V,a)"F + mL@Qm%v — e a(1/3)7;R® + a(K Ay; — 243 AF))
O = —2(0;0)A7 — (4/3)a(0; K77 + 12047 (9;0) — 20447 (0,4™) — 20T A7 4"
=0 (807" =AM (Ou3) — 7 (OB) + (2/3)77 (08"))
Ry = O If, — o}, + Tk, — T\ = Ry + Ry,
R = =2D;D;¢ — 24, D' Digy + 4(D;0)(D;) — 4Gi;(D'6)(Dig)
Rij = —(1/2)§" Opmdij + m\%&v? + ?w@.é + wmwswmﬁ@wgs + glmIE Ty

— No explicit explanations why this formulation works better.
AEI group (2000): the replacement by momentum constraint is essential.




strategy 2 Apply a formulation which reveals a hyperbolicity explicitly.

For a first order partial differential equations on a vector wu,

uy uy uy
O | ug | = A 0, | us + Bl u
characteristic part lower order part

. i A 4 )

if the eigenvalues of A are Weakly hyp.
weakly hyperbolic all real.

Strongly hyp.

strongly hyperbolic  all real and 3 a complete set of eigenvalues. ﬁ metric _._SQ
symmetric hyperbolic if A is real and symmetric (Hermitian). N )

Expectations
— Wellposed behaviour
symmetric hyperbolic system = WELL-POSED , [|u(t)|| < e"||u(0)]]

— Better boundary treatments <= d characteristic field.

— known numerical techniques in Newtonian hydrodynamics.



7 formulations

numerical applications

(0) The standard ADM formulation

ADM

| 1962 Arnowitt-Deser-Misner [12, 78] |

= many

(1) The BSSN formulation

BSSN

1987 Nakamura et al [62, 63, 72]

1999 Baumgarte-Shapiro [15]

1999 Alcubierre et al [8]
1999 Frittelli-Reula [41]
2002 Laguna-Shoemaker [54]

= 1987 Nakamura et al [62, 63]
= 1995 Shibata-Nakamura [72]
= 2002 Shibata-Uryu [73] etc
= 1999 Baumgarte-Shapiro [15]
= 2000 Alcubierre et al [5, 7]
= 2001 Alcubierre et al [6] etc

= 2002 Laguna-Shoemaker [54]

(2) The hyperbolic formulations

BM

CB-Y

FR

KST

CFE

tetrad
Ashtekar

1989 Bona-Massé [17, 18, 19]

1997 Bona et al [20]

1999 Arbona et al [11]

1995 Choquet-Bruhat and York [31]
1995 Abrahams et al [1]

1999 Anderson-York [10]

1996 Frittelli-Reula [40]

1996 Stewart [79]

2001 Kidder-Scheel-Teukolsky [51]

2002 Sarbach-Tiglio [68]
1981 Friedrich[35]

1995 vanPutten-Eardley[84]
1986 Ashtekar [13]

1997 Iriondo et al [47]

1999 Yoneda-Shinkai [90, 91]

= 1995 Bona et al [19, 20, 21]
= 1997 Alcubierre, Massé [2, 4]
= 2002 Bardeen-Buchman [16]

= 1997 Scheel et al [69]

= 1998 Scheel et al [70]

= 2002 Bardeen-Buchman [16]
= 2000 Hern [43]

= 2001 Kidder-Scheel-Teukolsky [51]
= 2002 Calabrese et al [26]
= 2002 Lindblom-Scheel [57]

= 1998 Frauendiener [34]
= 1999 Hiibner [45]

= 1997 vanPutten [85]

= 2000 Shinkai-Yoneda [75]

= 2000 Shinkai-Yoneda [75, 92]

(3) Asymptotically constrained formulations
pu

system to FR
to Ashtekar
adjusted to ADM
to ADM
to BSSN

1999 Brodbeck et al [23]
1999 Shinkai-Yoneda [74]
1987 Detweiler [32]

2001 Shinkai-Yoneda [93, 76]
2002 Yoneda-Shinkai [94]

= 2001 Siebel-Hiibner [77]

= 2001 Yoneda-Shinkai [92]

= 2001 Yoneda-Shinkai [93]

= 2002 Mexico NR Workshop [58]
= 2002 Mexico NR Workshop [58]
= 2002 Yo-Baumgarte-Shapiro [88]
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strategy 2 Apply a formulation which reveals a hyperbolicity explicitly. (cont.)

symmetric hyperbolic C strongly hyperbolic C weakly hyperbolic systems,

e Are they actually helpful? — if so, which level of hyperbolicity is necessary?
e Under what conditions/situations the advantages will be observed?

Unfortunately, we do not have conclusive answers to them vyet.

e Several numerical experiments indicate that the direction is NOT a full of success.

— Earlier numerical comparisons reported the advantages of hyperbolic formulations, but
they were against to the standard ADM formulation. [Cornell-lllinois, NCSA, ...]

— Numerical evolutions are always terminated with blow-ups.

— If the gauge functions are evolved with hyperbolic equations, then their finite propagation
speeds may cause a pathological shock formations [Alcubierre].

— No drastic numerical differences between three hyperbolic levels [HS Yoneda, Hern|.
— Proposed symmetric hyperbolic systems were not always the best one for numerics.

Of course, these statements only casted on a particular formulation, therefore we have to be
careful not to over-announce the results.



strategy 2 Apply a formulation which reveals a hyperbolicity explicitly. (cont.)

e Remarks to hyperbolic formulations

(a) Rigorous mathematical proofs of well-posedness of PDE are mostly for a simple sym-
metric or strongly hyperbolic systems. If the matrix components or coefficients depend
dynamical variables (like in any versions of hyperbolized Einstein equations), almost
nothing was proved in its general situations.

(b) The statement of “stability” in the discussion of well-posedness means the bounded
growth of the norm, and does not mean a decay of the norm in time evolution.

