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Formulation for Numerical Relativity
both for Einstein / Gauss-Bonnet
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In the last 5 years, ...

Binary BH-BH coalescence

simulations are available!!
Breakthrough suddenly occurs.

* Pretorius (2005)
* Univ. Texas Brownsville (2006)
*NASA-Goddard (2006)

Newtonian / Post-Newtonian

INSPIRAL PHASE

Innermost Stable Circular Orbit

Post-Newtonian / GR

Coalescence / Merger

Black Hole Formation
Quasinormal Ringing



In the last 5 years, ...

Binary BH-BH coalescence
simulations are available!!

* Pretorius (2005) --> Princeton Univ.
* Univ. Texas Brownsville (2006) --> Rochester Univ.
*NASA-Goddard (2006)

* Louisiana State Univ.

*Jena Univ.

* Pennsylvania State Univ.

"Gold-Rush of parameter searches" (B. Bruegmann, July 2007 @GRG)
But ..... Why it works?



Goals of the Talk
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The Einstein equation

r geodesics 4—‘

spacetime curvature ——» matter distribution

1
Ry,y — égu,yR + Agp,y = 87TG Tuy
L | | |
Einstein tensor Energy-Momentum tensor
’ cosmological constant
Solve for metric
v (t,X,y,2)
(10 components) i = 5 gudstde’ = gudohds’
( )
flat spacetime (Minkowskii spacetime): I Gz Gy Iz
Gy = 9zz Gzy 9zz
ds* = —dt? + da? +dy2 + d2? w 9yy 9yz

= —dt? + dr? + r*(d6® + sin? 0dy?) \ Sym. 9zz )



First Question: How to foliate space-time?

Cauchy approach Characteristic approach
or ADM 3+1 formulation (if null, dual-null 2+2 formulation)

time direction

1ngoing
direction

NN 4
%: Initial 3-dimensional Surface outgoing

direction

S: Initial 2-dimensional Surface



3+1 versus 2+2

Cauchy (3+1) evolution

Characteristic (2+2) evolution

pioneers ADM (1961), York-Smarr (1978) |Bondi et al (1962), Sachs (1962),
Penrose (1963)
variables easy to understand the concept of | has geometrical meanings
time evolution 1 complex function related to 2 GW
polarization modes
foliation has Hamilton structure allows implementation of Penrose's
space-time compactification
initial data need to solve constraints no constraints
evolution PDEs ODEs with consistent conditions
need to avoid constraint violation | propagation egs along the light rays
singularity need to avoid by some method can truncate the grid

disadvantages

can not cover space-time globally

difficulty in treating caustics
hard to treat matter




Procedure of the Standard Numerical Relativity

H 3+1 (ADM) formulation

B Preparation of the Initial Data
€ Assume the background metric
@ Solve the constraint equations

B Time Evolution
do time=1, time_end
& Specify the slicing condition
& Evolve the variables
@ Check the accuracy

& Extract physical quantities
end do



The 3+1 decomposition of space-time: The ADM formulation

[1 ] R. Arnowitt, S. Deser and C.W. Misner, in Gravitation: An Introduction to Current Research,
ed. by L. Witten, (Wiley, New York, 1962).

[2 ] J.W. York, Jr. in Sources of Gravitational Radiation, (Cambridge, 1979)

Dynamics of Space-time = Foliation of Hypersurface

e Evolution of ¢ =const. hypersurface ().

ds* = gda'de”, (p,v=0,1,2,3) time direction
on X(t)... df* = v da'da’, (2,7 =1,2,3)

e The unit normal vector of the slices, n*.

n, = (—a,0,0,0) | Y: Initial 3-dimensional Surface
n' = g"n, =(1/a,—f3'/a)

e The lapse function, a.. The shift vector, 3.
ds* = —a dt* + ~;;(dx' + B'dt)(da’ + 3 dt)




The decomposed metric:

ds* = —a’dt* + v;;(da’ + B'dt)(da’ + 3 dt)

= (—a?+ BB dt* + 2B;dtdx’ + ~;dx' da’

g :(_a2+ﬁlﬁl ﬁj) g/w:(_.l/o‘2 ..5j/9‘2.
e B; Yij | 5Z/042 v = 5%‘7/042
where o and (3; are defined as a = 1/4/—¢", 3, = g,
e [he unit normal vector of the slices, n*.
shift vector, Bt
surface normal line

n, = (—a,0,0,0)

n' = ¢g"n, =(1/a, —6i@/ -

Bl A+ i coordinate constant line

e The lapse function, «. lapse

e The shift vector, 3. i

1 —>( dt /

A

/

t = constant hypersurface



Projection of the Einstein equation:

e Projection operator (or intrinsic 3-metric) to (%),

Y — Guv =+ Ny
v, = o) +nfn, = L7

e Define the extrinsic curvature Kj;,

Ki' = _J—éLJ—?nM;V
= — (6" +nM'ny) (0% +n"nj)n,,
= TNy
N 1
= Lijna =---= %0y (=0ryij + Bilj + Bili) -
e Projection of the Einstein equation:
Gun'n” =8rG1T,, n'n" =8nrpy = the Hamiltonian constraint eq.
Gun' Ll =8rGTy,n" Ll = —-8nJ, = the momentum constraint egs.

G L LY =8rGT,, Li LY =38nS; = the evolution egs.



The Standard ADM formulation (aka York 1978):

The fundamental dynamical variables are (v;;, K;;), the three-metric and extrinsic
curvature. The three-hypersurface X is foliated with gauge functions, (c, 3'), the
lapse and shift vector.

e The evolution equations:

(P)’t%]‘ = —QOJKZ']' + Dzﬁ] + Djﬁi,

81;[(2'3' = (3)Rz'j + OZKKij — QQKikKkj _ DiDjOé
+(DiB") Ky + (D %) Kyi + 8" Di K
—87TGCU{SZ']' + (1/2)%’]’(011 — trS)},

where K = K%, and (3)Rz-j and D; denote three-dimensional Ricci curvature,
and a covariant derivative on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. HAPM — Gp 4 K2 — KUKU ~ 0,

momentum constr. M?DM = DjKjZ- — D;K =~ 0,

where GR =0) Ri..




strategy 0

The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

341 decomposition of the spacetime.

Evolve 12 variables (v;;, K;;)

shift vector, Bi

surface normal line| ¥

|31 dt %oordinate constant line

with a choice of gauge conditiy ,
A" A'
A ol >(t+dt) /

lapse function, ¢y —» o dt /

/

% 2(1)
/ -

t = constant hypersurface

Maxwell egs. ADM Einstein eq.
conctrainte | @V E=dmp R+ (0K)? — KiK' = 2kppg + 2
div B=20 DJK]Z — DZtI'K = /43]7;

evolution egs.

1 4
-0E =rot B — —WJ
c c

1
—(9tB — —rot E
C

Oryij = —2NK;; + D;N; + D;Nj,

0, K;; = N(®R;; + wKK;;) — 2NKyK', — D;D;N
+ (DjN™ K i + (D;iN™ K,y + N D, K — Ny
— wa{Sij + 37ij(pm — trS)}




Procedure of the Standard Numerical Relativity

Hm 3+1 (ADM) formulation
Need to solve elliptic PDEs
, . -- Conformal approach

B Preparation of the Initial Data - Thin-Sandwich approach

€ Assume the background metric

@ Solve the constraint equations J

B Time Evolution
do time=1, time_end
& Specify the slicing condition
& Evolve the variables
@ Check the accuracy

& Extract physical quantities
end do



Procedure of the Standard Numerical Relativity

m 3+1 (ADM) formulation
Need to solve elliptic PDEs
-- Conformal approach

B Preparation of the Initial Data - Thin-Sandwich approach

€ Assume the background metric
@ Solve the constraint equa’rionsJ

. . singularity avoidance,
B Time Evolution simplify the system,

do time=1, time_end GW extraction, ...

