Refs: Ashtekar variables PRL 82 (1999) 263, PRD 60 (1999) 101502, IJMPD 9 (2000) 13, CQG 17 (2000) 4799, CQG 18 (2001) 441 ADM variables PRD 63 (2001) 120419, CQG 18 (2001) 441 BSSN variables gr-qc/0204002 (PRD in print) general gr-qc/0209106 and gr-qc/0209111 (review)	PhD @ Waseda Univ. (supervised by Keiichi Maeda) PostDoc @ Washington Univ. St. Louis Visiting Assoc @ PennState Univ. (JSPS researcher in abroad) PostDoc @ RIKEN	Who is HS?	work with Gen Yoneda Math. Sci. Dept., Waseda Univ., Japan	Hisa-aki Shinkai Computational Sci. Div., RIKEN (The Institute of Physical and Chemical Research), Japan hshinkai@postman.riken.go.jp	Constructing Asymptotically Constrained Systems by adjusting ADM/BSSN equations
^o D 9 (2000) 13,			eda Univ., Japan	Research), Japan	ystems

@ Caltech, October 10, 2002

Outline

- Three approaches: ADM/BSSN, hyperbolic formulation, attractor systems
- Proposals : A unified treatment as Adjusted Systems

Analytic Support: Constraint Propagation eqs. Some predictions and Numerical experiments

Plan of the talk

- 1. Introduction
- 2. Three approaches
- (1) Arnowitt-Deser-Misner / Baumgarte-Shapiro-Shibata-Nakamura
- (2) Hyperbolic formulations
- (3) Attractor systems "Adjusted Systems"
- 3. Adjusted ADM systems Flat background Schwarzschild background
- 4. Adjusted BSSN systems Flat background
- 5. Summary

Numerical Relativity and "Formulation" Problem

Numerical Relativity – Necessary for unveiling the nature of strong gravity

- Gravitational Wave from colliding Black Holes, Neutron Stars, Supernovae, ...
- Relativistic Phenomena like Cosmology, Active Galactic Nuclei, ...
- Mathematical feedbacks to Singularity, Exact Solutions, Chaotic behaviors, ...
- Laboratory of Gravitational theories, Higher dimensional models, ...

LI GO/VI RGO/GEO/TAMA, ...

Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

Many (too many) trials and errors, not yet a definit recipe.

- water O. A manufit Decor Misson formulation
- strategy 1: strategy 0: Shibata-Nakamura's (Baumgarte-Shapiro's) modifications to the standard ADM Arnowitt-Deser-Misner formulation
- strategy 2: Apply a formulation which reveals a hyperbolicity explicitly
- strategy 3: Formulate a system which is "asymptotically constrained" against a violation of constraints
- By adding constraints in RHS, we can kill error-growing modes
- \Rightarrow How can we understand the features systematically?

evolution eqs.	-	constraints		strategy 0 The standard approach $3+1$ decomposition of the sp Evolve 12 variables (γ_{ij}, K_{ij}) with a choice of gauge condi
$\frac{1}{c}\partial_t \mathbf{B} = -rot \ \mathbf{E}$	$\frac{1}{c}\partial_t \mathbf{E} = \operatorname{rot} \mathbf{B} - \frac{4\pi}{c} \mathbf{j}$	div $\mathbf{B} = 0$	Maxwell eqs.	gy 0 The standard approach :: Arnowitt-Des 3+1 decomposition of the spacetime. Evolve 12 variables (γ_{ij}, K_{ij}) surface with a choice of gauge condition. lapse function, N
$+ (D_j N^m) K_{mi} + (D_i N^m) K_{mj} + N^m D_m K_{ij} - N \gamma_{ij} \Lambda - \kappa \alpha \{ S_{ij} + \frac{1}{2} \gamma_{ij} (\rho_H - \text{tr}S) \}$	$\begin{aligned} \partial_t \gamma_{ij} &= -2NK_{ij} + D_j N_i + D_i N_j, \\ \partial_t K_{ij} &= N(\ ^{(3)}R_{ij} + \text{tr}KK_{ij}) - 2NK_{il}K^l_{\ i} - D_i D_j N \end{aligned}$	\sim	ADM Einstein eq. $(3)R \pm (+rK)^2 = K \oplus K^{ij} = 9 \text{ for } \pm 9 \Lambda$	The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962) decomposition of the spacetime. e 12 variables (γ_{ij}, K_{ij}) surface normal line a choice of gauge condition. Iapse function, N

— define new variables $(\phi, ilde{\gamma}_{ij},K, ilde{A}_{ij}, ilde{\Gamma}^i)$, instead of the ADM's (γ_{ij},K_{ij}) where

$$\tilde{\gamma}_{ij} \equiv e^{-4\phi} \gamma_{ij}, \qquad \tilde{A}_{ij} \equiv e^{-4\phi} (K_{ij} - (1/3)\gamma_{ij}K), \qquad \tilde{\Gamma}^i \equiv \tilde{\Gamma}^i_{jk} \tilde{\gamma}^{jk},$$

use momentum constraint in Γ^i -eq., and impose $\det \tilde{\gamma}_{ij} = 1$ during the evolutions.

The set of evolution equations become $(\partial_t - \mathcal{L}_\beta)\phi = -(1/6)\alpha K,$

$$\begin{aligned} &(\partial_t - \mathcal{L}_{\beta})\tilde{\gamma}_{ij} = -2\alpha\tilde{A}_{ij}, \\ &(\partial_t - \mathcal{L}_{\beta})K = \alpha\tilde{A}_{ij}\tilde{A}^{ij} + (1/3)\alpha K^2 - \gamma^{ij}(\nabla_i\nabla_j\alpha), \\ &(\partial_t - \mathcal{L}_{\beta})\tilde{A}_{ij} = -e^{-4\phi}(\nabla_i\nabla_j\alpha)^{TF} + e^{-4\phi}\alpha R^{(3)}_{ij} - e^{-4\phi}\alpha(1/3)\gamma_{ij}R^{(3)} + \alpha(K\tilde{A}_{ij} - 2\tilde{A}_{ik}\tilde{A}^k_j) \\ &\partial_t\tilde{\Gamma}^i = -2(\partial_j\alpha)\tilde{A}^{ij} - (4/3)\alpha(\partial_jK)\tilde{\gamma}^{ij} + 12\alpha\tilde{A}^{ji}(\partial_j\phi) - 2\alpha\tilde{A}_k{}^j(\partial_j\tilde{\gamma}^{ik}) - 2\alpha\tilde{\Gamma}^k{}_{lj}\tilde{A}^j{}_k\tilde{\gamma}^{il} \\ &-\partial_j\left(\beta^k\partial_k\tilde{\gamma}^{ij} - \tilde{\gamma}^{kj}(\partial_k\beta^i) - \tilde{\gamma}^{ki}(\partial_k\beta^j) + (2/3)\tilde{\gamma}^{ij}(\partial_k\beta^k)\right) \end{aligned}$$

$$\begin{split} R_{ij} &= \partial_k \Gamma^k_{ij} - \partial_i \Gamma^k_{kj} + \Gamma^m_{ij} \Gamma^k_{mk} - \Gamma^m_{kj} \Gamma^k_{mi} =: \tilde{R}_{ij} + R^{\phi}_{ij} \\ R^{\phi}_{ij} &= -2 \tilde{D}_i \tilde{D}_j \phi - 2 \tilde{g}_{ij} \tilde{D}^l \tilde{D}_l \phi + 4 (\tilde{D}_i \phi) (\tilde{D}_j \phi) - 4 \tilde{g}_{ij} (\tilde{D}^l \phi) (\tilde{D}_l \phi) \\ \tilde{R}_{ij} &= -(1/2) \tilde{g}^{lm} \partial_{lm} \tilde{g}_{ij} + \tilde{g}_{k(i} \partial_{j)} \tilde{\Gamma}^k + \tilde{\Gamma}^k \tilde{\Gamma}_{(ij)k} + 2 \tilde{g}^{lm} \tilde{\Gamma}^k_{l(i} \tilde{\Gamma}_{j)km} + \tilde{g} lm \tilde{\Gamma}^k_{im} \tilde{\Gamma}_{klj} \end{split}$$

No explicit explanations why this formulation works better.

AEI group (2000): the replacement by momentum constraint is essential.

symmetric hyperbolic system \implies WELL-POSED , $||u(t)|| \leq e^{\kappa t} ||u(0)||$

known numerical techniques in Newtonian hydrodynamics.

symmetric hyperbolic \subset strongly hyperbolic \subset weakly hyperbolic systems,

- Are they actually helpful? if so, which level of hyperbolicity is necessary?
- Under what conditions/situations the advantages will be observed?

Unfortunately, we do not have conclusive answers to them yet.

- Several numerical experiments indicate that the direction is NOT a full of success
- Earlier numerical comparisons reported the advantages of hyperbolic formulations, but they were against to the standard ADM formulation. [Cornell-Illinois, NCSA, ...]
- Numerical evolutions are always terminated with blow-ups.
- If the gauge functions are evolved with hyperbolic equations, then their finite propagation speeds may cause a pathological shock formations [Alcubierre].
- No drastic numerical differences between three hyperbolic levels [HS Yoneda, Hern].
- Proposed symmetric hyperbolic systems were not always the best one for numerics

careful not to over-announce the results. Of course, these statements only casted on a particular formulation, therefore we have to be

 relations between convergence behavior and levels of hyperbolicity. 	 KST formulation with "kinematic" parameters which enables us to reduce non-principal part. links to IBVP approach. 	cf. Recent discussions	(c) The discussion of hyperbolicity only uses the characteristic part of the evolution equations, and ignore the rest.	(b) The statement of "stability" in the discussion of well-posedness means the bounded growth of the norm, and does not mean a decay of the norm in time evolution.	metric or strongly hyperbolic systems. If the matrix components or coefficients depend dynamical variables (like in any versions of hyperbolized Einstein equations), almost nothing was proved in its general situations.	(a) Rigorous mathematical proofs of well-posedness of PDE are mostly for a simple sym-	 Remarks to hyperbolic formulations 	strategy 2 Apply a formulation which reveals a hyperbolicity explicitly. (cont.)
ations between convergence behavior and levels of hyperbolicity.	T formulation with "kinematic" parameters which enables us to reduce non-principal part. <s approach.<="" ibvp="" td="" to=""><td>ent discussions</td><td>(c) The discussion of hyperbolicity only uses the characteristic part of the evolution equations, and ignore the rest.</td><td></td><td>metric or strongly hyperbolic systems. If the matrix components or coefficients depend dynamical variables (like in any versions of hyperbolized Einstein equations), almost nothing was proved in its general situations.</td><td>(a) Rigorous mathematical proofs of well-posedness of PDE are mostly for a simple sym-</td><td>marks to hyperbolic formulations</td><td>opiv a tormulation which reveals a hyperbolicity explicitly. (cont.)</td></s>	ent discussions	(c) The discussion of hyperbolicity only uses the characteristic part of the evolution equations, and ignore the rest.		metric or strongly hyperbolic systems. If the matrix components or coefficients depend dynamical variables (like in any versions of hyperbolized Einstein equations), almost nothing was proved in its general situations.	(a) Rigorous mathematical proofs of well-posedness of PDE are mostly for a simple sym-	marks to hyperbolic formulations	opiv a tormulation which reveals a hyperbolicity explicitly. (cont.)

strategy 3 Formulate a system which is "asymptotically constrained" against a violation of constraints "Asymptotically Constrained System" - Constraint Surface as an Attractor Ĩ method 1: λ -system (Brodbeck et al, 2000) Add aritificial force to reduce the violation of constraints metric hyperbolic system.