(c) The discussion of hyperbolicity only uses the characteristic part of the evolution
equations, and ignore the rest.

cf. Recent discussions
e KST formulation with “kinematic” parameters which enables us to reduce non-principal part.
e links to IBVP approach.

e relations between convergence behavior and levels of hyperbolicity.



strategy 3 Formulate a system which is “asymptotically constrained” against a violation of constraints

“Asymptotically Constrained System”— Constraint Surface as an Attractor

Constrained / Surface
(satisfies /Einstein's constraints)

Blow up

error

Stabilize?

time

method 1: A-system (Brodbeck et al, 2000)

— Add aritificial force to reduce the violation of con-
straints

— To be guaranteed if we apply the idea to a sym-
metric hyperbolic system.

method 2: Adjusted system (Yoneda HS, 2000, 2001)

— We can control the violation of constraints by ad-
justing constraints to EoM.

— Eigenvalue analysis of constraint propagation
equations may prodict the violation of error.

— This idea is applicable even if the system is not
symmetric hyperbolic. =
for the ADM/BSSN formulation, too!!




ldea of A\-system
Brodbeck, Frittelli, Hiibner and Reula, JMP40(99)909

We expect a system that is robust for controlling the violation of constraints

Recipe
1. Prepare a symmetric hyperbolic evolution system ou = Jou+ K
2. Introduce A as an indicator of violation of constraint 9.\ = aC — 3\
which obeys dissipative eqgs. of motion (a#0,8>0)
: : u A 0 u
3. Take a set of (u, \) as dynamical variables Oy Ayv ~ Aﬁ ov 0; Ayv
4. Modify evolution egs so as to form p A@v B Ax_ ﬁv 9 sz
a symmetric hyperbolic system ) \F 0) 7\

Remarks

e BFHR used a sym. hyp. formulation by Frittelli-Reula [PRL76(96)4667]
e The version for the Ashtekar formulation by HS-Yoneda [PRD60(99)101502]

for controlling the constraints or reality conditions or both.
e Succeeded in evolution of GW in planar spacetime using Ashtekar vars. [CQG18(2001)441]
e Do the recovered solutions represent true evolution? by Siebel-Hiibner [PRD64(2001)024021]



|dea of “Adjusted system” and Our Conjecture
CQG18 (2001) 441, PRD 63 (2001) 120419, CQG 19 (2002) 1027

General Procedure
1. prepare a set of evolution egs. Opu = f(u®, u?,---)

2. add constraints in RHS A = f(u, dyus,- ) +F(C 9,C", - )

3. choose appropriate F(C* 0,C%, )
to make the system stable evolution

How to specify F'(C“, 0,0 --+) ?
4. prepare constraint propagation egs. 0,C* = g(C*, 0,C*, - - +)

5. and its adjusted version C" = g(C*, 0,C", - ) +G(C, 9,C, - )

A

6. Fourier transform and evaluate eigenvalues 8,C% = A(C?) C*

———

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation egs.
If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more stable.




The Adjusted system (essentials):

Purpose: Control the violation of constraints by reformulating the system so as to have a
constrained surface an attractor.

Procedure: Add a particular combination of constraints to the evolution equations, and adjust
its multipliers.

Theoretical support: Eigenvalue analysis of the constraint propagation equations.
Advantages: Available even if the base system is not a symmetric hyperbolic.

Advantages: Keep the number of the variable same with the original system.

Conjecture on Constraint Amplification Factors (CAFs):

(A) If CAF has a negative real-part (the constraints are forced to be diminished), then we see more
stable evolution than a system which has positive CAF.

(B) If CAF has a non-zero imaginary-part (the constraints are propagating away), then we see more
stable evolution than a system which has zero CAF.




Example: the Maxwell equations

Yoneda HS, CQG 18 (2001) 441

Maxwell evolution equations.

@wm@. = Qm%\amew + P Cp+ @N va sym. TSU & b= QS. =R; =5;=0,
2

0,B; = —ce/*0.Ep+ R Cp+ S: Cp. strongly hyp < (P, —S;)° +4R:Q; > 0,

Cp = @,_Qm& ~0, COp=0B ~0 weakly hyp & (P, — 5)? + 4RiQ; = 0

Constraint propagation equations
0,Cp = A@m@v@m + m@A@va + A@
sym. hyp & Qi= R,
strongly hyp < (P — S;)? + 4R;Q; > 0,
weakly hyp < (P, — S;)? +4R,Q; >0

Q")Cp + Q'(9,Cp),
SNCp + S'(0,Cp),

CAFs?
5 Aﬂmv B A@&ELwE\s @.@_Lw@_?vmﬁﬂmvzﬂw&? @&sv AQ@JV I.SAQNV
"\Cg) ~ \OR + Rk, 0,5+ Sk )"'\Cs) ~ \REk; Sik;)\Cg) " \Cx

= CAFs = (P'k; + S'k; £ \[(P'k; + S'k;)? + 4(Q'k; Rik; — P'kiSikj)) /2

Therefore CAFs become negative-real when

w&\.& + %Cﬁ < 0, and @Qﬁm:@ — wﬁaim‘,ﬁ@ <0



Example: the Ashtekar equations
HS Yoneda, CQG 17 (2000) 4799

Adjusted dynamical equations:

OE = —iDi(e? , NEIE}) + 2D;(NVEY) + iAbe, B +X/Cy + YIChy; + P*Cey
adjust
A = —ie NEJF; + N'Fj; + DAG + ANEf +QiCpr + R'Cyi; + Z{"Cay

adjust

Adjusted and linearized:
X =Y =27=0, P*=r(iN'6}), Q! = ra(e 2NEY), RY; = r3(—ie 2Ne* EIE))

Fourier transform and extract Oth order of the characteristic matrix:

Ch 0 i(1+2k3)k; 0\ ( Cr
@w QNE. = s.ﬁ — wﬁwv? me\&.&.\aw 0 QN,\G.
Cca 0 M\Aw&. 0 Cap

Eigenvalues:

Ap 0,0, Frg—ka? — ky? — k22, /(=1 + 2k0)(1 + 2r3) (ka? + ky® + \swvv
In order to obtain non-positive real eigenvalues:

A|H + M\&MVAH + w\&wv <0



A Classification of Constraint Propagations

(C1) Asymptotically constrained :
Violation of constraints decays (converges to zero).