& Specify the slicing condition =
@ Evolve the variables
@ Check the accuracy

& Extract physical quantities
end do



Procedure of the Standard Numerical Relativity

H 3+1 (ADM) formulation .
Need to solve elliptic PDEs

: . -- Conformal approach
B Preparation of the Initial Data -- Thin-Sandwich approach

€ Assume the background metric
@ Solve the constraint equations <—

singularity avoidance,
B Time Evolution simplify the system,

do time=1, time_end GW extraction, ...
& Specify the slicing condition =
® Evolve the variables _ Robust formulation 2
@ Check the accuracy -- modified ADM / BSSN

& Extract physical quantities - hyperbolization .
dd -- asymptotically constrained
enda do

Formulation Problem



strategy 0| The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

341 decomposition of the spacetime. shift vector, pi
: K surface normal line| .
Evolve 12 variables (v;;, /) Bl A+ /oordinate constant line

with a choice of gauge co”ditiy ,
A" A'
A Dol S(t+dt) /

lapse” 7y —> u dt /
/ % 2(,[) /
/ t = constant hypersurface
Maxwell egs. ADM Einstein eq.
. div E = 47p OIR + (trK)? — Ki; K7 = 2kpp + 2/

constraints : j

div B =0 DjKji — Dltl"K = IQJZ'

latE —rot B — 4_7Tj Oryij = —2NKij + D;N; + D;Nj,

. ¢ ¢ | 0;K;j=N(®R; +trKK;;) —2NK;K'. — D;D;N

evolution egs. J

1 + (D;N"™) Ky + (DiN™) Ky j + N™ Dy, K — Ny A

OB =—rtE — ke Sij + 3ij(pir — t15)}




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = ﬁj(ﬁjH) + 20 KH — 2a7ij((9¢/\/lj)
(D) (27™ M — ATV M — 49 (9;0) M,
OM; = —(1/2)a(0/H) — (0;a)H + 3 (0;M;)
+aKM; — B0y ) M, + (0,87 M.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).




Primary / Secondary constraint
First-class / Second-class constraint

Primary Constraints constraint Ci(g,p) ~ 0

constraint Cs(g,p) =~ 0

Secondary Constraints
= when propagation of constraints require additional constraints

First-Class Constraints



Numerical Relativity in the 20th century

1960s

1970s

1980s

1990

1995

Hahn-Lindquist

May-White
OMurchadha-York

Smarr
Smarr-Cades-DeWitt-Eppley
Smarr-York

ed. by L.Smarr
Nakamura-Maeda-Miyama-Sasaki
Miyama

Bardeen-Piran

Stark-Piran
Shapiro-Teukolsky
Oohara-Nakamura
Seidel-Suen

Choptuik

NCSA group

Cook et al
Shibata-Nakao-Nakamura
Price-Pullin

NCSA group

NCSA group

Anninos et al
Scheel-Shapiro-Teukolsky
Shibata-Nakamura
Gunnersen-Shinkai-Maeda
Wilson-Mathews
Pittsburgh group
Brandt-Brigmann

[llinois group
Shibata-Baumgarte-Shapiro
BH Grand Challenge Alliance
Baumgarte-Shapiro
Brady-Creighton-Thorne
Meudon group

Shibata

2 BH head-on collision

spherical grav. collapse
conformal approach to initial data
3+1 formulation

2 BH head-on collision

gauge conditions

“Sources of Grav. Radiation”
axisym. grav. collapse

axisym. GW collapse

axisym. grav. collapse

axisym. grav. collapse

naked singularity formation

3D post-Newtonian NS coalesence
BH excision technique

critical behaviour

axisym. 2 BH head-on collision

2 BH initial data

BransDicke GW collapse

close limit approach

event horizon finder

hyperbolic formulation

close limit vs full numerical
BransDicke grav. collapse

3D grav. wave collapse

ADM to NP

NS binary inspiral, prior collapse?
Cauchy-characteristic approach
BH puncture data

synchronized NS binary initial data
2 NS inspiral, PN to GR
characteristic matching
Shibata-Nakamura formulation
intermediate binary BH
irrotational NS binary initial data
2 NS inspiral coalesence

AnaPhys29(1964)304
PR141(1966)1232
PRD10(1974)428
PhD thesis (1975)
PRD14(1976)2443
PRD17(1978)2529
Cambridge(1979)
PTP63(1980)1229
PTP65(1981)894
PhysRep96(1983)205
unpublished
PRL66(1991
PTP88(1992
PRL69(1992
PRL70(1993)9
PRL71(1993)2851

994
307
1845

—_ —

vv

PRD47(1993)1471
PRD50(1994)7304
PRL72(1994)3297
PRL74(1995)630
PRL75(1995)600
PRD52(1995)4462
PRD51(1995)4208
PRD52(1995)5428
CQG12(1995)133
PRL75(1995)4161
PRD54(1996)6153
PRL78(1997)3606
PRL79(1997)1182
PRD58(1998)023002
PRL80(1998)3915
PRD59(1998)024007
PRD58(1998)061501
PRL82(1999)892
PRD60(1999)104052



VOLUME 66, NUMBER 8 PHYSICAL REVIEW LETTERS 25 FEBRUARY 1991

Formation of Naked Singularities: The Violation of Cosmic Censorship

Stuart L. Shapiro and Saul A. Teukolsky

Center for Radiophysics and Space Research and Departments of Astronomy and Physics,
Cornell University, Ithaca, New York 14853
(Received 7 September 1990)

We use a new numerical code to evolve collisionless gas spheroids in full general relativity. In all cases
the spheroids collapse to singularities. When the spheroids are sufficiently compact, the singularities are
hidden inside black holes. However, when the spheroids are sufficiently large, there are no apparent hor-
izons. These results lend support to the hoop conjecture and appear to demonstrate that naked singulari-
ties can form in asymptotically flat spacetimes.
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FIG. 3. Growth of the Riemann invariant / (in units of
M ~*) vs time for the collapse shown in Fig. 2. The simulation
was repeated with various angular grid resolutions. Each curve
is labeled by the number of angular zones used. We use dots to
show where the singularity has caused the code to become
inaccurate,

FIG. 4. Profile of I in a meridional plane for the collapse

shown in Fig. 2. For the case of 32 angular zones shown here,

the peak value of I is 24/M* and occurs on the axis just outside
the matter.



Critical Phenomena in Gravitational Collapse

TABLE . Initial data specification for various one-param-
eter families discussed in text. For families (a)—(c), I specified
the initial pulses to be purely in-going. For family (d), the
functions X5 (r), Y<(r) and X5 (r), Y5 (r) are late-time fits
to subcritical and supercritical evolutions, respectively, of the
pulse shape shown in Fig. 1(d).

Family Form of initial data D
(a) o ¢(r) =gorlexp(—[(r—10)/6]?) ¢o,70,8,q
(b) ¢(r) = ¢o tanh[(r — o) /4] ¢o
()  (r+ro) = gor °[exp(1/r) — 17" ¢o
(d) X(r) = (1=n)Xc(r) + nX>(r) n
Y(r) = (1-n)Y<(r) +nY5(r)
TABLE II. Numerically determined xz

exponent 7y in the conjectured relationsh
Emin and Lmax are the minimum and makimae se=fg

(1 = Msu/M) of the black holes computed in the snmula.tmn
and v is the least-squares estimate of the scaling exponent.

Family Parameter Kmin Kmax @
(2) bo 79x107* 89x10"'  0.376
(a) ) 1.3x107% 94x107'  0.372
(a) q 31x107% 9.8x10"'  0.372
(a) To 1.3x 1072  9.2x 107!  0.379
(b) bo 28x107%  40x10"'  0.372
(c) bo 49x107%  99x107'  0.366
(d) n 22x107° 1.7x107%  0.380

Choptuik, Phys. Rev. Lett. 70 (1993) 9

Spherical Sym., Massless Scalar Field
(1) scaling

(2) echoing

(3) universality

0.3 T A T 1
Famiy () A, =344 A =343
02 A
o X(p1)
e X(p-A,T-4)
0.1 F £ u .
>
0.0 = -
If-Similarity
_O‘I -
-0.2 | | | |
-8 -6 -4 -2 0

. P
FIG. 2. Illustration of the rescaling or echoing property
observed in near-critical evolution of the scalar field. The
curve marked with open squares shows the profile of the scalar
field variable, X, at some proper central time Tp. The curve
marked with solid circles is the profile at a later time To+e®"
but on a scale e®? ~ 30 times smaller.