To be guaranteed if we apply the idea to a sym-

method 2: Adjusted system (Yoneda HS, 2000, 2001)

- We can control the violation of constraints by adjusting constraints to EoM.
- Eigenvalue analysis of constraint propagation equations may prodict the violation of error.
- symmetric hyperbolic. \Rightarrow This idea is applicable even if the system is not

for the ADM/BSSN formulation, too!!

error

ldea of λ -system

Brodbeck, Frittelli, Hübner and Reula, JMP40(99)909

Recipe We expect a system that is robust for controlling the violation of constraints

- 1. Prepare a symmetric hyperbolic evolution system $\partial_t u = J \partial_i u + K$
- $\dot{\Sigma}$ Introduce λ as an indicator of violation of constraint which obeys dissipative eqs. of motion $\partial_t \lambda = \alpha C - \beta \lambda$ $(\alpha \neq 0, \beta > 0)$
- 3. Take a set of (u,λ) as dynamical variables
- Modify evolution eqs so as to form a symmetric hyperbolic system Remarks

 $\partial_t \left(egin{smallmatrix} u \ \pmb{\lambda} \end{smallmatrix}
ight) = \left(egin{smallmatrix} A & F \ F & 0 \end{smallmatrix}
ight) \partial_i \left(egin{smallmatrix} u \ \pmb{\lambda} \end{smallmatrix}
ight)$

 $\partial_t \begin{pmatrix} u \\ \pmb{\lambda} \end{pmatrix} \simeq \begin{pmatrix} A & 0 \\ F & 0 \end{pmatrix} \partial_i \begin{pmatrix} u \\ \pmb{\lambda} \end{pmatrix}$

- BFHR used a sym. hyp. formulation by Frittelli-Reula [PRL76(96)4667]
- The version for the Ashtekar formulation by HS-Yoneda [PRD60(99)101502] for controlling the constraints or reality conditions or both
- Succeeded in evolution of GW in planar spacetime using Ashtekar vars. [CQG18(2001)441]
- Do the recovered solutions represent true evolution? by Siebel-Hübner [PRD64(2001)024021]

Idea of "Adjusted system" and Our Conjecture

CQG18 (2001) 441, PRD 63 (2001) 120419, CQG 19 (2002) 1027

General Procedure

- prepare a set of evolution eqs.
- 2. add constraints in RHS

 $\partial_t u^a = f(u^a, \partial_b u^a, \cdots) + F(C^a, \partial_b C^a, \cdots)$

 $\partial_t u^a = f(u^a, \partial_b u^a, \cdots)$

3. choose appropriate $F(C^a, \partial_b C^a, \cdots)$ to make the system stable evolution

How to specify $F(C^a, \partial_b C^a, \cdots)$?

- 4. prepare constraint propagation eqs.
- 5. and its adjusted version

$$\partial_t C^a = g(C^a, \partial_b C^a, \cdots)$$

 $\partial_t C^a = g(C^a, \partial_b C^a, \cdots) + G(C^a, \partial_b C^a, \cdots)$

<u>6</u> Fourier transform and evaluate eigenvalues $\partial_t \hat{C}^k = A(\hat{C}^a) \hat{C}^k$

If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more stable. **Conjecture:** Evaluate eigenvalues of (Fourier-transformed) constraint propagation eqs.

The Adjusted s	The Adjusted system (essentials):
Purpose:	Control the violation of constraints by reformulating the system so as to have a constrained surface an attractor.
Procedure:	Add a particular combination of constraints to the evolution equations, and adjust its multipliers.
Theoretical support:	:: Eigenvalue analysis of the constraint propagation equations.
Advantages:	Available even if the base system is not a symmetric hyperbolic.
Advantages:	Keep the number of the variable same with the original system.
Conjecture on	Conjecture on Constraint Amplification Factors (CAFs):
(A) If CAF has a n stable evolutior	(A) If CAF has a negative real-part (the constraints are forced to be diminished), then we see more stable evolution than a system which has positive CAF.
(B) If CAF has a <mark>n</mark> stable evolutior	(B) If CAF has a non-zero imaginary-part (the constraints are propagating away), then we see more stable evolution than a system which has zero CAF.

CAFS? $\begin{aligned} \partial_t \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix} &= \begin{pmatrix} \partial_i P^i + P^i k_i & \partial_i Q^i + Q^i k_i \\ \partial_i R^i + R^i k_i & \partial_i S^i + S^i k_i \end{pmatrix} \partial_l \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix} \approx \begin{pmatrix} P^i k_i & Q^i k_i \\ R^i k_i & S^i k_i \end{pmatrix} \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix} =: T \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix} \\ \Rightarrow CAFs = (P^i k_i + S^i k_i \pm \sqrt{(P^i k_i + S^i k_i)^2 + 4(Q^i k_i R^j k_j - P^i k_i S^j k_j)})/2 \\ \end{aligned}$ Therefore CAFs become negative-real when $P^i k_i + S^i k_i < 0, \text{and} Q^i k_i R^j k_j - P^i k_i S^j k_j < 0 \end{aligned}$	$egin{aligned} \partial_t C_E &= (\partial_i P^i) C_E + P^i (\partial_i C_E) + (\partial_i Q^i) C_B + Q^i (\partial_i C_B), \ \partial_t C_B &= (\partial_i R^i) C_E + R^i (\partial_i C_E) + (\partial_i S^i) C_B + S^i (\partial_i C_B), \ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Example: the Maxwell equations Yoneda HS, CQG 18 (2001) 441 Maxwell evolution equations.
--	--	---	--

\sim
+
$2\kappa_2)$
$\overline{(1)}$
+
$2\kappa_3)$
${\sim}$

In order to obtain non-positive real eigenvalues:

$$\left(0, 0, 0, \pm \kappa_3 \sqrt{-kx^2 - ky^2 - kz^2}, \pm \sqrt{(-1 + 2\kappa_2)(1 + 2\kappa_3)(kx^2 + ky^2 + kz^2)}\right)$$

$$(0, 0, 0, +_{K_2}\sqrt{-kx^2 - kn^2 - kz^2} + \sqrt{(-1 + 2\kappa_2)(1 + 2\kappa_2)(kx^2 + kx^2)})$$

$$\partial_t \begin{pmatrix} \hat{\mathcal{C}}_H \\ \hat{\mathcal{C}}_{Mi} \\ \hat{\mathcal{C}}_{Ga} \end{pmatrix} = \begin{pmatrix} 0 & i(1+2\kappa_3)k_j & 0 \\ i(1-2\kappa_2)k_i & \kappa_3 \epsilon^{kj}{}_ik_k & 0 \\ 0 & 2\kappa_3 \delta_a^j & 0 \end{pmatrix} \begin{pmatrix} \hat{\mathcal{C}}_H \\ \hat{\mathcal{C}}_{Mj} \\ \hat{\mathcal{C}}_{Gb} \end{pmatrix}$$

$$\partial_t \begin{pmatrix} \hat{\mathcal{C}}_H \\ \hat{\mathcal{C}}_{Mi} \\ \hat{\mathcal{C}}_{Ga} \end{pmatrix} = \begin{pmatrix} 0 & i(1+2\kappa_3)k_j & 0 \\ i(1-2\kappa_2)k_i & \kappa_3\epsilon^{kj}k_k & 0 \\ 0 & 2\kappa_3\delta_2^j & 0 \end{pmatrix} \begin{pmatrix} \hat{\mathcal{C}}_H \\ \hat{\mathcal{C}}_{Mj} \\ \hat{\mathcal{C}}_{Gb} \end{pmatrix}$$

),
$$P_b^{ia} = \kappa_1 (i N^i \delta^a_b)$$
, $Q_i^a = \kappa_2 (e^{-2} \tilde{N} \tilde{E}_i^a)$,

$$X = Y = Z = 0, \ P_b^{ia} = \kappa_1(iN^i\delta_b^a), \ Q_i^a = \kappa_2(e^{-2}\tilde{N}\tilde{E}_i^a), \ R^{aj}{}_i = \kappa_3(-ie^{-2}\tilde{N}\epsilon^{ac}{}_d\tilde{E}_c^d\tilde{E}_c^j)$$

$$= Y = Z = 0, \ P_i^{ia} = \kappa_1 (i N^i \delta_i^a), \ Q^a = \kappa_2 (e^{-2} N \tilde{F}_i^a), \ R^a j_i = \kappa_2 (-i e^{-2} N \epsilon^{ac_a} \tilde{F}_i^a)$$

$$\partial_t \mathcal{A}_i^a = -i\epsilon^{ab}_{\ c} \widetilde{\mathcal{N}} E_b^j F_{ij}^c + N^j F_{ji}^a + \mathcal{D}_i \mathcal{A}_0^a + \Lambda \widetilde{\mathcal{N}} E_i^a \underbrace{+Q_i^a \mathcal{C}_H + R_i^{aj} \mathcal{C}_{Mj} + Z_i^{ab} \mathcal{C}_{Gb}}_{adjust}$$

ted and linearized:

Adju

ted and linearized:
$$V = V = \sigma - \sigma i a = (\pi i \sin \sigma) - \sigma = (\pi i - 2 \pi i \pi a) - \sigma i = (\pi i - 2 \pi i a a \pi i - 2 \pi i a a \pi i - 2 \pi i a a \pi i - 2 \pi$$

$$\partial_t \tilde{E}_a^i = -i\mathcal{D}_j(\epsilon^{cb}_{\ a}\tilde{N}\tilde{E}_c^j\tilde{E}_b^i) + 2\mathcal{D}_j(N^{[j}\tilde{E}_a^{i]}) + i\mathcal{A}_0^b\epsilon_{ab}{}^c\tilde{E}_c^i \underbrace{+X_a^i\mathcal{C}_H + Y_a^{ij}\mathcal{C}_{Mj} + P_a^{ib}\mathcal{C}_{Gb}}_{adjust}$$

$$\mathcal{A}_{i}^{a} = -i\epsilon^{ab}{}_{c}\tilde{N}\tilde{E}_{b}^{j}F_{ij}^{c} + N^{j}F_{ji}^{a} + \mathcal{D}_{i}\mathcal{A}_{0}^{a} + \Lambda\tilde{N}\tilde{E}_{i}^{a}\underbrace{+Q_{i}^{a}\mathcal{C}_{H} + R_{i}^{aj}\mathcal{C}_{Mj} + Z_{i}^{ab}\mathcal{C}_{Gb}}_{i}$$

HS Yoneda, CQG 17 (2000) 4799

Example: the Ashtekar equations

Adjusted dynamical equations:

(C3) Diverge : At lea	(a) (b	(C2) Asym		(C1) Asym Vi		A Classif
erge : At least one constraint will diverge.	\Leftrightarrow (a) All the real parts of CAFs are not positiv (b1) the CP matrix $M^{\alpha}{}_{\beta}$ is diagonalizable, or (b2) the real part of the degenerated CAFs i	(C2) Asymptotically bounded : Violation of constraints i	\Leftrightarrow All the real parts of CAFs are negative.	(C1) Asymptotically constrained : Violation of constraints d		A Classification of Constraint Propagations (cont.)
ill diverge.	\Leftrightarrow a) All the real parts of CAFs are not positive, and (b1) the CP matrix $M^{\alpha}{}_{\beta}$ is diagonalizable, or (b2) the real part of the degenerated CAFs is not zero.	mptotically bounded : Violation of constraints is bounded at a certain value.	CAFs are negative.	Imptotically constrained : Violation of constraints decays (converges to zero).	gr-qc	Propagations (cont.)
	ero.	1e.			gr-qc/0209106	

The necessary and sufficient conditions for (C1) and (C2)?

Preparation

a triangular matrix. Suppose we have an expression, Without loss of generality, the CP matrix M can be assumed to be

where λ s are the eigenvalues of M, and the indices are formally labeled in this order.

Proposition 1 The solution of (1) can be expressed formally as
$$C_{j}(t) = \sum_{i=1}^{j} \left\{ \exp(\lambda_{i}t) \sum_{k=0}^{n_{i}-1} (a_{k}^{(i)}t^{k}) \right\}, \quad (2)$$

 λ_i up to $i \leq j$. where λ_i is the *i*-th eigenvalue of M, and n_i is the multiplicity of

proof of \Rightarrow) We show the contrapositive. Suppose there exists an eigenvalue λ_1 such as which real-part is non-negative. By setting λ_1 at the lower-end of the triangular matrix M in (1), then we get $\partial_t C_1 = \lambda_1 C_1$ which solution is $C_1 = C_1(0) \exp(\lambda_1 t)$. C_1 does not converge to zero.	proof of \Leftarrow) We use the expression (2). If $\Re e(\lambda_i) < 0$ for $\forall i$, then C will converge to zero at $t \to \infty$ no matter what t -polynomial terms are.	Theorem 1 Asymptotically constrained evolution (violation of constraints converges to zero) ⇔ All the real parts of CAFs are negative.	Asymptotically Constrained CP – (C1) –
---	--	---	--

Theorem 2

bounded at a certain value) Asymptotically bounded evolution (all the constraints are

(a) All the real parts of CAFs are not positive, and

(b1) the CP matrix $M^{\alpha}{}_{\beta}$ is diagonalizable, or

(b2) the real part of the degenerated CAFs is not zero.

 $\Re e(\lambda_i) \leq 0.$ $\partial_t C_i = \lambda_i C_i$, which solution is $C_i = C_i(0) \exp(\lambda_i t)$. This is bounded since proof of \leftarrow for the case (a+b1): By a diagonalization, we obtain

 $\Re e(\lambda) \leq 0.$ stant term rather than t-polynomials. So that (2) remains finite for converge to zero. When λ is not degenerated, there is only a conever, the assumption, $\Re e(\lambda) < 0$, indicates $\exp(\lambda t)(t$ -polynomials) will λ is degenerated, the t-polynomials have non-zero power. Howproof of \Leftarrow for the case (a+b2): We use the expression (2). When

(a) and $\{(b1) \text{ or } (b2) \} \Leftrightarrow (a) \text{ or } \{(a) \text{ and} \{(b1) \text{ and } (b2)\} \}$ proof of \Rightarrow) We show the contrapositive.

a)
$$\Rightarrow$$
 diverge :: trivial.
a) and $\overline{(h1)}$ and $\overline{(h2)}$ \Rightarrow diverge

n = 3 case, ્ર By triangulating the matrix, we can set the degenerated CAFs λ which real-part is zero. Let us consider a_{1} and (2α) and (2α) and (2α) and (2α)

$$M = \begin{pmatrix} \lambda_i & a & b \\ 0 & \lambda & c \\ 0 & 0 & \lambda \end{pmatrix}, \quad a, b, c = \text{constant}$$

Then we get first $C_1 = C_1(0) \exp(\lambda t)$ which is a constant or a trigonal function, and

$$\partial_t C_2 = \lambda C_2 + c C_1 = \lambda C_2 + c C_1(0) \exp(\lambda t)$$

$$\Rightarrow \quad C_2 = C_2(0) \exp(\lambda t) + c C_1(0) \exp(\lambda t)t.$$

Therefore C_2 will diverge when $c \neq 0$, and remain finite when c = 0.

the product of $(M - \lambda_i E)$ for different eigenvalues λ_i . When there exists $\lambda_i \neq \lambda$, we see that Since we are assuming the matrix is not diagonalizable, the minimal polynomial does not take the form as

$$(M - \lambda E)(M - \lambda_i E) = \begin{pmatrix} \lambda_i - \lambda & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a & b \\ 0 & \lambda - \lambda_i & c \\ 0 & 0 & \lambda - \lambda_i \end{pmatrix} = \begin{pmatrix} 0 & 0 & a c \\ 0 & 0 & c(\lambda - \lambda_i) \\ 0 & 0 & 0 \end{pmatrix},$$

a, b, c is non-zero in order not to vanish $(M - \lambda E)$. Therefore related C_i will diverge which should not equal to zero matrix, that indicates $c \neq 0$. Therefore C_2 will diverge. When $\lambda = \lambda_i$, some of

A flowchart to classify the fate of constraint propagation.

Constructing Asymptotically Constrained Systems

Hisaaki Shinkai

- 1. Introduction
- 2. Three approaches
- (1) Arnowitt-Deser-Misner / Baumgarte-Shapiro-Shibata-Nakamura
- (2) Hyperbolic formulations
- (3) Attractor systems "Adjusted Systems"
- 3. Adjusted ADM systems
- 4. Adjusted BSSN systems
- 5. Summary

We adjust the standard ADM system using constraints as:

$$\begin{aligned}
\partial_{\ell}\gamma_{ij} &= -2\alpha K_{ij} + \nabla_i \beta_i, \\
&+ P_{ij}\mathcal{H} + Q^k_{ij}\mathcal{M}_k + p^k_{ij}(\nabla_k \mathcal{H}) + q^{kl}_{ij}(\nabla_k \mathcal{M}_l), \\
&+ R_{ij}\mathcal{H} + Q^k_{ij}\mathcal{M}_k + p^k_{ij}(\nabla_k \mathcal{H}) + q^{kl}_{ij}(\nabla_k \mathcal{M}_l), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{M}_k + r^k_{ij}(\nabla_k \mathcal{H}) + s^{kl}_{ij}(\nabla_k \mathcal{M}_l), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{M}_k + r^k_{ij}(\nabla_k \mathcal{H}) + s^{kl}_{ij}(\nabla_k \mathcal{M}_l), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{M}_k + r^k_{ij}(\nabla_k \mathcal{H}) + s^{kl}_{ij}(\nabla_k \mathcal{M}_l), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{M}_k + r^k_{ij}(\nabla_k \mathcal{H}) + s^{kl}_{ij}(\nabla_k \mathcal{M}_l), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}(\nabla_k \mathcal{H}) + s^{kl}_{ij}(\nabla_k \mathcal{H}), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}(\nabla_k \mathcal{H}) + s^{kl}_{ij}(\nabla_k \mathcal{H}), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}(\nabla_k \mathcal{H}) + s^{kl}_{ij}(\nabla_k \mathcal{H}), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}(\nabla_k \mathcal{H}) + s^{kl}_{ij}(\nabla_k \mathcal{H}), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}(\nabla_k \mathcal{H}) + S^k_{ij}(\nabla_k \mathcal{H}), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}(\nabla_k \mathcal{H}) + S^k_{ij}(\nabla_k \mathcal{H}), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}(\nabla_k \mathcal{H}) + S^k_{ij}(\nabla_k \mathcal{H}) + S^k_{ij}(\nabla_k \mathcal{H}), \\
&+ R_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}\mathcal{H} + S^k_{ij}(\nabla_k \mathcal{H}) + S^k_{ij}(\nabla_k \mathcal{H}$$