(C2) Asymptotically bounded :
Violation of constraints is bounded at a certain value.

(C3) Diverge :
At least one constraint will diverge.

Note that (C1) C (C2).

- N\ Diverge

(C1) (C3)
Decay Diverge

error

Constrained,
or Deca
KONV Bounded k / > y

time




A Classification of Constraint Propagations (cont.)
gr-qc/0209106

(C1) Asymptotically constrained :
Violation of constraints decays (converges to zero).

< All the real parts of CAFs are negative.

(C2) Asymptotically bounded :
Violation of constraints is bounded at a certain value.

=
(a) All the real parts of CAFs are not positive, and

(bl) the CP matrix M“; is diagonalizable, or
(b2) the real part of the degenerated CAFs is not zero.

(C3) Diverge :
At least one constraint will diverge.



The necessary and sufficient conditions for (C1) and (C2)?

Preparation

Without loss of generality, the CP matrix M can be assumed to be
a triangular matrix. Suppose we have an expression,

mww : = 0 T, * : , AHV
Ch 0 0 A1 Ch

where A\s are the eigenvalues of )M, and the indices are formally
labeled in this order.

Proposition 1 The solution of (1) can be expressed formally as

Ji n;—1 ;
Ci(t) = .MH Tﬁomy%v \,mo Ag\mvwﬁ | (2)
where ); is the i-th eigenvalue of M, and n; is the multiplicity of

A up to 1 < 7.




Proposition 1 The solution of (1) can be expressed formally as

,w. 3@.|H i
Cit) = % fep(\t) S (o)}, 2)
where ); is the i-th eigenvalue of M, and n; is the multiplicity of

A up to 7 < 7.

For example: \{ < =A3=X 1 < 5= Xg < -

C1 = exp(At)(Q@)

Cy = exp(Mit)(@) + exp(Aat)(Q)

Cy = exp(Ait)(Q) 4 exp(Aot)(@Q + Qt)

Cy = exp(At)(Q) + exp(Aot)(Q + @t 4 Q2

Cs = exp(Mt)(Q) + exp(Agt)(@ + Qt + Q%) + exp(\st)(Q)

The highest power N in all constraints is bounded by
N < max (multiplicity of \;) — (3)

— 1<i<n



Asymptotically Constrained CP — (C1) —

Theorem 1
Asymptotically constrained evolution (violation of constraints
converges to zero)

& All the real parts of CAFs are negative.

proof of <)
We use the expression (2). If Re()\;) < 0 for Vi, then C' will con-
verge to zero at t — oo no matter what {—polynomial terms are.

proof of =)

We show the contrapositive. Suppose there exists an eigenvalue
A1 such as which real-part is non-negative. By setting )\, at the
lower-end of the triangular matrix M in (1), then we get 0,C) =
A1 C1 which solution is C7 = C1(0) exp(At). C; does not converge to
Zero.



Asymptotically Bounded CP — (C2) —

Theorem 2
Asymptotically bounded evolution (all the constraints are
bounded at a certain value) &

(a) All the real parts of CAFs are not positive, and

bl) the CP matrix M“; is diagonalizable, or
G
(b2) the real part of the degenerated CAFs is not zero.

proof of < for the case (a+bl): By a diagonalization, we obtain
0,C; = \;C;, which solution is C; = C;(0) exp(\;t). This is bounded since

proof of < for the case (a+b2): We use the expression (2). When
A is degenerated, the {-polynomials have non-zero power. How-
ever, the assumption, Re()\) < 0, indicates exp(\t)(t-polynomials) will
converge to zero. When A\ is not degenerated, there is only a con-
stant term rather than ¢-polynomials. So that (2) remains finite for

Re(N) < 0.




proof of =) We show the contrapositive. = -
(a) and { (bl) or (b2) } < (a) or {(a) and{(bl) and (b2)}}

(a) = diverge :: trivial.
(a) and{(b1) and (b2)} = diverge ::

By triangulating the matrix, we can set the degenerated CAFs A which real-part is zero. Let us consider
n = 3 case,

v:. a b
M=|[0 X c|, a, b, c = constant.
0 0 A

Then we get first C; = C1(0) exp(At) which is a constant or a trigonal function, and

0,Co = NCy+cCp=NCy+ OQHAOV @MUAVLWV
= Cy = C5(0)exp(At) + ¢ C1(0) exp(At)t.

Therefore Cy will diverge when ¢ # 0, and remain finite when ¢ = 0.
Since we are assuming the matrix is not diagonalizable, the minimal polynomial does not take the form as
the product of (M — )\ E) for different eigenvalues A;. When there exists \; # A, we see that

Ai—A a b 0 a b 0 0 ac
Qg — ymvmi — v;mv = 0 0 ¢ 0 A— v: C =10 0 QAV, - v:v y
0 0 0 0 0 A— )\ 0 0 0

which should not equal to zero matrix, that indicates ¢ £ 0. Therefore C5 will diverge. When \ = );, some of

a, b, ¢ is non-zero in order not to vanish (M — AE). Therefore related C; will diverge.



A flowchart to classify the fate of constraint propagation.

Q1. Isthere a CAF which real part is positive?
NO / YES » Diverge

v

Q2: Are all the real parts of CAFs negative?
NO / YES >

v

Q3: Is the constraint propagation matrix diagonalizable?