Head-on Collision of 2 Black-Holes (Misner initial data)
NCSA group 1995



S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = ﬁj(ﬁjH) + 20 KH — 2a7ij((9¢/\/lj)
(D) (27™ M — ATV M — 49 (9;0) M,
OM; = —(1/2)a(0/H) — (0;a)H + 3 (0;M;)
+aKM; — B0y ) M, + (0,87 M.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = ﬁj(f)ﬂ'() + 20 KH — ZOzyij((?i/\/lj)
(D) (27™ M — ATV M — 49 (9;0) M,
OM; = —(1/2)a(0/H) — (0;a)H + 3 (0;M;)
+aKM; — B0y ) M, + (0,87 M.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).

But this is NOT TRUE in NUMERICS....




e By the period of 1990s, NR had provided a lot of physics:
Gravitational Collapse, Critical Behavior, Naked Singularity, Event Horizons,
Head-on Collision of BH-BH and Gravitational Wavve, Cosmology, - - -

e However, for the BH-BH/NS-NS inspiral coalescence problem, - - - why 777

Many (too many) trials and errors, hard to find a definit recipe.

.
s

time

Constrained / Surface
(satisfies /Einstein's constraints)

Best formulation of the Einstein eqs. for long-term stable & accurate simulation?




“Convergence”

= higher resolution runs approach to the continuum limit.
(All numerical codes must have this property.)

e When the code has 2nd order finite difference scheme,
then the error should be scaled with

e “Consistency”, Choptuik, PRD 44 (1991) 3124




“Accuracy”

= The numerical results represent the actual solutions.
(All numerical codes must have this property.)

e (Check the code with known results.

Gauge wave test in BSSN;
Kiuchi, HS, PRD (2008)












Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

e Many (too many) trials and errors, hard to find a definit recipe.

Blow up Blow up

ADM

;

| =

time

strategy 0:  Arnowitt-Deser-Misner (ADM) formulation

strategy 1:  Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
strategy 2:  Hyperbolic formulations

strategy 3:  “Asymptotically constrained” against a violation of constraints

By adding constraints in RHS, we can kill error-growing modes
= How can we understand the features systematically?




80s 90s

87 95

2000s

99

Nakamura-0ohara | | Shibata-Nakamura

Baumgarte-Shapiro

62
ADM

92 97

Bona-Masso Alcubierre

95-97

99

ChoquetBruhat-York|| Anderson-York

96

01
\ Kidder-Scheel

/ -Teukolsky
Frittelli-Reula

99
\ Llambda-system

97

86 Iriondo-Leguizamon-Reula 29

Ashtekar

> | Yoneda-Shinkai




strategy 1| Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation

T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)
M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995)
T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)

The popular approach. Nakamura's idea in 1980s.
BSSN is a tricky nickname. BS (1999) introduced a paper of SN (1995).

e define new set of variables (gb,’yij,K,AU,fi), instead of the ADM'’s (,;,/K;;) where

Yij = € i, Ajj = e (K — (1/3)y;,K), [ =I5k,

and impose det;; = 1 during the evolutions.

e The set of evolution equations become

(0 — Ls)p = —(1/6)ak,
(0 — Ls)yi; = —20Ay,
0y — Lo)K = aAj ;A7 4+ (1/3)aK? — 47 (V;V;a),
(0; — Ls)Ay = —e (V;V,a)"F + 6_4¢O4RS)) — e a(1/3)y,;R® + a(K A — 24;,.A%))
oI = —2(0;0)AY — (4/3)c(0;K)7" + 120A7(9;¢) — 20A7 (0;7'F) — 201", A7 13"
-0, (8077 = AN(08') = 7 (Ou) + (2/3)7 (95Y))

Momentum constraint was used in ["-eq.



e Calculate Riemann tensor as

Ry = Ot —oTf +Trk, — 1Tk = Ry, + R, -
f?f; = —2D;D;¢ — 2g;;D' D¢ +~4(D¢?)ED1¢) — 4§¢j~(Dl~¢)(Dz¢) o
Rij = —(1/2)" 0umij + G105 " + T¥Tijpn + 20" Ty + 9™ T D

e Constraints are H, M.
But thre are additional ones, G', A, S.

Hamiltonian and the momentum constraint equations
HBSSN _ RBSSN | g2 K, K,
BSSN ADM
Mi = Ml 3
Additionally, we regard the following three as the constraints:
A = A7,
S = ~v—1,

Why BSSN better than ADM?
Is the BSSN best? Are there any alternatives?



Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

e "The essential improvement is in the process of replacing terms by the momentum
constraints’,

Alcubierre, et al, [PRD 62 (2000) 124011]

~

e [ is replaced by —0;7" where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

e [-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]
Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]

Some guesses:

e BSSN has a wider range of parameters that give us stable evolutions in von
Neumann's stability analysis. Miller, [gr-qc/0008017]

e The eigenvalues of BSSN cvolution equations has fewer “zero eigenvalues” than
those of ADM, and they conjectured that the instability can be caused by “zero

eigenvalues” that violate “gauge mode”.
M. Alcubierre, et al, [PRD 62 (2000) 124011]
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80s 90s  (Nakamura-Oohard> 2000s
95 99

87

Nakamura-0ohara | | Shibata-Nakamura | | Baumgarte-Shapiro .
‘“\ \
~

. \
————_-. G'COde _ \
o H-code g BSSN-code \
92 ‘ 97
Bona-Masso | ‘ Alcubierre \ PennState

95-97 99 “-—::.
ChoquetBruhat-York|| Anderson-York|®

S

62
ADM

01

~
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e
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strategy 2 Hyperbolic formulation

Construct a formulation which reveals a hyperbolicity explicitly.
For a first order partial differential equations on a vector wu,

(5] (5] (5]

Oplug | =| A | 0s|u| + DBlu

characteristic part lower order part



Hyperbolic Formulation
(1) Definition



Hyperbolic Formulation
(2) Expectations

iIf strongly/symmetric hyperbolic ==> well-posed system
— Given initial data + source terms -> a unique solution exists

— The solution depends continuously on the data

— Exists an upper bound on (unphysical) energy norm

lu@)|] < e™[|u(0)]]

Better boundary treatments
<== existence of characteristic field

Known numerical techniques in
Newtonian hydro-dynamics



strategy 2 Hyperbolic formulation

Construct a formulation which reveals a hyperbolicity explicitly.
For a first order partial differential equations on a vector wu,

uy uy uy
&g Uy | = A (9;,3 U9 + B | us
characteristic part lower order part

However,
e ADM is not hyperbolic.
e BSSN is not hyperbolic.

e Many many hyperbolic formulations are presented. Why many? = Exercise.

One might ask ...

Are they actually helpful?

Which level of hyperbolicity is necessary?




Wave equation

(0t(9t — czﬁx(?x)u =0




Exercise 1 of hyperbolic formulation Wave equation (0;0; — 0,0, )u = 0

[1a] use u as one of the fundamental variables.

a(2)- §)ar(?)

Eigenvalues = 4-c. Not a symmetric hyperbolic, but a kind of strongly hyperbolic.

15 o(3)=(0 5o (7)

Eigenvalues = £c. Symmetric hyperbolic.

[2a] Let U =@,V =/,
U 0 ¢ U
(v )= 5] ()

Eigenvalues = 4-c. Not a symmetric hyperbolic, but a kind of strongly hyperbolic.

[2b] Let U = u,V = cu/,
U 0 c U
at(v)_(c o)af”(v)

Eigenvalues = £c. Symmetric hyperbolic.




Exercise 1 of hyperbolic formulation Wave equation (0;0; — 0,0, )u = 0

[3a] Let v = @, w =7/,

U 0 0 0 U v

| v |= (O 0 02) Ol v [+]0 (10)
w 0 1 0 w 0

Eigenvalues = 0, £c. Not a symmetric hyperbolic, nor a strongly hyperbolic.
[3b] Let v = @, w = ¢/,

U 0 0 0 U v

| v |= (O 0 c) Ol v [+]0 (11)
w 0 ¢ 0 w 0

Eigenvalues = 0, £c. Not a symmetric hyperbolic, nor a strongly hyperbolic.

(o) (0 ) 2

Eigenvalues = £c. Symmetric hyperbolic, de-coupled.