ಲು

Adjusted ADM systems

We can write the adjusted constraint propagation equations as

 $\partial_t \mathcal{H} = \text{(original terms)} + H_1^{mn}[(2)] + H_2^{imn} \partial_i[(2)] + H_3^{ijmn} \partial_i \partial_j[(2)] + H_4^{mn}[(4)], \quad (7)$ $\partial_t \mathcal{M}_i = \text{(original terms)} + M_{1i}^{mn}[(2)] + M_{2i}^{jmn} \partial_j[(2)] + M_{3i}^{mn}[(4)] + M_{4i}^{jmn} \partial_j[(4)]. \quad (8)$ (7)

$ \begin{aligned} & $	$ \begin{array}{l} \textbf{Original ADM} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
--	---

	$\Lambda^{l} = (0, 0, \pm \sqrt{-k^{2}(1 + 4\kappa_{1})}).$	 On the Minkowskii background metric, the linear order terms of the Fourier-transformed constraint propagation equations gives the eigenvalues 	$ \begin{array}{ll} \text{The hyperbolicity of (5):} & \left\{ \begin{array}{ll} \text{symmetric hyperbolic} & \text{when } \kappa_1 = 3/2 \\ \text{strongly hyperbolic} & \text{when } \alpha^2 \gamma^{ll} (1 + 4\kappa_1) > 0 \\ \text{weakly hyperbolic} & \text{when } \alpha^2 \gamma^{ll} (1 + 4\kappa_1) \geq 0 \end{array} \right. \end{array} $	$\lambda^l = (\beta^l, \beta^l, \beta^l \pm \sqrt{lpha^2 \gamma^{ll} (1 + 4\kappa_1)})$	The eigenvalues of the characteristic matrix:	$\partial_t \left(egin{array}{c} \mathcal{H} \ \mathcal{M}_i \end{array} ight) \simeq \left(egin{array}{cc} eta^l & -2lpha\gamma^{jl} \ -(1/2)lpha\delta^l_i + R^l_i - \delta^l_i R & eta^l\delta^j_i \end{array} ight) \partial_l \left(egin{array}{c} \mathcal{H} \ \mathcal{M}_j \end{array} ight).$	 The constraint propagation eqs keep the first-order form (cf Frittelli, PRD55(97)5992): 	Try the adjustment $\frac{R_{ij} = \kappa_1 \alpha \gamma_{ij}}{R_{ij} = \kappa_1 \alpha \gamma_{ij}}$ and other multiplier zero, where $\kappa_1 = \begin{cases} 0 & \text{the standard ADN} \\ -1/4 & \text{the original ADM} \end{cases}$	3.1 Original ADM vs Standard ADM	3 Constraint propagation of ADM systems
BETTER STABILITY		-ourier-transformed				$\begin{pmatrix} \boldsymbol{t} \\ \boldsymbol{t}_j \end{pmatrix}$. (5)	D55(97)5992):	the standard ADM $^{-1/4}$ the original ADM		

4.1 The procedure Constraint propagations in spherically symmetric spacetime

The discussion becomes clear if we expand the constraint $C_{\mu} := (\mathcal{H}, \mathcal{M}_i)^T$ using vector harmonics.

$$C_{\mu} = \sum_{l,m} \left(A^{lm}(t,r) a_{lm}(\theta,\varphi) + B^{lm} b_{lm} + C^{lm} c_{lm} + D^{lm} d_{lm} \right),$$
(1)

where we choose the basis of the vector harmonics as

$$a_{lm} = \begin{pmatrix} Y_{lm} \\ 0 \\ 0 \end{pmatrix}, b_{lm} = \begin{pmatrix} 0 \\ Y_{lm} \\ 0 \\ 0 \end{pmatrix}, c_{lm} = \frac{r}{\sqrt{l(l+1)}} \begin{pmatrix} 0 \\ \partial_{\theta}Y_{lm} \\ \partial_{\varphi}Y_{lm} \end{pmatrix}, d_{lm} = \frac{r}{\sqrt{l(l+1)}} \begin{pmatrix} 0 \\ 0 \\ -\frac{1}{\sin\theta}\partial_{\varphi}Y_{lm} \\ \sin\theta\,\partial_{\theta}Y_{lm} \end{pmatrix}.$$

The basis are normalized so that they satisfy

$$\langle C_{\mu}, C_{\nu} \rangle = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} C_{\mu}^{*} C_{\rho} \eta^{\nu\rho} \sin \theta d\theta,$$

where $\eta^{
u
ho}$ is Minkowskii metric and the asterisk denotes the complex conjugate. Therefore

$$A^{lm} = \langle a^{lm}_{(
u)}, C_{
u} \rangle, \quad \partial_t A^{lm} = \langle a^{lm}_{(
u)}, \partial_t C_{
u} \rangle, \quad \text{etc.}$$

We also express these evolution equations using the Fourier expansion on the radial coordinate,

$$A^{lm} = \sum_{k} \hat{A}^{lm}_{(k)}(t) e^{ikr} \quad \text{etc.}$$

$$\tag{2}$$

So that we will be able to obtain the RHS of the evolution equations for $(A^{lm}_{(k)}(t),\cdots, D^{lm}_{(k)}(t))^T$

in a homogeneous form.

m = 2 throughout the article. eigenvalues are zero for all cases. Plotting range is $2 < r \leq 20$ using Schwarzschild radial coordinate. We set k = 1, l = 2, and Schwarzschild coordinate, with (a) no adjustments, i.e., standard ADM, (b) original ADM ($\kappa_F =$ the dotted lines with circles are real parts and imaginary parts, respectively. They are four lines each, but actually the two Figure 1: Amplification factors (AFs, eigenvalues of homogenized constraint propagation equations) are shown for the standard -1/4). The solid lines and

$$\partial_t \gamma_{ij} = -2\alpha K_{ij} + \nabla_i \beta_j + \nabla_j \beta_i,$$

$$\partial_t K_{ij} = \alpha R_{ij}^{(3)} + \alpha K K_{ij} - 2\alpha K_{ik} K^k{}_j - \nabla_i \nabla_j \alpha + (\nabla_i \beta^k) K_{kj} + (\nabla_j \beta^k) K_{ki} + \beta^k \nabla_k K_{ij} + \kappa_F \alpha \gamma_{ij} \mathcal{H},$$

the plot are (b) $\kappa_L = +1/2$, and (c) $\kappa_L = -1/2$. Figure 2: Amplification factors of the standard Schwarzschild coordinate, with Detweiler type adjustments. Multipliers used in

$$\begin{split} \partial_t \gamma_{ij} &= \left(\text{original terms} \right) + P_{ij} \mathcal{H}, \\ \partial_t K_{ij} &= \left(\text{original terms} \right) + R_{ij} \mathcal{H} + S^k{}_{ij} \mathcal{M}_k + s^{kl}{}_{ij} (\nabla_k \mathcal{M}_l), \\ \text{where } P_{ij} &= -\kappa_L \alpha^3 \gamma_{ij}, \quad R_{ij} = \kappa_L \alpha^3 (K_{ij} - (1/3)K\gamma_{ij}), \\ S^k{}_{ij} &= \kappa_L \alpha^2 [3(\partial_{(i}\alpha)\delta^k_{j)} - (\partial_l \alpha)\gamma_{ij}\gamma^{kl}], \quad s^{kl}{}_{ij} = \kappa_L \alpha^3 [\delta^k_{(i}\delta^l_{j)} - (1/3)\gamma_{ij}\gamma^{kl}], \end{split}$$

coordinate (1) and we plot lines on the t = 0 slice for each expression. The solid four lines and the dotted four lines with circles are real parts and imaginary parts, respectively. no adjustments). Fig. (a) is for the isotropic coordinate (1), and the plotting range is $1/2 \leq r_{iso}$. Fig. (b) is for the iEF Figure 3: Comparison of amplification factors between different coordinate expressions for the standard ADM formulation (i.e.

Figure 4: Similar comparison for Detweiler adjustments. $\kappa_L = +1/2$ for all plots.