NO / YES » Asymptotically
« Bounded

Asymptotically
Constrained

Q4: Is areal part of the degenerated CAFs is zero?
NO / YES » Diverge

v

Asymptotically Bounded
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3 Adjusted ADM systems

We adjust the standard ADM system using constraints as:

Oyij = —2akK;;+ V0 + V[, (1
+PH + Q" My + 1" (ViH) + ¢ (ViM,), (2
O K = aRY +aKK; — 20K K" — V, V0 + (Vi) Ky + (V85 Ki + 8V K5 (3
nTin + %w@.\/\? + ﬁw@.Aq\ﬂ\Iv + mi@.Aq\?\/\tvu &

N— N N

with constraint equations

H = R® 4+ K? - K;;K", (5)
.>\~@. = QNNAQ.@. — QNNW Amv

We can write the adjusted constraint propagation equations as

OH. — (orginal terms) + HY"(2] + HY™0(2) + HY™00,(2)] + HY[(4), (7
OyM; = (original terms) + My;""[(2)] + Mo/ 0,[(2)] + Ms;""[(4)] + My4”™"0;[(4)]. (8)



Original ADM | The original construction by ADM uses the pair of (h;;, 7).

g 1
L = V=gR=VhN["R - K*+ K;K"], where K;; = - £.h
then 7 = ®|h = /\MQAS - Nb@.v“
O,

The Hamiltonian density gives us constraints and evolution egs.
H = why— L =Vh{NH(h,7) — 2N;M(h,7) + 2D;(h""*N;z")}

oH N 1
QWDS. = %ﬁ.& = Mﬁ?ﬁg — Mb@.ﬁ.v + Mbmf\/\bv
ij — " — _\/AN B)pij _ ~(3) B A XY - mn 2\ 9" (pin 3w - ij
Oy 5hi VAN (¥R 5 R v._.w/\m (Tn T 5T ) /\m? m 5T )
+VhD'DIN — hiD™D,,N) + vVhD,,(h"Y2N"x'i) — 2x™ D, NJ)

Standard ADM (by York) | NRists refer ADM as the one by York with a pair of (h;;, K;).

@lwi. - |M>\NWS + buzs + NU@.\/O.“
0;Kij = N( PR+ KK;j) —2NKyK'; — D;D;N + (D;N™) Ky + (D;N™)K,; + N™ Dy, K

In the process of converting, H was used, i.e. the standard ADM has already adjusted.




3 Constraint propagation of ADM systems

3.1 Original ADM vs Standard ADM
0 the standard ADM

Try the adjustment R;; = kjay;; and other multiplier zero, where k1 = —1/4 the original ADM

e The constraint propagation eqs keep the first-order form (cf Frittelli, PRD55(97)5992):

@A\m.v - ALHE@&& Rl — iR |mmwavgﬂ>ﬁv. (5)

]

The eigenvalues of the characteristic matrix:
A= (8,8, 8"+ a2y ll(1 + 4k1))
symmetric hyperbolic when k; = 3/2

The hyperbolicity of (5): { strongly hyperbolic ~ when a>y"(1 + 4k;) > 0

weakly hyperbolic when o?4"(1 4+ 4k1) > 0

e On the Minkowskii background metric, the linear order terms of the Fourier-transformed
constraint propagation equations gives the eigenvalues
AL = (0,0, k(1 + 45y)).

That is (two Os, two pure imaginary) for the standard ADM
| (four 0s) for the original ADM

BETTER STABILITY



4 Constraint propagations in spherically symmetric spacetime

4.1 The procedure

The discussion becomes clear if we expand the constraint C,, := (H, M;)" using vector harmonics.
C =3 (A"(t,r)aim(8, ) + B by + C"" i + D" di ) (1)
[,m

where we choose the basis of the vector harmonics as

Yin 0 0 0

Q& — O @N — 53@ ON — Q\. O &N _ \\. O
" 0 o 0 P NQ + C %mM\MS P NQ + C |mwwm®€5§
O O @ﬁxs mwﬁ % @%M\NS

The basis are normalized so that they satisfy
(Cn Gy = [ dep [T CEC, 1" sin 06,
where 1" is Minkowskii metric and the asterisk denotes the complex conjugate. Therefore

Alm = AQMS C,), O9AM™= A@Mw@f@ﬁvv“ etc.

V)

We also express these evolution equations using the Fourier expansion on the radial coordinate,

Al = M% \»Mﬁ (t)e™ etc. (2)
So that we will be able to obtain the RHS of the evolution equations for A\xm@v (t),- -, Umﬁgvﬂ

in a homogeneous form.



Example 1: standard ADM vs original ADM (in Schwarzschild coordinate)

a) (b)

no adjustments (standard ADM)
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Figure 1: Amplification factors (AFs, eigenvalues of homogenized constraint propagation equations) are shown for the standard
Schwarzschild coordinate, with (a) no adjustments, i.e., standard ADM, (b) original ADM (kp = —1/4). The solid lines and
the dotted lines with circles are real parts and imaginary parts, respectively. They are four lines each, but actually the two
eigenvalues are zero for all cases. Plotting range is 2 < r < 20 using Schwarzschild radial coordinate. We set £k = 1,1 = 2, and
m = 2 throughout the article.

Oyiy = —20kK;;+ VB + V;0,
@Nﬂ@. = Qmmwv +aKK;j — MQN&%N\@ — V,;V,a+ AQSQJN\& + Aqbﬁwvw\ﬁ + quxawﬂﬁ + krayiiH,



Example 2: Detweiler-type adjusted (in Schwarzschild coord.)

(b)

—~

. c
Detweiler type, k = + 1/2 ) Detweiler type, k = - 1/2

1 T T

0 080 0-C-0] 0 B 06 O 000

otoo-
e
e
.o

0.5 — 0.5 —

-0.5

-0.5

Real / Imaginary parts of Eigenvalues (AF)

Real / Imaginary parts of Eigenvalues (AF)

Figure 2: Amplification factors of the standard Schwarzschild coordinate, with Detweiler type adjustments. Multipliers used in
the plot are (b) k;, = +1/2, and (c) kK, = —1/2.