[4] Let f=u—cu',g =1+ c,



Exercise 2 of hyperbolic formulation Maxwell equations

Consider the Maxwell equations in the vacuum space,

divE =
divB =
10E
tB— — =
o i
1
rot B+ — =

c Ot

0, (a)
0, (1b)
0, (1c)
0 (1d)



Exercise 2 of hyperbolic formulation Maxwell equations (cont.)

e Take a pair of variables as u' = (Ey, Ey, E3, By, By, B3)!, and write (1c) and
(1d) in the matrix form

E, Ald Bty E;
14 BZ Cli] Dlz_j [ Bj <>
Hermitian?

e In the Maxwell case, we see immediately

0 Gilm
Oyu; = ¢ ( Cedm ) O,
or with the actual components
En 0 =& 4 En
) 0 o 0 =4 )
by | —5, o0 L
M |=C o 8 —d o B,
Bs -6, 0 & 0 Bs
B; o =86t 0 Bs

That is, symmetric hyperbolic system.



Exercise 2 of hyperbolic formulation Maxwell equations (cont.)

e The eigen-equation of the characteristic matrix becomes

A0 0 0 -8 6
| | | 0 =X 0 cl &4 0 =6
AT —\sl B 0 0 =\ 8L 80
c [ —5 0 4 ] ( 0 =X 0 ]
) S LI 0 0 =\

We therefore obtain the eigenvalues as

0 (2 multi), :I:c\/(5i)2 + (05)% + (64)2 = +c (2 each)




Exercise 3 of hyperbolic formulation Adjusted Maxwell equations

By adding constraints (1a) and (1b) in the RHS of equations, and see what will be
happend.

0 —€;
Eilm 0

where x, y, z, w are parameters.

Im
ﬁtui:c( )ﬁlum+c(§)6kEk+c( )6kBk, (3)

Z
w



Exercise 3 of hyperbolic formulation Adjusted Maxwell equations (cont.)

By adding constraints (1a) and (1b) in the RHS of equations, and see what will be
happend.

0 —€;
Eilm 0

where x, y, z, w are parameters.

Im
Oyl ZC( )8lum+c(§)8kEk+c( )8kBk, (3)

<
w

e The actual components are

E s oy o s o ol 0 -8 & Er
Ey x| o 6 6L z| 60 o S+ 6 0 =& Ey
By | s 5L 4l soob o) \os s o Es
Ol g = (ot sy o8 5 3 o % B,
B; TR O A N A 5l oL ol B,

We see that adding constraint terms break the symmetricity of the characteristic
matrix.

e The eigenvalues will be changed as

g (:1: +w £ /22 — 22w + w? + 4yz) (6% + &, + &%) (1 each), +c (2 each).

The zero eigenvalues disappear by adding constraints, and they can be also || if

the parameters have the relation (yz — 2w — 1)* = (z + w)*.
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Kidder-Scheel-Teukolsky hyperbolic formulation (Anderson-York + Frittelli-Reula)
Phys. Rev. D. 64 (2001) 064017

e Construct a First-order form using variables (K, gi;, dyi;) where dy;; = 0r9;;
Constraints are (H, M;, Ciij, Criij) where Crij = dipij — Orgij, and Cryij = Opdyy;

e Densitize the lapse, () = log(Ng~7)
e Adjust equations with constraints
Oogij = —2NK;;
OKi; = () +7NgyH + (NG Copip
Qodri; = (-++) +nNgpM;jy + xNgi;M,,
e Re-deining the variables (P;;, gi;, My;;)
P = Kij + 295K,
Myij = (1/2)[kdyij + edgjy + gij(ady + bbg) + gr(edyy + dby)),  di = g% diab, b = g dapi
The redefinition parameters

— do not change the eigenvalues of evolution egs.
— do not effect on the principal part of the constraint evolution egs.
— do affect the eigenvectors of evolution system.

— do affect nonlinear terms of evolution eqs/constraint evolution egs.



Parabolized ADM (Kidder-Scheel-Teukolsky variables + parabolized)
Paschalidis et al, PRD75(2007)024026 , PRD78(2008)024002 , PRD78(2008)064048

e Construct a First-order form using variables (K, gi;, di;) where dy;; = 0rg;;
Constraints are (H, M;, Ciij, Criij) where Crij = diij — Orgij, and Cryij = Opdyy;

e Adjust equations with constraints

éogzj = (1) + Agababcaij
WKij = (-+) + 6gijg"" 0 My + 00: M),
80dk;2']' = ( . ) + Egabaacbk‘ij + ggijakH + Cckw

e 6 parameters satisfies the Petrovskii condition for well-posedness if

A>0,e>0,n+0<0, 0>0.

e “parabolic” character >~ constraint violating mode 0;g;; ~ )\g“baa(?bgij.

e Parabolized-ADM is named since the evolution egs form a parabolic and mixed hyperbolic.

(=[5 (2 L )

e Better performance than KST (one parameter set) and ADM in gauge-wave and Gowdy-wave
tests.



Numerical experiments of KST hyperbolic formulation

PHYSICAL REVIEW D 66, 064011 (2002)

Weak wave on flat Spacetime- Stability properties of a formulation of Einstein’s equations
-> NO non-prInCIPaI part Gioel Calabrese,* Jorge Pullin,T Olivier Sarbach,i and Manuel Tiglio§

Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001
(Received 27 May 2002; published 19 September 2002)

- We Can Observe the We study the stability properties of the Kidder-Scheel-Teukolsky (KST) many-parameter formulation of
. s Einstein’s equations for weak gravitational waves on flat space-time from a continuum and numerical point of

featu res Of hype rb0| ICIty view. At the continuum, performing a linearized analysis of the equations around flat space-time, it turns out

that they have, essentially, no non-principal terms. As a consequence, in the weak field limit the stability

properties of this formulation depend only on the level of hyperbolicity of the system. At the discrete level we

present some simple one-dimensional simulations using the KST family. The goal is to analyze the type of

-> USI ng ConSt ral ntS In RHS instabilities that appear as one changes parameter values in the formulation. Lessons learned in this analysis
m ay |m prove the bIOW_u p can be applied in other formulations with similar properties.

FIG. 7. L, norms of the errors for the metric. FIG. 9. L, norm of the errors for the metric. FIG. 12. L, norm of the errors for the metric.
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Hyperbolic formulations and numerical relativity:
experiments using Ashtekar’s connection variables
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Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on
Ashtekar’s connection variables. The primary advantage for using this connection formulation in
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity.
Our numerical code demonstrates gravitational wave propagation in plane-symmetric spacetimes,
and we compare the accuracy of the simulation by monitoring the violation of the constraints.
By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail.
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Figure 2. Images of gravitational wave propagation and comparisons of dynamical behaviour of
Ashtekar’s variables and ADM variables. We applied the same initial data of two +-mode pulse
waves (@ = 0.2,b = 2.0, ¢ = £2.5 in equation (21) and Ko = —0.025), and the same slicing
condition, the standard geodesic slicing condition (N = 1). (a) Image of the 3-metric component
gyy of a function of proper time t and coordinate x. This behaviour can be seen identically both
in ADM and Ashtekar evolutions, and both with the Brailovskaya and Crank—Nicholson time-
integration scheme. Part (b) explains this fact by comparing the snapshot of gy, at the same proper
time slice (t = 10), where four lines at = 10 are looked at identically. Parts (c¢) and (d) are of the
real part of the densitized triad E3, and the real part of the connection .A%, respectively, obtained
from the evolution of the Ashtekar variables. ’
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Hyperbolic formulations and numerical relativity:
experiments using Ashtekar’s connection variables
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a
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The Pennsylvania State University, University Park, PA 16802-6300, USA
+ Department of Mathematical Sciences, Waseda University, Shinjuku, Tokyo, 169-8555, Japan

E-mail: shinkai@gravity.phys.psu.edu and yoneda@mn.waseda.ac.jp
Received 3 May 2000, in final form 13 September 2000

Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on
Ashtekar’s connection variables. The primary advantage for using this connection formulation in
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity.
Our numerical code demonstrates gravitational wave propagation in plane-symmetric spacetimes,
and we compare the accuracy of the simulation by monitoring the violation of the constraints.
By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail.