NO. IN	aufantiner	IU	: JST				IEF/FG COOTUS	orus.
Table.??				TRS	real.	imag.	real.	imag.
0	- no	adjustments	yes		Ι	I		
2-P	P_{ij} – κ	$L \alpha^3 \gamma_{ij}$	no	no	makes 2 Neg.	not apparent	makes 2 Neg.	not apparent
చ	P_{ij} – κ	$L \alpha \gamma_{ij}$	no	no	makes 2 Neg.	not apparent	makes 2 Neg.	not apparent
I	P_{ij} P_{rr}	$A_{rr} = -\kappa \text{ or } P_{rr} = -\kappa \alpha$	no	no	slightly enl.Neg.	not apparent	slightly enl.Neg.	not apparent
I	P_{ij} - κ	γ_{ij}	no	no	makes 2 Neg.	not apparent	makes 2 Neg.	not apparent
ı	P_{ij} – κ	Nrr (no	no	red. Pos./enl.Neg.	not apparent	red.Pos./enl.Neg.	not apparent
ı	ij	$\beta^k \gamma_{ij}$	no	no	N/A	N/A	$\kappa \sim 1.35$ min. vals.	not apparent
I	$Q^k_{ij} Q^r$	$rr = \kappa$	no	yes	red. abs vals.	not apparent	red. abs vals.	not apparent
I	$Q^k_{ij} Q^r$	$=\kappa\gamma_{ij}$ or	no	yes	red. abs vals.	not apparent	enl.Neg.	enl. vals.
I	$Q^k_{ij} Q^r$	$\kappa\gamma_{rr}$	no	yes	red. abs vals.	not apparent	red. abs vals.	not apparent
1	R_{ij} κ_F		yes	yes	$\kappa_F = -1/4 \min$. abs vals.	$\kappa_F = -1/4$ min. vals	in. vals.
4	R_{ij} R_{ri}	$-\kappa_{\mu}\alpha \text{ or } R_{rr} = -$	yes	no	not apparent	not apparent	red.Pos./enl.Neg.	enl. vals.
I		$= -\kappa \gamma_{rr}$	yes	no	enl. vals.	not apparent	red.Pos./enl.Neg.	enl. vals.
2-S		$lpha^2[3(\partial_{(i}lpha)\delta^k_{j)}-(\partial_llpha)\gamma_{ij}\gamma^{kl}]$	yes	no	not apparent	not apparent	not apparent	not apparent
ı	S^{k}_{ij} $\kappa \alpha$	$\gamma^{lk}(\partial_l\gamma_{ij})$	yes	no	makes 2 Neg.	not apparent	makes 2 Neg.	not apparent
I	$p^{k}_{ij} p^{r}_{i}$	$j = -\kappa \alpha \gamma_{ij}$	no	no	red. Pos.	red. vals.	red. Pos.	enl. vals.
I	$p^{k}_{ij} p^{r}_{r}$	$r = \kappa \alpha$	no	no	red. Pos.	red. vals.	red.Pos/enl.Neg.	enl. vals.
I		$r = \kappa \alpha \gamma_{rr}$	no	no	makes 2 Neg.	enl. vals.	red. Pos. vals.	red. vals.
I	$q^{r\eta}$	$ij = \kappa \alpha \gamma_{ij}$	no	no	$\kappa = 1/2$ min. vals.	red. vals.	not apparent	enl. vals.
I	$q^{r\eta}$	$rr = -\kappa \alpha \gamma_{rr}$	no	yes	red. abs vals.	not apparent	not apparent	not apparent
I	r^{\prime}	$_{j} = \kappa \alpha \gamma_{ij}$	no	yes	not apparent	not apparent	not apparent	enl. vals.
I	r^{r}	$r = -\kappa \alpha$	no	yes	red. abs vals.	enl. vals.	red. abs vals.	enl. vals.
I	r^r	$r = -\kappa \alpha \gamma_{rr}$	no	yes	red. abs vals.	enl. vals.	red. abs vals.	enl. vals.
2-s		$lpha^3[\delta^k_{(i}\delta^l_{j)}-(1/3)\gamma_{ij}\gamma^{kl}]$	no	no	makes 4 Neg.	not apparent	makes 4 Neg.	not apparent
I		$i_{ij} = -\kappa \alpha \gamma_{ij}$	no	no	makes 2 Neg.	red. vals.	makes 2 Neg.	red. vals.
	s^{rr}	rr =	no	no	makes 2 Neg.	red. vals.	makes 2 Neg.	red. vals.
	$\begin{array}{c} \text{Ino. III} \\ \text{Table.??} \\ 0 \\ 2\text{-P} \\ 3 \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	adjustment adjustments $- \text{ no adjustments}$ $P_{ij} -\kappa_L \alpha^3 \gamma_{ij}$ $P_{ij} -\kappa_L \alpha^3 \gamma_{ij}$ $P_{ij} -\kappa_L \alpha^3 \gamma_{ij}$ $P_{ij} -\kappa_L \alpha^3 \gamma_{ij}$ $P_{ij} -\kappa_L \alpha^2 \gamma_{ij}$ $P_{ij} -\kappa_T \gamma_r = -\kappa \alpha^2 \gamma_{ij}$ $Q_{ij} -\kappa_T \gamma_r = \kappa \alpha^2 \gamma_{ij} = \kappa \alpha^2 \gamma_{ij} = \kappa \alpha^2 \gamma_{ij} = \kappa \alpha^2 \gamma_{ij}$ $Q_{ij} -\kappa_T \alpha^2 [3(\partial_i \alpha) \delta_j^k - (\partial_l \alpha) \gamma_{ij} \gamma^{kl}]$ $P_{ij} -\kappa_T \alpha^2 [3(\partial_i \alpha) \delta_j^k - (\partial_l \alpha) \gamma_{ij} \gamma^{kl}]$ $P_{ij} -\kappa_T \alpha^2 [3(\partial_i \alpha) \delta_j^k - (\partial_l \alpha) \gamma_{ij} \gamma^{kl}]$ $P_{ij} -\kappa_T \alpha^2 [3(\partial_i \alpha) \delta_j^k - (\partial_l \alpha) \gamma_{ij} \gamma^{kl}]$ $P_{ij} -\kappa_T \alpha^2 [3(\partial_i \alpha) \delta_j^k - (\partial_l \alpha) \gamma_{ij} \gamma^{kl}]$ $P_{ij} -\kappa_{\alpha} \gamma_{ir}$ $P_{ij} -\kappa_{\alpha} \gamma$	adjustment, ISU: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	augustation rstring TRS - no adjustments yes - P_{ij} $-\kappa_L \alpha^3 \gamma_{ij}$ no no no P_{ij} $-\kappa_L \alpha^3 \gamma_{ij}$ no no no no P_{ij} $-\kappa_C \gamma_{rr}$ no no no no no P_{ij} $-\kappa_C \gamma_{rr}$ no no no no ma P_{ij} $-\kappa_C \gamma_{rr}$ no no no no ma Q_{kij} $Q_r \gamma_{rr} = \kappa$ no no no no ma Q_{kij} $Q^r r_r = \kappa \gamma_{ir}$ no no no red Q_{kij} $Q^r r_r = \kappa \gamma_{ir} - \kappa_\mu \alpha$ or $R_{rr} = -\kappa_\mu$ yes no no ma R_{ij} $R_{rr} = -\kappa_\mu \alpha$ or $R_{rr} = -\kappa_\mu$ yes no no no R_{ij} $R_{rr} = \kappa_\alpha \gamma_{ir}$ $\kappa_\alpha \gamma_k (\partial_l \gamma_k \gamma_k)^{\beta_l} - (\partial_l \alpha) \gamma_i \gamma_r \wedge \beta_k^{k_l}$ no no no R_{ij} $r^r r_r = \kappa \alpha \gamma_{ir}$ <td>adjustment rst; real. real. P_{ij} $-\kappa_L \alpha^3 \gamma_{ij}$ no no no makes 2 Neg. P_{ij} $-\kappa_L \alpha^3 \gamma_{ij}$ no no no makes 2 Neg. P_{ij} $-\kappa_L \alpha^3 \gamma_{ij}$ no no no no makes 2 Neg. P_{ij} $-\kappa_T \gamma_{ij}$ no no no mo makes 2 Neg. P_{ij} $-\kappa_T \gamma_{ij}$ no no no mo makes 2 Neg. P_{ij} $-\kappa_T \gamma_{ij}$ no no no makes 2 Neg. Q_{ij}^k $Q^r r_r = \kappa_i \gamma_{ij}$ no no no makes 2 Neg. Q_{ij}^k $Q^r r_r = \kappa_i \gamma_{ij}$ no no no no Neg. Q_{ij}^k $Q^r r_r = \kappa_i \gamma_{ij}$ no no no no no no Q_{ij}^k $Q^r r_r = \kappa_i \gamma_{irr}$ $-\kappa_i \gamma_i \gamma_i \gamma_i \gamma_i \kappa_i \alpha_i \gamma_i \gamma_i \gamma_i \gamma_i \kappa_i \alpha_i \gamma_i \gamma_i \gamma_i \gamma_i \kappa_i \alpha_i$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	adjustment rst; real. real. P_{ij} $-\kappa_L \alpha^3 \gamma_{ij}$ no no no makes 2 Neg. P_{ij} $-\kappa_L \alpha^3 \gamma_{ij}$ no no no makes 2 Neg. P_{ij} $-\kappa_L \alpha^3 \gamma_{ij}$ no no no no makes 2 Neg. P_{ij} $-\kappa_T \gamma_{ij}$ no no no mo makes 2 Neg. P_{ij} $-\kappa_T \gamma_{ij}$ no no no mo makes 2 Neg. P_{ij} $-\kappa_T \gamma_{ij}$ no no no makes 2 Neg. Q_{ij}^k $Q^r r_r = \kappa_i \gamma_{ij}$ no no no makes 2 Neg. Q_{ij}^k $Q^r r_r = \kappa_i \gamma_{ij}$ no no no no Neg. Q_{ij}^k $Q^r r_r = \kappa_i \gamma_{ij}$ no no no no no no Q_{ij}^k $Q^r r_r = \kappa_i \gamma_{irr}$ $-\kappa_i \gamma_i \gamma_i \gamma_i \gamma_i \kappa_i \alpha_i \gamma_i \gamma_i \gamma_i \gamma_i \kappa_i \alpha_i \gamma_i \gamma_i \gamma_i \gamma_i \kappa_i \alpha_i $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

not change the AFs effectively according to our conjecture; 'enl./red./min.' means enlarge/reduce/minimize, and 'Pos./Neg.' respectively. The 'N/A' means that there is no effect due to the coordinate properties; 'not apparent' means the adjustment does effects to amplification factors (when $\kappa > 0$) are commented for each coordinate system and for real/imaginary parts of AFs, means positive/negative, respectively. These judgements are made at the $r \sim O(10M)$ region on their t = 0 slice.

standard ADM, but only form small positive L. Figure 1: We confirmed numerically, using Minkowskii perturbation, that Detweiler's system presents better accuracy than the

Comparisons of Adjusted ADM systems (linear wave)

Mexico NR 2002 Workshop participants

iterative Crank-Nicholson method. with harmonic slicing, and with periodic boundary condition. Cactus/CactusEinstein/ADM code was used. Grid = 24^3 , $\Delta x = 0.25$, Figure 1: Violation of Hamiltonian constraints versus time: Adjusted ADM systems applied for Teukolsky wave initial data evolution

Einstein equations are time-reversal invariant. So Why all negative amplification factors (AFs) are available? Explanation by the time-reversal invariance (TRI) • the adjustment of the system I, adjust term to $\partial_{t_{i}} K_{ij} = \kappa_{i} \underbrace{Q}_{(+)} \underbrace{\mathcal{H}}_{(+)(+)}$ preserves TRI so the AFs remain zero (unchange). • the adjustment by (a part of) Detweiler adjust term to $\partial_{t_{i}} \underbrace{\gamma_{ij}}_{(-)(+)} = -L \underbrace{Q}_{(+)} \underbrace{\gamma_{ij}}_{(+)(+)(+)} \underbrace{\mathcal{H}}_{(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)($

Constructing Asymptotically Constrained Systems

Hisaaki Shinkai

- 1. Introduction
- 2. Three approaches
- (1) Arnowitt-Deser-Misner / Baumgarte-Shapiro-Shibata-Nakamura
- (2) Hyperbolic formulations
- (3) Attractor systems "Adjusted Systems"
- 3. Adjusted ADM systems
- 4. Adjusted BSSN systems
- 5. Summary

— define new variables $(\phi, ilde{\gamma}_{ij},K, ilde{A}_{ij}, ilde{\Gamma}^i)$, instead of the ADM's (γ_{ij},K_{ij}) where

$$\tilde{\gamma}_{ij} \equiv e^{-4\phi} \gamma_{ij}, \qquad \tilde{A}_{ij} \equiv e^{-4\phi} (K_{ij} - (1/3)\gamma_{ij}K), \qquad \tilde{\Gamma}^i \equiv \tilde{\Gamma}^i_{jk} \tilde{\gamma}^{jk},$$

use momentum constraint in Γ^i -eq., and impose $\det \tilde{\gamma}_{ij} = 1$ during the evolutions.