Oyyi; = (original terms) + P ’H.,
0, K;; = (original terms) + R;;H + m\&.a\iw -+ mﬁiﬂiﬁ?
where Pj; = IthwﬁS R;j = Rh@%@ﬂ@. - ﬁ\wvmm\«@.vn
mws - mho&wE@@Qv&v - @Qj&iif mi&. = thwEm&.v - C\wvﬁiﬁv



Example 3: standard ADM (in isotropic/iEF coord.)

—~
Y
~

Real / Imaginary parts of Eigenvalues (AF)

Figure 3: Comparison of amplification factors between different coordinate expressions for the standard ADM formulation (i.e.
no adjustments). Fig. (a) is for the isotropic coordinate

coordinate (1) and we plot lines on the ¢t = 0 slice for each expression. The solid four lines and the dotted four lines with circles

isotropic coordinate, no adjustments (standard ADM)

are real parts and imaginary parts, respectively.
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Real / Imaginary parts of Eigenvalues (AF)

b)

-0.5

iEF coordinate, no adjustments (standard ADM)
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(1), and the plotting range is 1/2 < ri,. Fig. (

20

is for the iEF



Example 4: Detweiler-type adjusted (in iEF /PG coord.)
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Real / Imaginary parts of Eigenvalues (AF)
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Figure 4: Similar comparison for Detweiler adjustments. xk;, = +1/2 for all plots.



No. | No. in | adjustment 1st? Sch/iso coords. iEF /PG coords.
Table.?? TRS i real. i imag. real. i imag.
0 0 - no adjustments yes — - - — —
P-1 2-P P;; —K thQ&. no no makes 2 Neg. not apparent makes 2 Neg. not apparent
P-2 3 P —KLO%Y4j no no makes 2 Neg. not apparent makes 2 Neg. not apparent
P-3 - P P, =—kor P, = —ka no no slightly enl.Neg. | not apparent slightly enl.Neg. not apparent
P-4 - P —KYij no no makes 2 Neg. not apparent makes 2 Neg. not apparent
P-5 - P —KYpr no no | red. Pos./enl.Neg. | not apparent | red.Pos./enl.Neg. | not apparent
Q-1 - Q% kaBFy; no no N/A N/A % ~ 1.35 min. vals. | not apparent
Q-2 - @w& Q" = no yes red. abs vals. not apparent red. abs vals. not apparent
Q-3 - @w&. Q"ij = ki or Qi = Kovysj no yes red. abs vals. not apparent enl.Neg. enl. vals.
Q-4 - @w&. Q" rr = KEYrr no yes red. abs vals. not apparent red. abs vals. not apparent
R-1 1 Ri;  kpavyij yes || yes kp = —1/4 min. abs vals. kp = —1/4 min. vals.
R-2 4 R;j R, = —kyaor Ry = —ky, yes no not apparent not apparent | red.Pos./enl.Neg. enl. vals.
R-3 - R;j Ry = —kvypr yes no enl. vals. not apparent | red.Pos./enl.Neg. enl. vals.
S-1 2-S Sk kpa? B@Q&&w — (Oa)yi Y™ | yes no not apparent not apparent not apparent not apparent
S-2 - m_w& rary® (Orvij) yes no makes 2 Neg. not apparent makes 2 Neg. not apparent
p-1 - @w@. p'ij = —Kavy;; no no red. Pos. red. vals. red. Pos. enl. vals.
p-2 - ﬁ»@. P’ = KQ no no red. Pos. red. vals. red.Pos/enl.Neg. enl. vals.
p-3 - %w& P = KQYpp no no makes 2 Neg. enl. vals. red. Pos. vals. red. vals.
q-1 - QE& q"ij = Kayij no no | k= 1/2 min. vals. red. vals. not apparent enl. vals.
q-2 - @E& Q" = —RQYpr no yes red. abs vals. not apparent not apparent not apparent
r-1 - iﬂ& T’ = Karyg; no yes not apparent not apparent not apparent enl. vals.
r-2 - iﬂ& e = —RQ no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
r-3 - iﬂ& e = —RKQYpp no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
s-1 2-s sMii kpa® Em&.v — (1/3)7i;7™] no no makes 4 Neg. not apparent makes 4 Neg. not apparent
s-2 - .wis. s = —Kayij no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.
s-3 - mi@. ST = —RQYpr no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.

Table 1: List of adjustments we tested in the Schwarzschild spacetime. The column of adjustments are nonzero multipliers. The
effects to amplification factors (when x > 0) are commented for each coordinate system and for real/imaginary parts of AFs,
respectively. The ‘N/A’ means that there is no effect due to the coordinate properties; ‘not apparent’ means the adjustment does
not change the AFs effectively according to our conjecture; ‘enl./red./min.” means enlarge/reduce/minimize, and ‘Pos./Neg.’
means positive/negative, respectively. These judgements are made at the r ~ O(10M) region on their ¢t = 0 slice.



3.2.2 Numerical demonstration

Simplified Detweiler's adjustments

Detweiler's adjustments on Minkowskii spacetime

on Minkowskii spacetime

2.0 7 I 2.0 . T ,

- ' : — - -L=-001 i ; - — - -L=001

FL=- 0.0 .\ t L=+ 0.08 L=0.0

I o : . 00 | N L=+0.01
“or ol S L=-0m L0
20 [ 20 |

6.0 -6.0 -

Log, , (L2 norm of constraints)
IN
o
I
Log, , (L2 norm of constraints )
A
o
I

-8.0

-10.0 , ! , -10.0
0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0

time time

Figure 1: We confirmed numerically, using Minkowskii perturbation, that Detweiler’s system presents better accuracy than the
standard ADM, but only form small positive L.