—iD; (e, NEJE}) + 2D;(NV Ell) +idbe,¢ EL + k Py CASHP,

where P, = NS, +i]}]eab"E£,

—ie NE) Ff, + N’ F, + DiAG + k QIC" + kR Cpt,

where QY =e *NEY, R/ =ie *Ne“,E'E/.

plus-mode wave propagation
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Figure 6. Comparisons of the ‘adjusted’ system with the different multiplier, «, in equations (31)
and (32). The model uses +-mode pulse waves (@ = 0.1, b = 2.0, ¢ = £2.5) in equation (21) in a
background Ko = —0.025. Plots are of the L2 norm of the Hamiltonian and momentum constraint
equations, CI"_\ISH and C,‘[“,ISH ((a) and (b), respectively). We see some « produce a better performance
than the symmetric hyperbolic system.

No drastic differences in stability
between 3 levels of hyperbolicity.



BSSN Pros:

e With Bona-Masso-type o (1+log), and frozon 3 (0,1 ~ 0), BSSN plus auxiliary
variables form a 1st-order symmetric hyperbolic system,

Heyer-Sarbach, [PRD 70 (2004) 104004]

e If we define 2nd order symmetric hyperbolic form, principal part of BSSN can be
one of them,

Gundlach-MartinGarcia, [PRD 70 (2004) 044031, PRD 74 (2006) 024016]

BSSN Cons:

e Existence of an ill-posed solution in BSSN (as well in ADM)
Frittelli-Gomez [JMP 41 (2000) 5535]

e Gauge shocks in Bona-Masso slicing is inevitable. Current 3D BH simulation is
lack of resolution.

Garfinke-Gundlach-Hilditch [arXiv:0707.0726]



strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group

“Well-posed!”, ||u(t)]] < e||u(0)|]
Mathematically Rigorous Proofs
IBVP in future




Initial Boundary Value Problem

Consistent treatment is available
only for symmetric hyperbolic
systems.

GR-IBVP

Stewart, CQG15 (98) 2865
Tetrad formalism

Friedrich & Nagy, CMP201 (99) 619
Linearized Bianchi eq.

Buchman & Sarbach, CQG 23 (06) 6709
Constraint-preserving BC

Kreiss, Reula, Sarbach & Winicour, CQG 24 (07) 5973
Higher-order absorbing BC

Ruiz, Rinne & Sarbach, CQG 24 (07) 6349



strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group “Really?” group
“Well-posed!”, ||u(t)]] < e||u(0)|] “not converging”, still blow-up
Mathematically Rigorous Proofs Proofs are only simple egs.

Discuss only characteristic part.
lgnore non-principal part.

IBVP in future




strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group “Really?” group
“Well-posed!”, [|u(t)|| < e||u(0)]] “not converging”, still blow-up
Mathematically Rigorous Proofs Proofs are only simple egs.

Discuss only characteristic part.
lgnore non-principal part.

IBVP in future

Which level of hyperbolicity is necessary?

symmetric hyperbolic C strongly hyperbolic C weakly hyperbolic systems,

Advantages in Numerics (90s)

Advantages in sym. hyp.
— KST formulation by LSU




strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group “Really?” group
“Well-posed!”, [|u(t)|| < e||u(0)]] “not converging”, still blow-up
Mathematically Rigorous Proofs Proofs are only simple egs.

Discuss only characteristic part.
lgnore non-principal part.

IBVP in future

Which level of hyperbolicity is necessary?

symmetric hyperbolic C strongly hyperbolic C weakly hyperbolic systems,

Advantages in Numerics (90s) These were vs. ADM
Advantages in sym. hyp. Not much differences in hyperbolic 3 levels
— KST formulation by LSU — FR formulation, by Hern

— Ashtekar formulation, by HS-Yoneda
sym. hyp. is not always the best
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CCETOEED (RIF)

[Keyword 1]  Formulation Problem
HENICFMLTXTH>TH, HENICELZEELNRES.

[Keyword 2]  ADM formulation
FELHC ADMERXAHNSRY—k Uz, 90 FRXTIEIRIHL TLVE,
BH-BH/NS-NS 2y =2 L —Y 3V TRBERE

[Keyword 3] BSSN formulation
ADM [CHEHZBA LTS —IH—8B fix.
ES UTEREMDIHRESNTZONIRDEX. Technical tips HBXLNBUSB,

[Keyword 4]  hyperbolic formulations
PDE M@ (wellposedness) & W SR8 (S & S HERERY.
Einstein AR ORIHFER IV STHENS.
BSSN DR RFEEX THRIBLEIS EWSTIL—THH B, ..
But are they really helpful in numerics?



2008/11/28 @ KFRTHIZAKEF

Formulation for Numerical Relativity
both for Einstein / Gauss-Bonnet

EBFH KXRIFEXZERRZEE

1. Introduction
ELHEE?

2. The Standard Approach to Numerical Relativity
ADM 2=, BSSN =, Hyperbolic =

3. Robust system for Constraint Violation

/

\;:ﬁ
Adjusted ADM <z

Adjusted systems .... better than lambda system! \ _ngi
Adjusted BSSN

4. BRITBUETRXSFR I M1 T




error

strategy 3‘ “Asymptotically Constrained” system /“Constraint Damping” system

Formulate a system which is “asymptotically constrained” against a violation of constraints

Constraint Surface as an Attractor

Constrained / Surface
(satisfies /Einstein's constraints)

Blow up

— Stabilize?

>

time

method 1: A-system (Brodbeck et al, 2000)

e Add aritificial force to reduce the violation of
constraints

e To be guaranteed if we apply the idea to a sym-
metric hyperbolic system.

method 2: Adjusted system (Yoneda HS, 2000,
2001)

e We can control the violation of constraints by
adjusting constraints to EoM.

e Eigenvalue analysis of constraint propagation
equations may prodict the violation of error.

e This idea is applicable even if the system is not

symmetric hyperbolic. =
for the ADM/BSSN formulation, too!!




ldea of \-system
Brodbeck, Frittelli, Hiibner and Reula, JMP40(99)909

We expect a system that is robust for controlling the violation of constraints

Recipe
1. Prepare a symmetric hyperbolic evolution system ou = Jou+ K

2. Introduce \ as an indicator of violation of constraint 9\ = aC — )\

which obeys dissipative eqs. of motion (a#£0,8>0)
: : u A 0 u
3. Take a set of (u, \) as dynamical variables ) (A) ~ (F 0) O, (A)
4. Modify evolution eqs so as to form p (u) B (A F) 5 (u)
a symmetric hyperbolic system W) AF o)

Remarks
e BFHR used a sym. hyp. formulation by Frittelli-Reula [PRL76(96)4667]

e The version for the Ashtekar formulation by HS-Yoneda [PRD60(99)101502]
for controlling the constraints or reality conditions or both.

e Succeeded in evolution of GW in planar spacetime using Ashtekar vars. [CQG18(2001)441]
e Do the recovered solutions represent true evolution? by Siebel-Hiibner [PRD64(2001)024021]

e The version for Z4 hyperbolic system by Gundlach-Calabrese-Hinder-MartinGarcia [CQG22(05)3767]
= Pretorius noticed the idea of " constraint damping” [PRL95(05)121101]
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bda system works
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Figure 1. Demonstration of the A system in the Maxwell equation. (@) Constraint violation (L2
norm of Cg) versus time with constant 8 (= 2.0) but changing «. Here o = 0 means no A system.
(b) The same plot with constant o (= 0.5) but changing 8. We see better performance for 8 > 0,
which is the case of negative eigenvalues of the constraint propagation equation. The constants in
(2.18) were chosen as A =200 and B = 1.
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Ashtekar-lambda system works
as expected, as well.
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Figure 3. Demonstration of the A system in the Ashtekar equation. We plot the violation of the
constraint (the L2 norm of the Hamiltonian constraint equation, Cg) for the cases of plane-wave
propagation under the periodic boundary. To see the effect more clearly, we added an artificial error
at t = 6. Part (a) shows how the system goes bad depending on the amplitude of artificial error.
The error was of the form A§ — A§(1 + error). All the curves are of the evolution of Ashtekar’s
original equation (no A system). Part (b) shows the effect of the A system. All the curves have
20% error amplitude, but show the difference of the evolution equations. The full curve is for
Ashtekar’s original equation (the same as in (a)), the dotted curve is for the strongly hyperbolic
Ashtekar equation. Other curves are of A systems, which produce a better performance than that
of the strongly hyperbolic system.



|dea of “Adjusted system” and Our Conjecture
CQG18 (2001) 441, PRD 63 (2001) 120419, CQG 19 (2002) 1027

General Procedure
1. prepare a set of evolution egs. Opu® = f(u®, dus,- - -)

2. add constraints in RHS A = f(u, dyut,- ) +F(C 9,C", - )

3. choose appropriate (C“, 9,C%, - --)
to make the system stable evolution

How to specify F'(C*, 9,C",--+) ?
4. prepare constraint propagation egs. 0,C" = g(C*, 9,C*,--+)

5. and its adjusted version 0,C* = g(C*, 0,C°, - - ) +G(C, 0,C°, - )

6. Fourier transform and evaluate eigenvalues 9,C* = A(C) C*

—_———

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation egs.
If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more stable.