The set of evolution equations become $(\partial_t - \mathcal{L}_\beta)\phi = -(1/6)\alpha K,$

$$\begin{aligned} &(\partial_t - \mathcal{L}_{\beta})\tilde{\gamma}_{ij} = -2\alpha\tilde{A}_{ij}, \\ &(\partial_t - \mathcal{L}_{\beta})K = \alpha\tilde{A}_{ij}\tilde{A}^{ij} + (1/3)\alpha K^2 - \gamma^{ij}(\nabla_i\nabla_j\alpha), \\ &(\partial_t - \mathcal{L}_{\beta})\tilde{A}_{ij} = -e^{-4\phi}(\nabla_i\nabla_j\alpha)^{TF} + e^{-4\phi}\alpha R^{(3)}_{ij} - e^{-4\phi}\alpha(1/3)\gamma_{ij}R^{(3)} + \alpha(K\tilde{A}_{ij} - 2\tilde{A}_{ik}\tilde{A}^k_j) \\ &\partial_t\tilde{\Gamma}^i = -2(\partial_j\alpha)\tilde{A}^{ij} - (4/3)\alpha(\partial_jK)\tilde{\gamma}^{ij} + 12\alpha\tilde{A}^{ji}(\partial_j\phi) - 2\alpha\tilde{A}_k{}^j(\partial_j\tilde{\gamma}^{ik}) - 2\alpha\tilde{\Gamma}^k{}_{lj}\tilde{A}^j{}_k\tilde{\gamma}^{il} \\ &-\partial_j\left(\beta^k\partial_k\tilde{\gamma}^{ij} - \tilde{\gamma}^{kj}(\partial_k\beta^i) - \tilde{\gamma}^{ki}(\partial_k\beta^j) + (2/3)\tilde{\gamma}^{ij}(\partial_k\beta^k)\right) \end{aligned}$$

$$\begin{split} R_{ij} &= \partial_k \Gamma^k_{ij} - \partial_i \Gamma^k_{kj} + \Gamma^m_{ij} \Gamma^k_{mk} - \Gamma^m_{kj} \Gamma^k_{mi} =: \tilde{R}_{ij} + R^{\phi}_{ij} \\ R^{\phi}_{ij} &= -2 \tilde{D}_i \tilde{D}_j \phi - 2 \tilde{g}_{ij} \tilde{D}^l \tilde{D}_l \phi + 4 (\tilde{D}_i \phi) (\tilde{D}_j \phi) - 4 \tilde{g}_{ij} (\tilde{D}^l \phi) (\tilde{D}_l \phi) \\ \tilde{R}_{ij} &= -(1/2) \tilde{g}^{lm} \partial_{lm} \tilde{g}_{ij} + \tilde{g}_{k(i} \partial_{j)} \tilde{\Gamma}^k + \tilde{\Gamma}^k \tilde{\Gamma}_{(ij)k} + 2 \tilde{g}^{lm} \tilde{\Gamma}^k_{l(i} \tilde{\Gamma}_{j)km} + \tilde{g} lm \tilde{\Gamma}^k_{im} \tilde{\Gamma}_{klj} \end{split}$$

No explicit explanations why this formulation works better.

AEI group (2000): the replacement by momentum constraint is essential.

Constraints in BSSN system

The normal Hamiltonian and momentum constraints

$$\mathcal{H}^{BSSN} = R^{BSSN} + K^2 - K_{ij}K^{ij}, \qquad (1)$$
$$\mathcal{M}^{BSSN}_i = \mathcal{M}^{ADM}_i, \qquad (2)$$
Additionally, we regard the following three as the constraints:

 $egin{array}{rcl} \mathcal{G}^i &=& ilde{\Gamma}^i - ilde{\gamma}^{jk} ilde{\Gamma}^i_{jk}, \ \mathcal{A} &=& ilde{A}_{ij} ilde{\gamma}^{ij}, \end{array}$

$$\mathcal{S} = \tilde{\gamma} - 1,$$

 $\begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 4 \\ \end{pmatrix}$

 (\mathfrak{Z})

Adjustments in evolution equations

$$\begin{aligned} \partial_t^B \varphi &= \partial_t^A \varphi + (1/6) \alpha \mathcal{A} - (1/12) \tilde{\gamma}^{-1} (\partial_j S) \beta^j, \\ \partial_t^B \tilde{\gamma}_{ij} &= \partial_t^A \tilde{\gamma}_{ij} - (2/3) \alpha \tilde{\gamma}_{ij} \mathcal{A} + (1/3) \tilde{\gamma}^{-1} (\partial_k S) \beta^k \tilde{\gamma}_{ij}, \\ \partial_t^B K &= \partial_t^A K - (2/3) \alpha K \mathcal{A} - \alpha \mathcal{H}^{BSSN} + \alpha e^{-4\varphi} (\tilde{D}_j \mathcal{G}^j), \\ \partial_t^B \tilde{A}_{ij} &= \partial_t^A \tilde{A}_{ij} + ((1/3) \alpha \tilde{\gamma}_{ij} K - (2/3) \alpha \tilde{A}_{ij}) \mathcal{A} + ((1/2) \alpha e^{-4\varphi} (\partial_k \tilde{\gamma}_{ij}) - (1/6) \alpha e^{-4\varphi} \tilde{\gamma}_{ij} \tilde{\gamma}^{-1} (\partial_k S)) \mathcal{G}^k \\ &+ \alpha e^{-4\varphi} \tilde{\gamma}_{ki} (\partial_j \mathcal{G}^k) - (1/3) \alpha e^{-4\varphi} \tilde{\gamma}_{ij} (\partial_k \mathcal{G}^k) \\ &+ \alpha e^{-4\varphi} \tilde{\gamma}_{ki} (\partial_j \mathcal{G}^j) \tilde{\gamma}^{ij} + (2/3) \alpha (\partial_j \tilde{\gamma}^{ji}) + (1/3) \alpha \tilde{\gamma}^{ji} \tilde{\gamma}^{-1} (\partial_j S) - 4\alpha \tilde{\gamma}^{ij} (\partial_j \varphi)) \mathcal{A} - (2/3) \alpha \tilde{\gamma}^{ji} (\partial_j \mathcal{A}) \\ &+ 2\alpha \tilde{\gamma}^{ij} \mathcal{M}_j - (1/2) (\partial_k \beta^i) \tilde{\gamma}^{kj} \tilde{\gamma}^{-1} (\partial_j S) + (1/6) (\partial_j \beta^k) \tilde{\gamma}^{ij} \tilde{\gamma}^{-1} (\partial_k S) + (1/3) (\partial_k \beta^k) \tilde{\gamma}^{ij} \tilde{\gamma}^{-1} (\partial_j S) \\ &+ (5/6) \beta^k \tilde{\gamma}^{-2} \tilde{\gamma}^{ij} (\partial_k S) (\partial_j S) + (1/2) \beta^k \tilde{\gamma}^{-1} (\partial_k \tilde{\gamma}^{ij}) (\partial_j S) + (1/3) \beta^k \tilde{\gamma}^{-1} (\partial_j S). \end{aligned}$$
(6)

A Full set of BSSN constraint propagation eqs.

$$\partial_{t}^{BS} \begin{pmatrix} \mathcal{H}^{BS} \\ \mathcal{M}_{i} \\ \mathcal{G}_{i} \\ \mathcal{S} \\ \mathcal{A} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} & A_{14} & A_{15} \\ -(1/3)(\partial_{i}\alpha) + (1/6)\partial_{i} & \alpha K & A_{23} & 0 & A_{25} \\ 0 & 0 & \alpha \tilde{\gamma}^{ij} & 0 & A_{34} & A_{25} \\ 0 & 0 & 0 & 0 & \beta^{k}(\partial_{k}S) & -2\alpha \tilde{\gamma} \\ 0 & 0 & 0 & 0 & 0 & \alpha K + \beta^{k}\partial_{k} \end{pmatrix} \begin{pmatrix} \mathcal{H}^{BS} \\ \mathcal{M}_{j} \\ \mathcal{S} \\ \mathcal{S} \\ \mathcal{A} \end{pmatrix}$$