Comparisons of Adjusted ADM systems (linear wave)
Mexico NR 2002 Workshop participants
Original ADM

oo f,

| [[[1]1]]
" originalADM
| standardADM
: N Detweiler_0.02
0. 008 e Detweiler_0.04 -

—---- SimplifiedDetweiler_0.02
—---- SimplifiedDetweiler_0.04
I

|
J
Adjusted/ADM (SD)
o

>."a_.:mﬂmg ADM (D) —
|

|
___~

Standard ADM

L2 norm of Hamiltonian constraint

A4, T ot 43 e A 2 RN

0 0] 100 150 200
time

Figure 1: Violation of Hamiltonian constraints versus time: Adjusted ADM systems applied for Teukolsky wave initial data evolution
with harmonic slicing, and with periodic boundary condition. Cactus/CactusEinstein/ADM code was used. Grid = 243, Az = 0.25,
iterative Crank-Nicholson method.



“Einstein equations” are time-reversal invariant. So .

Why all negative amplification factors (AFs) are available?

Explanation by the time-reversal invariance (TRI)

e the adjustment of the system I,

adjust term to /@NN& = kv
) O (+) () ()
preserves TRI. ... so the AFs remain zero (unchange).
e the adjustment by (a part of) Detweiler
adjust term to /@m\\%& L o~y H
| EﬂE
violates TRI. ... so the AFs can become negative.
Therefore

We can break the time-reversal invariant feature of the “ADM equations”




Constructing Asymptotically Constrained Systems
Hisaaki Shinkai

1. Introduction

2. Three approaches
(1) Arnowitt-Deser-Misner / Baumgarte-Shapiro-Shibata-Nakamura
(2) Hyperbolic formulations
(3) Attractor systems — “Adjusted Systems”

3. Adjusted ADM systems
4. Adjusted BSSN systems

5. Summary



strategy 1 Shibata-Nakamura's (Baumgarte-Shapiro’s) modifications to the standard ADM
— define new variables @Q@N&QHJ. instead of the ADM's (;;,K;;) where

~

i =y, Ay =K = (13)yK), TP =T,

use momentum constraint in ["-eq., and impose det¥;; = 1 during the evolutions.
— The set of evolution equations become
(0 — Ls)¢ = —(1/6)aK,
(00— L) = —204y;,
0y — Lo)K = aAj ;A7 4+ (1/3)aK? — 47 (V;V;a),
(0 — Ls)Ay = —e (V;V,a)"F + mL@Qm%v — e a(1/3)7;R® + a(K Ay; — 243 AF))
O = —2(0;0)A7 — (4/3)a(0; K77 + 12047 (9;0) — 20447 (0,4™) — 20T A7 4"
=0 (807" =AM (Ou3) — 7 (OB) + (2/3)77 (08"))
Ry = O If, — o}, + Tk, — T\ = Ry + Ry,
R = =2D;D;¢ — 24, D' Digy + 4(D;0)(D;) — 4Gi;(D'6)(Dig)
Rij = —(1/2)§" Opmdij + m\%&v? + ?w@.é + wmwswmﬁ@wgs + glmIE Ty

— No explicit explanations why this formulation works better.
AEI group (2000): the replacement by momentum constraint is essential.




Constraints in BSSN system
The normal Hamiltonian and momentum constraints

im.@m.\/\ _ mmmm2+xw|x®.xﬁ.u AHV
.\/Ammmz _ .\/\Nbbi va
Additionally, we regard the following three as the constraints:
Q& - W .iaﬁiﬁ AWV
A = Nr\ws“ (4)
Adjustments in evolution equations
O = 0+ (1/6)ad — (1/12)771(0;S) 7, (6)
0 % = 0% — (2/3)aqi A+ (1/3)7 7 (9kS) 6", (7)
OPK = 0/K — (2/3)aKKA — aH"""" +ae (D,;G7), (8)
0f Aij = O Ay + ((1/3)0i K — (2/3)adij) A+ ((1/2)ae™ ¥ (047) — (1/6)ae™ 79,57 (5,S))G"
o tae 96(0)GY) — (1/3)ae”5;(0:G") ) e
OPT' = BT — (2/3)(0j0)3 + (2/3)al0,7) + (1/3)a7'5(8,5) — 403(0j0)) A — (2/3)03' (0, A)
¥207TM; — (1/2)(08)797(9;8) + (1/6)(0,6°)777 (31S) + (1/3)(B8")777(9;5)
+(5/6)3°3725 (S)(9;8) + (1/2)6*57H(077)(8;S) + (1/3)8°5H(9;77") (k). (10)




A Full set of BSSN constraint propagation eqs.

HBS Ap A A Ay As HB5
M, —(1/3)(Bia) + (1/6)8; oK Asy; 0 Ass M,
G | = 0 ay? 0 Asy Ass G’
S 0 0 0 pBYaS)  —2a7 S
A 0 0 0 0 aK + 3%0, A

+(2/3)aK + (2/3)aA + 50y
—de (D) ¥ — 2674 (D)7
—2ae % A* 0, — ae™ (0, An) ! — e (0;a
H(1/6)e74371(8,8)(06S) — (2/3)e (O
20e 3% (9,0) Ak + (1/2)ae 771 (OLA)7 »QA + (1/2)e 371 (9,0)7* A0y, + (1/2)e~ %57 ™5 0,,,0,0),
—(5/4)e~ 32 3m3(0,8) 0,0k + €71 3™(0,,7F) 010k + (1/2)e 277 3(9;0,77%) O,
+(3/4)e 765 (0:8)(9;8)0k — (3/4)e A5 (0,777)(9;8) 0k + (1/3)e™ 77157 (9;8°) 0,01
—(5/12)e 5 725M(04,8)(0:8)0; + (1/3)e™ 571 (0x77)(9;8)0; — (1/6)e LSL%@&B&;@S
(4/9)aK A — (8/9)ak? + (4/3)ae™"%(0i0;0)7" + (8/3)ae™ (Opp) (DF") + ae™(9;77") 0y
+8ae™ 3% (0,0)0), + ae**37%0,0), + 8¢ (1) (Orp) A + e (0,0) (kF*) + 2¢7*2 (1) 7 O
+e 7% (9,0, )
ae” 3 (00) (0Fmi) — (1/2)ae™ T3 (03mi)
+(1/2)ae™ 5™ (040;7ma) + (1/2)ae™572(8:8)(0;S) — (1/4)ae™(0:3) (0;7") + ae™ 5™ (Op) 3iOm
+ae™(09;0)0; — (1/2)ae T 0AM 3,0, + ae™ 3™ 510, + (1/2)ae™%3%5,,0,0,
+(1/2)e™ 3™ (05%im) (Okar) + (1/2)e™*(9;0)0; + (1/2)e 3™ 35(0rr) O
— A% (0p) + (1/9)(0i0) K + (4/9) (0 K) + (1/9)aKd; — aA¥,0,
—(1/2)8*3"37(018)h — (1/2)(0B")7" 77 0 + (1/3)(08)7™ 5 0 — (1/2)B'3"™ (0Fmn) 7™ 7" Ok
+(1/2)8*5"5 1 0,0k
—(0,)7™ + 407" (Op) — a7,