Example: the Maxwell equations

Yoneda HS, CQG 18 (2001) 441

Maxwell evolution equations.

&gEi = ceijkﬁjBk -+ PZ CE -+ Qz CB7 sym. hyp <~ PZ — Qz j Rz — Sz =0,
0,B; = —ce/*0.Ep+ R Cp+ S: Cp. strongly hyp < (P —S;)” +4R,Q; > 0,
o om0 Oy op mp, WK YD & (P S+ ARQ >0

Constraint propagation equations
0,Cp = (82P‘)CE + P&(a@CE) + (82Q&>CB + Qi(aiCB%
@CB = (6’LRZ>CE -+ RZ(&CE) + (@SZ)CB + 57(8103),
sym. hyp & Qi=R,
strongly hyp < (P — S;)? + 4R;Q; > 0,
weakly hyp & (P, — S;)* +4R:Q; >0
CAFs?
5 (OE) _ (@-Pé + Pk 0,Q +Q%) 9 (CE) N (P%ki Q?kz-) (CE> .7 (OE)
Cgp O;R'+ R'k; 0;S"+ S'k; Cpg R'k;, S'k; Cp ' Cg
= CAFs = (P'k; + S'k; £ \/(P'k; + S'k;)2 + A(Qk; Rik; — P'k;Sik;))/2

Therefore CAFs become negative-real when

Pk + Sk <0, and  QkREk;— PkS'k; <0
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Adjusted-Maxwell system works as well.

3.2.1. Adjusted system. Here we again consider the Maxwell equations (2.9)—(2.11). We
start from the adjusted dynamical equations

WE; = ce&/* 3B+ P;,Cp + p’1(3;Cp) + Q;Cp + ¢’ (3;Cp), (3.7)
&Bi = —ce;Md;Ex + RiCp +17;(3;Cg) + S;Cp +57;(3;Cp), (3.8)

where P, Q, R, S, p,q,r and s are multipliers. These dynamical equations adjust the
constraint propagation equations as

3Cr = (3; P)Cg + P'(3;Cp) + (3;Q")Cp + Q' (3;Cp)

+@ p')(3;Cp) + p’(8;0;Cr) + (3;97)(3;Cp) + ¢’ (3;9;Cp), 3.9)
3Cp = (3;R)Cr + R (3;Cp) + (3;S)Cp + S'(8;Cp)
+(3;r7)(3;CE) + 17" (8;0;CE) + (8:7)(3;Cp) + 57" (3;0;Cp). (3.10)

This will be expressed using Fourier components by
5 <éE> (BiPi+iP’ki+ikj(3ipji)—kikjpfi 8iQi+iQiki+ikj(a,*qji)—kiquji)
"\Cs)  \ R +iRk; +ik; ;7)) — kik;rit 3,8 +iS'k; +ik;(0;s97) — kikjsii

X(CE>=T(CE> (3.11)
Cx o

0.00 .-‘ -
i i i |
|- , -
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- i ooa! ]
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0.0 2.0 4.0 6.0 8.0 10.0
time

Figure 4. Demonstrations of the adjusted system in the Maxwell equation. We perform the same
experiments with section 2.2.3 (figure 1). Constraint violation (L2 norm of Cg) versus time are
plotted for various k (= p/; = s/;). We see that k > 0 gives a better performance (i.e. negative
real part eigenvalues for the constraint propagation equation), while excessively large positive «
makes the system divergent again.



Example: the Ashtekar equations
HS Yoneda, CQG 17 (2000) 4799

Adjusted dynamical equations:

OE, = —iDj(" NEE)) + 2D;(NVE}) + iAje, B +-XiCu +YiCury + P'Ca
adjust
OA! = —ie™ NEJF: + N'F% + DAL+ ANE! +Q/Cy + R{Cor; + Z{"Ce
adjust

Adjusted and linearized:
X=Y=2=0, P“=ri(iN6}), QF = k(e >NE?), RY; = ry(—ie 2Ne*yEIE])

Fourier transform and extract Oth order of the characteristic matrix:

Cu 0 i(142k3)k; 0 ( Ch
@ C]\/[z = 2(1 — 2/4;2)]% /i3€kj2']€k 0 CMj
CGa 0 2/%352 0 CGb

Eigenvalues:

(0, 0,0, Hrg—ka? — ky? — k22, £/(—1 + 2k0)(1 + 2r3) (ka? + ky® + kz2))
In order to obtain non-positive real eigenvalues:

(—1 + 2/432)(1 + 2/433) <0
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Adjusted-Ashtekar system works as well.

3.3.1. Adjusted system for controlling constraint violations.
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Here we only consider the

adjusted system which controls the departures from the constraint surface. In the appendix,
we present an advanced system which controls the violation of the reality condition together
with a numerical demonstration.
Even if we restrict ourselves to adjusted equations of motion for (Efp A{) with constraint
terms (no adjustment with derivatives of constraints), generally, we could adjust them as

&E!

3t A?

—iD;j(e® NEJE}) +2D;(NVE) +idbe,, CE' + X\ Cy + Y Cypj + PPCy,

(3.14)

—ie® NE] Ff+ N/FS + DA + ANES + QUCry + R“Cyj + Z%Cay, (3.15)

where X!, Y, Ze P, Q¢ and Rf"i are multipliers. However, in order to simplify the
discussion, we restrict multipliers so as to reproduce the symmetric hyperbolic equations
of motion [10, 11], i.e.

X=Y=2=0,
PP = k| (N'8% +iNe, " EY),
0% = Ky(e *NED),

R = k3(ie > Ne“, EPEY).

(3.16)
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Figure 5. Demonstration of the adjusted system in the Ashtekar equation. We plot the violation of
the constraint for the same model as figure 3(b). An artificial error term was added at ¢ = 6, in the
form of A3 — A2(1+ error), where error is + 20% as before. (a), (b) L2 norm of the Hamiltonian
constraint equation, Cy, and momentum constraint equation, Cpsy, respectively. The full curve is
the case of k = 0, that is the case of ‘no adjusted’ original Ashtekar equation (weakly hyperbolic
system). The dotted curve is for k = 1, equivalent to the symmetric hyperbolic system. We see
that the other curve (¢ = 2.0) shows better performance than the symmetric hyperbolic case.



The Adjusted system (essentials):

Purpose: Control the violation of constraints by reformulating the system so as to have a
constrained surface an attractor.

Procedure: Add a particular combination of constraints to the evolution equations, and adjust
its multipliers.

Theoretical support: Eigenvalue analysis of the constraint propagation equations.
Advantages: Available even if the base system is not a symmetric hyperbolic.

Advantages: Keep the number of the variable same with the original system.

Conjecture on Constraint Amplification Factors (CAFs):

(A) If CAF has a negative real-part (the constraints are forced to be diminished), then we see more
stable evolution than a system which has positive CAF.

(B) If CAF has a non-zero imaginary-part (the constraints are propagating away), then we see more
stable evolution than a system which has zero CAF.
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General-covariant Z4 system
Bona, Palenzuela et al, PRD66(2002)084013, PRD69(2004)104003, arXiv:0710.4425, 0811.1691

e Introduce 4-dim vector field Z, as

1
R, +V,Z,+V,Z,=8n(T,, — iTgW) :

e Construct a general-covariant first-order form using variables (K;;, g;;, © = aZ°, Z")
(0r = L) vij = —20K;;
(O — L) Kij = —Viaj+a[PR;; + Vi Z; + V,;Z; — 2K} + (K — 20)K;; — S;; + % (S — 7)7ij]
(6, — L3) © = %[<3>R YOV ZE 4 (K — 20)K — K? — 97Fay o — 27]
Oy = Ls) Zi = a|V(K/ —6/K)+ 00 - 2K/ Z; — Oa; /o — 5],
where 7 = 81 T, S, = 8ra TY, S;; = 8w T};, together with dynamical lapse and shift:
(0 — 5282)04 = e
(O — B'O)5" = ...,
e Recover BSSN and KST. (1?7)

e Constraints Propagation? Adjustments in eqns?

e long-term single BH evolution without excision. ~ Bona-Massé in 90s.
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Formulation for Numerical Relativity
both for Einstein / Gauss-Bonnet
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1. Introduction
ELHEE?