$$\begin{split} A_{11} &= +(2/3) a K + (2/3) a A + \beta^k \partial_k \\ A_{12} &= -4e^{-4\varphi} (a (\partial_k \varphi) \bar{\gamma}^{kj} - 2e^{-4\varphi} (\partial_k A) \bar{\gamma}^{kl} - e^{-4\varphi} (\partial_j \alpha) A - e^{-4\varphi} \beta^k \partial_k \partial_j - (1/2) e^{-4\varphi} \beta^k \bar{\gamma}^{-1} (\partial_i S) \partial_k \\ A_{13} &= -2a e^{-4\varphi} \bar{A}^k_j \partial_k - a e^{-4\varphi} (\partial_j A_k) \bar{\gamma}^{kl} - e^{-4\varphi} (\partial_k \beta^k) \partial_j \\ A_{14} &= 2a e^{-4\varphi} \bar{\gamma}^{-1} (\partial_i \beta^k) (\partial_k S) - (2/3) e^{-4\varphi} (\partial_k \beta^k) \partial_j \\ A_{14} &= 2a e^{-4\varphi} \bar{\gamma}^{-1} \bar{\gamma}^{kl} (\partial_i \varphi) A \partial_k + (1/2) a e^{-4\varphi} \bar{\gamma}^{-1} (\partial_k A) \bar{\gamma}^{kl} \partial_i \partial_k + (1/2) e^{-4\varphi} \bar{\gamma}^{-1} (\partial_i \alpha) \bar{\gamma}^{kl} A \partial_k + (1/2) e^{-4\varphi} \bar{\gamma}^{-1} \beta^m (\partial_k \alpha) \partial_k \\ - (5/1) e^{-4\varphi} \bar{\gamma}^{-2} \bar{\gamma}^{kl} (\partial_k S) \partial_k + e^{-4\varphi} \bar{\gamma}^{-1} (\partial_k A) \bar{\gamma}^{kl} (\partial_k S) \partial_k + (1/2) e^{-4\varphi} \bar{\gamma}^{-1} \beta^m (\partial_k \alpha) \partial_k \\ - (5/12) e^{-4\varphi} \bar{\gamma}^{-2} \bar{\gamma}^{kl} (\partial_k \beta^k) (\partial_l S) \partial_k + (1/3) e^{-4\varphi} \bar{\gamma}^{-1} (\partial_k \bar{\gamma}^{kl}) (\partial_k S) \partial_k + (1/3) e^{-4\varphi} \bar{\gamma}^{-1} \beta^m (\partial_k \alpha) \partial_k \partial_k \\ - (5/12) e^{-4\varphi} \bar{\gamma}^{-2} \bar{\gamma}^{kl} (\partial_k \beta^k) (\partial_l S) \partial_k + (1/3) e^{-4\varphi} \bar{\gamma}^{-1} (\partial_k \bar{\gamma}^{kl}) (\partial_k \beta^k) \partial_k - (1/6) e^{-4\varphi} \bar{\gamma}^{-1} \bar{\gamma}^{ml} (\partial_k \partial_k) \partial_k \\ - (5/12) e^{-4\varphi} \bar{\gamma}^{-2} \bar{\gamma}^{kl} (\partial_k \beta^k) (\partial_l S) \partial_k - (4/3) a e^{-4\varphi} (\partial_k \gamma^k) \partial_k - (1/6) e^{-4\varphi} \bar{\gamma}^{-1} \beta^m (\partial_k \partial_k) \partial_k \\ - (5/12) e^{-4\varphi} \bar{\gamma}^{-2} \beta^k (\partial_k \partial_k) + (1/3) a e^{-4\varphi} (\partial_k \gamma^k) (\partial_k \partial_k) \bar{\gamma}^{-k} + e^{-4\varphi} (\partial_k \alpha) (\partial_k \bar{\gamma}^{kl}) + a e^{-4\varphi} (\partial_k \partial_k) \partial_k \\ + (4/9) \alpha (K A - (8/9) \alpha K^2 + (4/3) \alpha e^{-4\varphi} \bar{\gamma}^{ml} (\partial_k \partial_k)) \bar{\gamma}^{kl} + e^{-4\varphi} (\partial_k \alpha) (\partial_k \bar{\gamma}^{-k}) + 2e^{-4\varphi} (\partial_k \alpha) (\partial_k \bar{\gamma}^{-k}) \\ + 4e^{-4\varphi} \bar{\lambda}^{kl} (\partial_k \partial_k \alpha) \\ + (1/2) a e^{-4\varphi} \bar{\gamma}^{ml} (\partial_k \partial_k \partial_j - (1/2) \alpha e^{-4\varphi} \bar{\gamma}^{ml} \bar{\gamma}^{kl} (\partial_k \partial_k) + (1/2) \alpha e^{-4\varphi} \bar{\gamma}^{ml} (\partial_k \partial_k) \partial_k \\ + (1/2) e^{-4\varphi} \bar{\gamma}^{ml} (\partial_k \partial_k) - (1/2) \alpha e^{-4\varphi} \bar{\gamma}^{ml} \bar{\gamma}^{kl} (\partial_k \partial_k) \\ + (1/2) e^{-4\varphi} \bar{\gamma}^{ml} (\partial_k \partial_k) + (1/2) \alpha e^{-4\varphi} \bar{\gamma}^{ml} \bar{\gamma}^{kl} (\partial_k \partial_k) \\ + (1/2) e^{-4\varphi} \bar{\gamma}^{ml} (\partial_k \partial_k) + (1/2) (\partial_k \partial_l) \bar{\gamma}^{kl} \bar{\gamma}^{-1} \partial_k \\ + (1/2) e^{-4\varphi} \bar{\gamma}^{ml} (\partial_k \partial_k) - (1/2) (\partial_k \partial_l) \bar{\gamma}^{kl} \bar{\gamma}^{-1} \partial_k \\ + (1/2) e^{-4\varphi} \bar{\gamma}^{ml} (\partial_k \partial_k) \\ + (1/2) e^{-4\varphi} \bar{$$

BSSN Constraint propagation analysis in flat spacetime

- The set of the constraint propagation equations, $\partial_t(\mathcal{H}^{BSSN}, \mathcal{M}_i, \mathcal{G}^i, \mathcal{A}, \mathcal{S})^T$?
- For the flat background metric $g_{\mu\nu} = \eta_{\mu\nu}$, the first order perturbation equations of (6)-(10):

$$\partial_{t}^{(1)} \varphi = -(1/6)^{(1)} K + (1/6) \kappa_{\varphi}^{(1)} \mathcal{A}$$

$$\partial_{t}^{(1)} \tilde{\gamma}_{ij} = -2^{(1)} \tilde{A}_{ij} - (2/3) \kappa_{\tilde{\gamma}} \delta_{ij}^{(1)} \mathcal{A}$$

$$\partial_{t}^{(1)} K = -(\partial_{j} \partial_{j}^{(1)} \alpha) + \kappa_{K1} \partial_{j}^{(1)} \mathcal{G}^{j} - \kappa_{K2}^{(1)} \mathcal{H}^{BSSN}$$

$$\partial_{t}^{(1)} \tilde{A}_{ij} = {}^{(1)} (R^{BSSN}_{ij})^{TF} - {}^{(1)} (\tilde{D}_{i} \tilde{D}_{j} \alpha)^{TF} + \kappa_{A1} \delta_{k(i} (\partial_{ij})^{(1)} \mathcal{G}^{k}) - (1/3) \kappa_{A2} \delta_{ij} (\partial_{k}^{(1)} \mathcal{G}^{k})$$

$$(11)$$

$$(12)$$

$$(12)$$

$$(13)$$

$$(14)$$

$$\partial_t^{(1)} \tilde{\Gamma}^i = -(4/3)(\partial_i^{(1)}K) - (2/3)\kappa_{\tilde{\Gamma}1}(\partial_i^{(1)}A) + 2\kappa_{\tilde{\Gamma}2}^{(1)}\mathcal{M}_i$$
(15)

We express the adjustements as

$$\kappa_{adj} := (\kappa_{\varphi}, \kappa_{\tilde{\gamma}}, \kappa_{K1}, \kappa_{K2}, \kappa_{A1}, \kappa_{A2}, \kappa_{\tilde{\Gamma}1}, \kappa_{\tilde{\Gamma}2}).$$
(16)

Constraint propagation equations at the first order in the flat spacetime:

$$\partial_{t}^{(1)} \mathcal{H}^{BSSN} = (\kappa_{\tilde{\gamma}} - (2/3)\kappa_{\tilde{\Gamma}1} - (4/3)\kappa_{\varphi} + 2) \partial_{j}\partial_{j}^{(1)}\mathcal{A} + 2(\kappa_{\tilde{\Gamma}2} - 1)(\partial_{j}^{(1)}\mathcal{M}_{j}), \quad (17)$$

$$\partial_{t}^{(1)}\mathcal{M}_{i} = (-(2/3)\kappa_{K1} + (1/2)\kappa_{A1} - (1/3)\kappa_{A2} + (1/2)) \partial_{i}\partial_{j}^{(1)}\mathcal{G}^{j} + ((1/2)\kappa_{A1} - (1/3)\kappa_{A2} + (1/2)) \partial_{i}\partial_{j}^{(1)}\mathcal{G}^{j} + ((1/2)\kappa_{A1} - (1/2)) \partial_{i}^{(1)}\mathcal{H}^{BSSN}, \quad (18)$$

$$\partial_{t}^{(1)}\mathcal{G}^{i} = 2\kappa_{\tilde{\Gamma}2}^{(1)}\mathcal{M}_{i} + (-(2/3)\kappa_{\tilde{\Gamma}1} - (1/3)\kappa_{\tilde{\gamma}})(\partial_{i}^{(1)}\mathcal{A}), \quad (19)$$

$$\partial_{t}^{(1)}\mathcal{A} = (\kappa_{A1} - \kappa_{A2})(\partial_{j}^{(1)}\mathcal{G}^{j}). \quad (21)$$

Effect of adjustments

New Proposals :: Improved (adjusted) BSSN systems

TRS breaking adjustments

In order to break time reversal symmetry (TRS) of the evolution eqs, to adjust $\partial_t \phi$, $\partial_t \tilde{\gamma}_{ij}$, $\partial_t \tilde{\Gamma}^i$ using $\mathcal{S}, \mathcal{G}^i$, or to adjust $\partial_t K, \partial_t \tilde{A}_{ij}$ using $\tilde{\mathcal{A}}$.