A — e 370,0; — (1/2)e”**3"571(0;8)0%
)0;



BSSN Constraint propagation analysis in flat spacetime

e The set of the constraint propagation equations, d;(H?°Y, M;,G', A, S)T ?

e For the flat background metric g, = 7),,,, the first order perturbation equations of (6)-(10):

oy = —(1/6)VK + (1/6)x VA
oy = |%z@. — (2/3)r56, 14
VK = —(0,0.%%) + k101G — kg UHPISN
@ﬁ&@ _ aﬂmmmmz TF :Abb a) E+m§® H@\a (1/3)k 1201y H@»
oM = —(4/3)(01VK) — (2/3)r, (011 A) +M§A EN.

(NI e

N

/ /N TN TN /N
Ot w
— — 0 0 ~—

We express the adjustements as
Radj = A\&ﬁ“\&nf\&NT\AN‘M“\AKQH“\&\AM“\&WTR.\WMV. AHQV

e Constraint propagation equations at the first order in the flat spacetime:

ONIHBSN — (ks — (2/3)key — (4/3)ky + 2) 0;0{MA + 2(key, — 1)(0M;),  (17)
M = (—=(2/3)kg1 + (1/2)ka1 — (1/3) ka0 + (1/2)) 9,015
+(1/2)k210;0°G" + ((2/3)kxc2 — (1/2)) OFIHEIN,
oMG" = 2kp WM + (—(2/3)kp, — (1/3)k5)(011A),
oS = Iw\ﬁE\r
VA = (K — ka2)(0,167).

— =
0.0

/N TN N N
)
)

~— — ~— ~—



Effect of adjustments

No. Constraints (number of components) diag? | Constr. Amp. Factors
H(1) M;3) G (3) A1) S in Minkowskii background
0. standard ADM use use - - - yes | (0,0, )
1.  BSSN no adjustment use use use use use yes | (0,0,0,0,0,0,0,S,<)
2. the BSSN use+adj use+adj use+adj usetadj usetadj| no |(0,0,0,5,3, 9,3 S, D)
3. no S adjustment use+ad] use+ad] use+adj use+ad] use no | no difference in flat background
4.  no A adjustment use+adj use+adj use+ad] use usetadj | no |(0,0,0,95,%,9, S, S, Q)
5. no G’ adjustment use+adj usetadj use  usetadj usetadj| no |(0,0,0,0, ouo“ ou 3, Q)
6. no M, adjustment use+adj use uset+adj use+tadj use+adj| no |(0,0,0,0,0,0,0,R,R) Growing modes
7.  no H adjustment use  usetadj usetadj usetadj usetadj| no |(0,0,0,5,3,%, S, S, Q)
8. ignoreG', A, S use+adj use+tad] - - - no |(0,0,0,0)
9. ignore G/, A use+adj use+adj use+ad] - - yes | (0,5,3,9, 9, S, Q)
10. ignore G use+adj use+adj - use+adj usetadj| no |(0,0,0,0,0,0)
11. ignore A use+adj use+adj use+ad] - uset+adj | yes |(0,0,93,3,9,8, 3, 9)
12. ignore S use+adj use+adj uset+adj use+adj - yes | (0,0,9,3,5, 9, S, Q)




New Proposals :: Improved (adjusted) BSSN systems

TRS breaking adjustments

In order to break time reversal symmetry (TRS) of the evolution egs, to adjust J;¢, %3?9? using
S,G’, or to adjust O, K, @t»: using A.

oo = @mm% + @i@imm + EVQQU\AQ\A + Kgs10S + EV%QU\U .S

Oii = @mmqs + m)icizimm + fﬁo&sbwmw + Ksgaa Y D Qw + Ris1a%i;S + E%Qb b .S
WK = OP K + ke (DjMy) + ke oA+ xw&s@bbb\k

O Ai; = 0P Ajj + rarnad (DY My) + kanvpa(DaMj) + k4 103 A + k4 ,aDiD;A
@ng. = @mm? + zwiQU&imm + mwSQm@. + @SQU&@Q_Q& + xwmwQU@.UwQ + zwmQU@.imm

or in the flat background

P =tk HPS + kg0 GF + ks MS + k500,018

OAPME, - = ka0 HEY + k56165008 + (1/2)k562(01G + 011G + 15510, 1S + 15.500,0{1S
OMPVK = im0 M 4 kg WA + kg 1,0;0 VA
0P VA; = 480l My + (1/2)k apia(0:M + OjMG) + 1y 1,65 A+ k4 1,0,0;A

Of P = 4k OHPS + 56 MG + k00,01 G + K g,0:011 G + ki gONS



Constraint Amplification Factors with each adjustment

adjustment CAFs diag? effect of the adjustment

@w% K¢H aH AO 0, HW/\ \AMA v“mﬁﬁime no KoH < 0 makes 1 me.
oo KkegaDLGF (0,0, £/ —k?(*2), long expressions) yes | kgg < 0 makes 2 Neg. 1 Pos.
Orvij  kspaijH (0,0, v/ —k2(x3), (3/2)kspk?) yes | kgp < 0 makes 1 Neg. Case (B)
Oii  Kygi Q@&@»Qw (0,0, £+ —k?(x2), long expressions) yes | ksg1 > 0 makes 1 Neg.