2. The Standard Approach to Numerical Relativity
ADM 2=, BSSN =, Hyperbolic =

3. Robust system for Constraint Violation

/

Adjusted ADM......... why ADM blows up? <z

Adjusted systems .... better than lambda system! \ _ngi
Adjusted BSSN

4. BRITBUETRXSFR I M1 T




strategy 0| The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

3+1 decomposition of the spacetime. shift vector, Pt
: K surface normal line| .
Evolve 12 variables (7;;, ;) Bl A+ foordinate constant line

with a choice of gauge Conditiy ;
A" A'
A Dol S(t+dt) /

lapse & 1~ dt /
/ t = constant hypersurface
Maxwell egs. ADM Einstein eq.
. div E = 47p OR + (trK)? — Ki; K7 = 2kpp + 2/

constraints : j

div B =0 DjKji — Dltl"K = IQJZ'

latE — rot B — 4_7Tj Oryij = —2NKij + D;N; + D;Nj,

. ¢ ¢ | 0;K;j=N(®R; +trKK;;) —2NK;K'. — D;D;N

evolution egs. J

1 + (D;N"™) K, + (Di;N™) Ky j + N™ Dy, K — Ny A

OB =—rtE — ke Sij + 37ij(pir — t1S)}




The Standard ADM formulation (aka York 1978):

The fundamental dynamical variables are (v;;, K;;), the three-metric and extrinsic
curvature. The three-hypersurface X is foliated with gauge functions, (c, 3'), the
lapse and shift vector.

e The evolution equations:

(P)’t%]‘ = —QOzKZ'j + Dzﬁ] + Djﬁi,

81;[(2']' = (3)Rz'j + OZKKz'j — QQKikKkj _ DiDjOé
+(DiB") Ky + (D;3%) Kyi + 8" Di K
—87TGCU{SZ']' + (1/2)%’]’(011 — trS)},

where K = K%, and (3)Rij and D; denote three-dimensional Ricci curvature,
and a covariant derivative on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. HAPM — Gp 4 K2 — Kinij ~ 0,

momentum constr. M?DM = DjKjZ- — D;K =~ 0,

where GR =0) Ri..




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = B (0;H) + 2aKH — 2" (0;M;)
+Oyme) (29" = A" A M — 49 (9j0) M,
OM; = —(1/2)(8H) — (Bi2)H + F(O;,M;)
+aKM; — B (0ry) M + (087" M.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).

But this is NOT TRUE in NUMERICS....




Original ADM | The original construction by ADM uses the pair of (h;;, 7).

- 1
L = \/—gR=VhN[®R - K?+ K;;K"], where K;; = S Enhi
3 or 3 3
then 77 = — = \/E(K” — Kh"),
8hi]~
The Hamiltonian density gives us constraints and evolution egs.

H = why— L =Vh{NH(h,7) — 2N;M(h,7) + 2D;(h""*N;z")}
oM N

1
- OH. | 1N 1 N 1
Ol = — — —hN (S)Rw—*(g)Rh” A XY - mn 2 _ 9 (pin nj_i ij
s Shi VhN( 5 )+2\/ﬁ (Tmn T 27r) \/E(ﬂ' T ST )
+VhD'DIN — hiD™D,,N) + vVhD,,(h"Y2N"7'i) — 27 D, NJ)

Standard ADM (by York) ' NRists refer ADM as the one by York with a pair of (h;;, K;;).

(9th@~j = —QNKU + DJNZ + DZ'NJ',
0,Kij = N( PR+ KK;j) —2NKyK'; — D;D;N + (D;N™) Ky + (D;N™)Kp; + N™ Dy, K

In the process of converting, H was used, i.e. the standard ADM has already adjusted.




Adjusted ADM systems

PRD 63 (2001) 120419, CQG 19 (2002) 1027

We adjust the standard ADM system using constraints as:

Ovij = —2aK + ViB;+ V0, (1)
+PH + QY My + 0" (ViH) + ¢ (VM) (2)
OKy; = aRY +aK Ky — 20K K", — V V0 + (Vig" Ky, + (Vi85 Ky + 8"V K(3)
FRiH 4+ S* My + i (VieH) + 85 (VM) (4)

with constraint equations
H = R® 4+ K? - K;; K", (5)
M; = V,K’;, — VK. (6)

We can write the adjusted constraint propagation equations as

OM = (original terms) + H{™[(2)] + H;™0,[(2)] + Hy™"9:0;((2)] + H™[(4)],  (7)
ooM; = (original terms) + Mhmn[<2>] + Mgﬂm”é)j[@)] + Mgzmn[(4)] + M42‘7mn(9][(4)}(8)




3 Constraint propagation of ADM systems

3.1 Original ADM vs Standard ADM
0 the standard ADM
—1/4 the original ADM
e The constraint propagation eqs keep the first-order form (cf Frittelli, PRD55(97)5992):
H Ik —2ay/! H
% (M) B (—(1/2)04(% + R -8R O ) % (M) ' )
The eigenvalues of the characteristic matrix:
A= (8,68, 8"+ Ja2ll(1 + 4ky))

symmetric hyperbolic when xk; = 3/2

The hyperbolicity of (5): { strongly hyperbolic ~ when o~ (1 + 4k;) > 0

Try the adjustment R;; = kjay;; and other multiplier zero, where k1 = {

weakly hyperbolic when o~ (1 4+ 4k1) > 0

e On the Minkowskii background metric, the linear order terms of the Fourier-transformed
constraint propagation equations gives the eigenvalues

AL = (0,0, £y —E2(1 + 4k1)).

(two Os, two pure imaginary) for the standard ADM BETTER STABILITY
(four 0s) for the original ADM

That is, {



Comparisons of Adjusted ADM systems (Teukolsky wave)

3-dim. harmonic slice, periodic BC HS original Cactus/GR code
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Figure 1: Violation of Hamiltonian constraints versus time: Adjusted ADM systems applied for Teukolsky wave initial data evolution
with harmonic slicing, and with periodic boundary condition. Cactus/GR/evolveADMeq code was used. Grid = 243, Ax = (.25, iterative
Crank-Nicholson method.



4 Constraint propagations in spherically symmetric spacetime

4.1 The procedure

The discussion becomes clear if we expand the constraint C,, := (H, M;)" using vector harmonics.

C =3 (A"™(t,r)aim(8, ) + B" by, + C"" i + D" di, ) (1)
where we choose the basis of the vector harmonics as
Yim 0 0 0
S 0 _— Yim S r 0 g r 0
Im 0 » Ulm 0 » Llm l(l n 1) a@}ﬁm y Wim l(l n 1) _ﬁﬁgp}/lm
O O agp}/}m Sin e a@%m

The basis are normalized so that they satisfy
(Cs Gy = [ de [T CEC, 1" sin 06,
where 1" is Minkowskii metric and the asterisk denotes the complex conjugate. Therefore
Alm = (a%, C,), A= (a%, 0,C,), etc.

We also express these evolution equations using the Fourier expansion on the radial coordinate,

Alm = > Al e ete. (2)
So that we will be able to obtain the RHS of the evolution equations for (/All(?,?) (t), -, ﬁ%(t))T

in a homogeneous form.