$$\begin{split} \partial_{t}\phi &= \partial_{t}^{BS}\phi + \kappa_{\phi\mathcal{H}}\alpha\mathcal{H}^{BS} + \kappa_{\phi\mathcal{G}}\alpha\tilde{D}_{k}\mathcal{G}^{k} + \kappa_{\phi\mathcal{S}1}\alpha\mathcal{S} + \kappa_{\phi\mathcal{S}2}\alpha\tilde{D}^{j}\tilde{D}_{j}\mathcal{S} \\ \partial_{t}\tilde{\gamma}_{ij} &= \partial_{t}^{BS}\tilde{\gamma}_{ij} + \kappa_{\tilde{\gamma}\mathcal{H}}\alpha\tilde{\gamma}_{ij}\mathcal{H}^{BS} + \kappa_{\tilde{\gamma}\mathcal{G}1}\alpha\tilde{\gamma}_{ij}\tilde{D}_{k}\mathcal{G}^{k} + \kappa_{\tilde{\gamma}\mathcal{G}2}\alpha\tilde{\gamma}_{k(i}\tilde{D}_{j)}\mathcal{G}^{k} + \kappa_{\tilde{\gamma}\mathcal{S}1}\alpha\tilde{\gamma}_{ij}\mathcal{S} + \kappa_{\tilde{\gamma}\mathcal{S}2}\alpha\tilde{D}_{i}\tilde{D}_{j}\mathcal{S} \\ \partial_{t}K &= \partial_{t}^{BS}K + \kappa_{KM}\alpha\tilde{\gamma}^{jk}(\tilde{D}_{j}\mathcal{M}_{k}) + \kappa_{K\tilde{A}1}\alpha\tilde{\mathcal{A}} + \kappa_{K\tilde{A}2}\alpha\tilde{D}^{j}\tilde{D}_{j}\tilde{\mathcal{A}} \\ \partial_{t}\tilde{A}_{ij} &= \partial_{t}^{BS}\tilde{A}_{ij} + \kappa_{AM1}\alpha\tilde{\gamma}_{ij}(\tilde{D}^{k}\mathcal{M}_{k}) + \kappa_{AM2}\alpha(\tilde{D}_{(i}\mathcal{M}_{j)}) + \kappa_{A\tilde{A}1}\alpha\tilde{\gamma}_{ij}\tilde{\mathcal{A}} + \kappa_{A\tilde{A}2}\alpha\tilde{D}_{i}\tilde{D}_{j}\tilde{\mathcal{A}} \\ \partial_{t}\tilde{\Gamma}^{i} &= \partial_{t}^{BS}\tilde{\Gamma}^{i} + \kappa_{\tilde{\Gamma}\mathcal{H}}\alpha\tilde{D}^{i}\mathcal{H}^{BS} + \kappa_{\tilde{\Gamma}\mathcal{G}1}\alpha\mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}2}\alpha\tilde{D}^{j}\tilde{D}_{j}\mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}3}\alpha\tilde{D}^{i}\tilde{D}_{j}\mathcal{G}^{j} + \kappa_{\tilde{\Gamma}\mathcal{S}}\alpha\tilde{D}^{i}\mathcal{H}^{BS} \end{split}$$

or in the flat background

$$\begin{split} \partial_{t}^{ADJ(1)} \phi &= +\kappa_{\phi \mathcal{H}}^{(1)} \mathcal{H}^{BS} + \kappa_{\phi \mathcal{G}} \partial_{k}^{(1)} \mathcal{G}^{k} + \kappa_{\phi \mathcal{S}1}^{(1)} \mathcal{S} + \kappa_{\phi \mathcal{S}2} \partial_{j} \partial_{j}^{(1)} \mathcal{S} \\ \partial_{t}^{ADJ(1)} \tilde{\gamma}_{ij} &= +\kappa_{\tilde{\gamma}\mathcal{H}} \delta_{ij}^{(1)} \mathcal{H}^{BS} + \kappa_{\tilde{\gamma}\mathcal{G}1} \delta_{ij} \partial_{k}^{(1)} \mathcal{G}^{k} + (1/2) \kappa_{\tilde{\gamma}\mathcal{G}2} (\partial_{j}^{(1)} \mathcal{G}^{i} + \partial_{i}^{(1)} \mathcal{G}^{j}) + \kappa_{\tilde{\gamma}\mathcal{S}1} \delta_{ij}^{(1)} \mathcal{S} + \kappa_{\tilde{\gamma}\mathcal{S}2} \partial_{i} \partial_{j}^{(1)} \mathcal{S} \\ \partial_{t}^{ADJ(1)} K &= +\kappa_{KM} \partial_{j}^{(1)} \mathcal{M}_{j} + \kappa_{K\tilde{\mathcal{A}1}}^{(1)} \mathcal{\tilde{\mathcal{A}}} + \kappa_{K\tilde{\mathcal{A}2}} \partial_{j} \partial_{j}^{(1)} \mathcal{\tilde{\mathcal{A}}} \\ \partial_{t}^{ADJ(1)} \tilde{A}_{ij} &= +\kappa_{KM} \delta_{ij} \partial_{k}^{(1)} \mathcal{M}_{k} + (1/2) \kappa_{AM2} (\partial_{i} \mathcal{M}_{j} + \partial_{j} \mathcal{M}_{i}) + \kappa_{A\tilde{\mathcal{A}1}} \delta_{ij} \tilde{\mathcal{A}} + \kappa_{A\tilde{\mathcal{A}2}} \partial_{i} \partial_{j} \tilde{\mathcal{A}} \\ \partial_{t}^{ADJ(1)} \tilde{Y}^{i} &= +\kappa_{\tilde{\Gamma}\mathcal{H}} \partial_{i}^{(1)} \mathcal{H}^{BS} + \kappa_{\tilde{\Gamma}\mathcal{G}1}^{(1)} \mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}2} \partial_{j} \partial_{j}^{(1)} \mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}3} \partial_{i} \partial_{i}^{(1)} \mathcal{G}^{j} + \kappa_{\tilde{\Gamma}\mathcal{S}} \partial_{i}^{(1)} \mathcal{S} \end{split}$$

$$\begin{split} \overset{CO(^{1})}{\longrightarrow} & A_{ij} = +\kappa_{A\mathcal{M}1} \partial_{ij} \partial_{k}^{(^{1})} \mathcal{M}_{k} + (1/2) \kappa_{A\mathcal{M}2} (\partial_{i} \mathcal{M}_{j} + \partial_{j} \mathcal{M}_{i}) + \kappa_{A\tilde{\mathcal{A}}1} \partial_{ij} \mathcal{A} + \kappa_{A\tilde{\mathcal{A}}2} \partial_{i} \partial_{j} \mathcal{A} \\ \overset{ADJ(1)}{\uparrow} \overset{i}{\uparrow} & = +\kappa_{\tilde{\Gamma}\mathcal{H}} \partial_{i}^{(1)} \mathcal{H}^{BS} + \kappa_{\tilde{\Gamma}\mathcal{G}1}^{(1)} \mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}2} \partial_{j} \partial_{j}^{(1)} \mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}3} \partial_{i} \partial_{j}^{(1)} \mathcal{G}^{j} + \kappa_{\tilde{\Gamma}\mathcal{S}} \partial_{i}^{(1)} \mathcal{S} \end{split}$$

m gr-qc/0204002~(PRD~in~print)

Constraint Amplification Factors with each adjustment

Comparisons of Adjusted BSSN systems (linear wave) Mexico NR 2002 Workshop participants

with harmonic slicing, and with periodic boundary condition. Cactus/AEIThorns/BSSN code was used. Grid = 24^3 , $\Delta x = 0.25$, iterative Figure 2: Violation of Hamiltonian constraints versus time: Adjusted BSSN systems applied for Teukolsky wave initial data evolution Crank-Nicholson method. Courtesy of N. Dorband and D. Pollney (AEI).

An Evolution of Adjusted BSSN Formulation

by Yo-Baumgarte-Shapiro, gr-qc/0209066

Summary

Towards a stable and accurate formulation for numerical relativity

- Several reports say numerical stabilities depend on the formulations to apply, although they are mathematically equivalent
- status = chaotic, many trials and errorsWe tried to understand the background in an unified way.
- Our proposal = "Evaluate eigenvalues of constraint propagation eqns" Fourier transformation allows to discuss lower-order terms We give satisfactory conditions for stable evolutions
- Our Observation = "Stability will change by adding constraints in RHS" We named "Adjusted System"

Numerically confirmed in the Maxwell system and Ashtekar system.

- <u>Our Observation 2= The idea works even for the ADM formulation</u> We explain the effective parameter range of Detweiler's system (1987). We proposed variety of adjustments. Several numerical confirmations.
- <u>Our Observation 3= The idea works also for the BSSN formulation</u> We proposed variety of adjustments. Several numerical confirmations We explain why adjusting momentum constraints improves the stability.

<u>Evaluation of CAFs</u> may be an alternative guideline to hyperbolization of the system.

Next Steps?

- Generalize the procedure to construct adjusted systems
- dynamical and automatical determination of κ under a suitable principle.
- target to control each constraint violation by adjusting multipliers.
- clarify the reasons of non-linear violation in current test evolutions.
- More on hyperbolic formulations
- effects of non-principal part?
- clarify the reasons of advantages of kinematic parameters (in KST) mixedform variables, and/or densitized lapse?
- links to the initial-boundary value problem (IBVP).
- Alternative new ideas?
- control theories, optimization methods (convex functional theories), mathematical programming methods, or
- Numerical comparisons of formulations
- ativity" (Mexico NR workshop, 2002) in progress "Comparisons of Formulations of Einstein's equations for Numerical Rel-

Kidder-Scheel-Teukolsky hyperbolic formulation (Anderson-York + Frittelli-Reula)

Phys. Rev. D. 64 (2001) 064017

- Construct a First-order form using variables $(K_{ij}, g_{ij}, d_{kij})$ where $d_{kij} \equiv \partial_k g_{ij}$ Constraints are $(\mathcal{H}, \mathcal{M}_i, \mathcal{C}_{kij}, \mathcal{C}_{klij})$ where $\mathcal{C}_{kij} \equiv d_{kij} \partial_k g_{ij}$, and $\mathcal{C}_{klij} \equiv \partial_{[k} d_{l]ij}$
- Densitize the lapse, $Q = \log(Ng^{-\sigma})$
- Adjust equations with constraints

$$\begin{split} \hat{\partial}_{0}g_{ij} &= -2NK_{ij} \\ \hat{\partial}_{0}K_{ij} &= (\cdots) + \gamma Ng_{ij}\mathcal{H} + \zeta Ng^{ab}\mathcal{C}_{a(ij)b} \\ \hat{\partial}_{0}d_{kij} &= (\cdots) + \eta Ng_{k(i}\mathcal{M}_{j)} + \chi Ng_{ij}\mathcal{M}_{k} \end{split}$$

• Re-deining the variables $(P_{ij}, g_{ij}, M_{kij})$

$$egin{aligned} P_{ij} &\equiv K_{ij} + \hat{z}g_{ij}K, \ M_{kij} &\equiv (1/2)[\hat{k}d_{kij} + \hat{e}d_{(ij)k} + g_{ij}(\hat{a}d_k + \hat{b}b_k) + g_{k(i}(\hat{c}d_{j)} + \hat{d}b_{j)})], \quad d_k = g^{ab}d_{kab}, b_k = g^{ab}d_{abk} \ T_{1} = 1.5.5.5. \end{aligned}$$

I he redefinition parameters

- do not change the eigenvalues of evolution eqs.
- do not effect on the principal part of the constraint evolution eqs.
- do affect the eigenvectors of evolution system.
- do affect nonlinear terms of evolution eqs/constraint evolution eqs.