. ) (0,0, (1/4)k?ksgs % \/k2(—1 + k2K562/16) (x2), )
OYi;  Kag2 vk Dj)G long expressions) yes | kyga < 0 makes 6 Neg. 1 Pos. Case (E1)
OV Kas1 @i S (0,0, £V —k2(x3), 3K551) no | kys1 < 0 makes 1 Neg.
Oij KasaaD;D;S (0,0, £v—k2(3), —r552k?) no | Kss2 > 0 makes 1 Neg.

s 0,0,0, £v/—K2(x2)

oK k(D (00,0, u < 0 makes 2 Neg.

e Cie (1/3)kadk? £ (1/3)R2(—=0 + k22 ) | o | MM s B maKes < eg
DA Karm aij(DFMy) | (0,0, v/ —k2(%3), —k ap1k?) ves | karpa > 0 makes 1 Neg.

i = (0,0, —k2kapio/4 £ \JK2 (=1 + K2k ap12/16)(+2) |

01 Aij Kamz (D M) long expressions) ves | kame > 0 makes 7 Neg Case (D)
OtAij Kaal QQ@.\A (0,0, £v —k?(%3), 3Kk 441) yes | ka41 < 0 makes 1 Neg.
@T&& KAA2 Qb b A on O“ n_u/\ I\AwTﬂwv“ I\ax{s\&mV Yyes KAA2 > 0 makes 1 me.
oI ki aD'H (0,0, v/ —k2(x3), —k 442k?) no | kg > 0 makes 1 Neg.
O Kpgy oG’ (0,0, (1/2)kpg, £ \/—k? + KF;,(x2) , long.) yes | Kpgy < 0 makes 6 Neg. 1 Pos. Case (E2)
L' KpgyaDiD;G (0,0, =(1/2)kpgy £ |/ —k* + K3, (¥2) , long.) | yes | Kfgy > 0 makes 2 Neg. 1 Pos.
oL KpgyaD'D;GI (0,0, =(1/2)kpgy |/ —=k* + K2, (%2) , long.) | yes | Kfgy > 0 makes 2 Neg. 1 Pos.

gr-qc/0204002 (PRD in print)



Comparisons of Adjusted BSSN systems (linear wave)
Mexico NR 2002 Workshop participants
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Figure 2: Violation of Hamiltonian constraints versus time: Adjusted BSSN systems applied for Teukolsky wave initial data evolution
with harmonic slicing, and with periodic boundary condition. Cactus/AEIThorns/BSSN code was used. Grid = 243, Ax = 0.25, iterative

Crank-Nicholson method. Courtesy of N. Dorband and D. Pollney (AEI).



An Evolution of Adjusted BSSN Formulation
by Yo-Baumgarte-Shapiro, gr-qc/0209066
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Summary

Towards a stable and accurate formulation for numerical relativity

e Several reports say numerical stabilities depend on the formulations to apply,
although they are mathematically equivalent.

e status = chaotic, many trials and errors

We tried to understand the background in an unified way.

e Our proposal = “Evaluate eigenvalues of constraint propagation eqns”

We give satisfactory conditions for stable evolutions.
Fourier transformation allows to discuss lower-order terms.

® Our Observation = “Stability will change by adding constraints in RHS”
We named “Adjusted System”.
Numerically confirmed in the Maxwell system and Ashtekar system.

e Our Observation 2= The idea works even for the ADM formulation
We explain the effective parameter range of Detweiler’s system (1987).
We proposed variety of adjustments. Several numerical confirmations.

® Our Observation 3= The idea works also for the BSSN formulation
We explain why adjusting momentum constraints improves the stability.

We proposed variety of adjustments. Several numerical confirmations.

Evaluation of CAF's may be an alternative guideline to hyperbolization of the system.




Next Steps?

e Generalize the procedure to construct adjusted systems

— dynamical and automatical determination of x under a suitable principle.
— target to control each constraint violation by adjusting multipliers.

— clarify the reasons of non-linear violation in current test evolutions.

e More on hyperbolic formulations

— effects of non-principal part?

— clarify the reasons of advantages of kinematic parameters (in KST) mixed-
form variables, and/or densitized lapse?

— links to the initial-boundary value problem (IBVP).
e Alternative new ideas?

— control theories, optimization methods (convex functional theories), math-
ematical programming methods, or .

e Numerical comparisons of formulations

— “Comparisons of Formulations of Einstein’s equations for Numerical Rel-
ativity” (Mexico NR workshop, 2002) in progress



Kidder-Scheel-Teukolsky hyperbolic formulation (Anderson-York + Frittelli-Reula)
Phys. Rev. D. 64 (2001) 064017

e Construct a First-order form using variables (K;;, g;;, dii;) where dj;; = 0kg;
Constraints are (H, M, Ci;j, Ciij) where Crij = dyij — Orgij, and Crij = ey

e Densitize the lapse, @ = log(Ng~7)
e Adjust equations with constraints
Oogij = —2NK;;
K = () +yNgijH + (NG Coiiy
Oodrij = () + NN griMjy + xNgi; My,

e Re-deining the variables (P;;, ¢ij, Mi;)
P = K+ zg;K,
i@@. = AF\NVT.A&\&S + m&mﬁvw + .QSA@&\A + @@wv + Qi%m&bv + &@uvzu &\a = .Q%&\S? @w = Q@@&@g
The redefinition parameters

— do not change the eigenvalues of evolution egs.
— do not effect on the principal part of the constraint evolution egs.
— do affect the eigenvectors of evolution system.

— do affect nonlinear terms of evolution eqs/constraint evolution egs.





