Apparent horizon formation in higher dimensional spacetime

Yuta Yamada (Osaka Institute of Technology, Japan) 山田 祐太 (大阪工業大学 情報科学部) Hisa-aki Shinkai(Osaka Institute of Technology, Japan) 真貝 寿明 (大阪工業大学 情報科学部)

We numerically investigate the formation of an apparent horizon in 5 dimensional spacetime in the context of the cosmic censorship hypothesis. We model the matter by distributing collisionless particle both in a spheroidal and toroidal configurations. We prepare the sequence of initial data by solving the Hamiltonian constraint equation and search S^4 apparent horizon.

Results

CASE1 : Spheroidal configrations

We numerically confirmed the analytical work by Yoo et al. (Yoo, Nakao, Ida, Phys. Rev. D. 71, 104014)

The behaviors are similar to the Shapiro-Teukolsky's 4-D case.

CASE2 : Toroidal configrations

Toroidal configrations

$$\left(\sqrt{x^2+y^2+w^2}-C\right)^2+z^2 \le r^2$$

• We assumed homogeneous toroidal, and searched for S⁴-horizon.(not a ring horizon)

• Our limiting case coinsides with the analytical work by Ida & Nakao. (Ida, Nakao, Phys. Rev. D, 66, 064026)

Conclusion

Spheroidal Cases

☆ No AH is formed for highly prolate case.

 \doteqdot Large $\mathsf{R}_{\mathsf{abcol}}\mathsf{R}^{\mathsf{abcol}}$ suggests the appearance of naked singularity

Toroidal Cases

☆

- ☆ Largest Reboot Reboot Reboot exists at top/down side of the ring(Not on the equatorial plane).
- ☆ "Naked Ring" might be formed.
- ☆ With matter distribution, the area of S⁴ horizon become smallar than that of the limiting case.(δ -function ring).

Future works

- \doteqdot Examine the validity of the Hyper-Hoop Conjecture for general cases.
- ☆ Find a ring horizon($S^3 \times S^1$).

m relation Proceed time evolution, and study the dynamical process.