4.2 Constraint propagations in Schwarzschild spacetime

1.

the standard Schwarzschild coordinate
2M dr?
ds* = —(1 — T)dt2 + W +r2d)?, (the standard expression)
. the isotropic coordinate, which is given by, r = (1 + M/27;4,)*7;s0:

1 — M/2r,, _ _ _
ds® = —(1 - M?2:¢so>2dt2 + (1 + QTzso)4[dT§SO + 2 dO?), (the isotropic expression)
the ingoing Eddington-Finkelstein (iEF) coordinate, by t;pp =t + 2M log(r — 2M) :

2M 4M 2M
ds* = —(1 — “)dt?pp + ——dtippdr + (1 + ——)dr* 4+ r*dQ? (the iEF expression)
r r r
. the Painlevé-Gullstrand (PG) coordinates,
2 M 2M
ds® = — (1 — —) dt5e + 2,| ———dtpg dr + dr* + r*dQ* (the PG expression)
r r

which is given by tpg =t + V8Mr — 2M log{ (\/r/2M + 1)/(r/2M — 1)}



Example 1: standard ADM vs original ADM (in Schwarzschild coordinate)

b) -
no adjustments (standard ADM) original ADM (KF_ - 1/4)
0.5

—~
D

~

—

1 T T

000000
Ooee_e_a.g.s-@-erooo
oo
o
o
o

0.5 — 9 -

00060 o
0 0006-66-c0-000 >3

‘s, 0£-0-0-C-- O
S-6-g-0-0 0 0O OCC

A
o
he)

-
s
AC)
-6-o.
-ono
oo
o
00"@-@-@-5-@-9-00000@0-@ ©

Real / Imaginary parts of Eigenvalues (AF)
Real / Imaginary parts of Eigenvalues (AF)

-1 ! ! .0.5 | | |
0 5 10 15 20 0 5 10 15 20

Figure 1: Amplification factors (AFs, eigenvalues of homogenized constraint propagation equations) are shown for the standard
Schwarzschild coordinate, with (a) no adjustments, i.e., standard ADM, (b) original ADM (kr = —1/4). The solid lines and
the dotted lines with circles are real parts and imaginary parts, respectively. They are four lines each, but actually the two

eigenvalues are zero for all cases. Plotting range is 2 < r < 20 using Schwarzschild radial coordinate. We set £k = 1,1 = 2, and
m = 2 throughout the article.

Orvij = —2akK;+ Vb + V0,
0K; = aRY +aKK;j — 20K K", — V,V,a+ (Vi) Ky + (V8" K + 8V K + kpav H,



Example 2: Detweiler-type adjusted (in Schwarzschild coord.)

—_

b)

—_

. c
Detweiler type, K = + 1/2 ) Detweiler type, K o= 1/2

1 T T

o 0-0r O ©-8 0G0 0 ©-6 000 009
o097
-

0.5

0.5

-0.5

-0.5

o
N
& o
©ro-og.
0190 6-00-0-0-0 G- 6060 0 -6-6- 3]
1 | | |
5 10 15 20

Real / Imaginary parts of Eigenvalues (AF)

Real / Imaginary parts of Eigenvalues (AF)

r
sch sch

Figure 2: Amplification factors of the standard Schwarzschild coordinate, with Detweiler type adjustments. Multipliers used in
the plot are (b) k;, = +1/2, and (c¢) Kk, = —1/2.

Oyyij = (original terms) + P;/’H.
0, K;; = (original terms) + R, ;/H + Skz‘,jMIg - s"’lijw,f/\/u),
where P, = —rkpa’y;;, Rij= ko (K — (1/3)K7;),
S*ij = kpa’3(0u)df) — (Ba)yy™], sMij = ka0 — (1/3)7in ],



Detweller’s criteria vs Qur criteria

e Detweiler calculated the L2 norm of the constraints, C',, over the 3-hypersurface and imposed

its negative definiteness of its evolution,
Detweiler's criteria < (%/ZC’?M dVv <0,
(0%

This is rewritten by supposing the constraint propagation to be 0,C, = Aaﬁég in the Fourier
components,

&0 /lZCA'aéa dV = /ZA&ﬁCA'géa -+ C’&Aaﬁég dV < 0, V non zero C’a

& eigenvalues of (A + AT) are all negative for Vk.

e Our criteria is that the eigenvalues of A are all negative. Therefore,

Our criteria © Detweiller's criteria

e We remark that Detweiler's truncations on higher order terms in C-norm corresponds our
perturbative analysis, both based on the idea that the deviations from constraint surface (the
errors expressed non-zero constraint value) are initially small.



Constraint propagation of ADM systems

(2) Detweiler’s system

Detweiler's modification to ADM [PRD35(87)1095] can be realized in our notation as:
Py = —La’yy,
Rij = La’(Kj; — (1/3)Kv),
Sfj = Lozz[S(@(iozﬁf) — (éboz)%ﬂkl],
Sf} = La3[25@5§) — (1/3)7:9™), and else zero, where L is a constant.
e This adjustment does not make constraint propagation equation in the first order form, so
that we can not discuss the hyperbolicity nor the characteristic speed of the constraints.

e For the Minkowskii background spacetime, the adjusted constraint propagation equations
with above choice of multiplier become

OH = —2(0;M;)+4L(0;0;/H),
OM; = —(1/2)(0/H) + (L/2)(0k0rM;) + (L/6)(0:0pMy).
Constraint Amp. Factors (the eigenvalues of their Fourier expression) are

Al = (—(L/2)k*(multiplicity 2), —(TL/3)k* & (1/3)\/k2(=9 + 25L2k2).)

This indicates negative real eigenvalues if we chose small positive L.



Example 3: standard ADM (in isotropic/iEF coord.)

(b)

—
D
~

iEF coordinate, no adjustments (standard ADM)
isotropic coordinate, no adjustments (standard ADM)

0.5 1\

e

__________

Real / Imaginary parts of Eigenvalues (AF)

Real / Imaginary parts of Eigenvalues (AF)

sch

Figure 3: Comparison of amplification factors between different coordinate expressions for the standard ADM formulation (i.e.
no adjustments). Fig. (a) is for the isotropic coordinate (1), and the plotting range is 1/2 < ry,. Fig. (b) is for the iEF
coordinate (1) and we plot lines on the ¢ = 0 slice for each expression. The solid four lines and the dotted four lines with circles
are real parts and imaginary parts, respectively.



Example 4:

—_

b)

Detweiler-type adjusted (in iEF /PG coord.)

—_
(2]
~

iEF coordinate, Detweiler type « =+0.5 PG coordinate, Detweiler type k =+0.5
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Figure 4: Similar comparison for Detweiler adjustments. xk;, = +1/2 for all plots.



“Einstein equations” are time-reversal invariant. So ...

Why all negative amplification factors (AFs) are available?

Explanation by the time-reversal invariance (TRI)

e the adjustment of the system I,

adjust term to @Kij = k1 y;
S )

~—

preserves TRI. ... so the AFs remain zero (unchange).

e the adjustment by (a part of) Detweiler

adjust term to ?L%j =—L a1

—~~ -
(=) () (+) (1) (+)
violates TRI. ... so the AFs can become negative.

Therefore

We can break the time-reversal invariant feature of the “ADM equations”.




Adjusted ADM systems

PRD 63 (2001) 120419, CQG 19 (2002) 1027

We adjust the standard ADM system using constraints as:
Orvij = —2aK;;+ V.iB; + V03, (
+PiH + Q My + 1"y (ViH) + ¢ (ViMy), (
0K, = aRY +aKK;; — 20K K" — ViVja + (V685 Ky, + (V85 Ky + BV K (3
FRiH A+ S* My + 1 (VieH) + sM5(ViMy), (
with constraint equations

H = R® 4+ K? - K;; K, (5)
Mi = VjKji — VZK (6)

We can write the adjusted constraint propagation equations as

O/H = (original terms) + H"™"[(2)] + H;m”@[@)] + ngm”aiaj[@)] + H;fm[(ll)], (7)
oM, = (original terms) + My;""[(2)] + Mo/ 0;[(2)] + M3,""[(4)] + My 0;[(4)](8)



Table 3. List of adjustments we tested in the Schwarzschild spacetime. The column of adjustments are nonzero multipliers in terms of (13) and (14). The column ‘Ist?” and “TRS’ are
the same as in table 1. The effects to amplification factors (when k > 0) are commented for each coordinate system and for real/imaginary parts of AFs, respectively. The ‘N/A’ means
that there is no effect due to the coordinate properties; ‘not apparent’ means the adjustment does not change the AFs effectively according to our conjecture; ‘enl./red./min.” means
enlarge/reduce/minimize, and ‘Pos./Neg.’ means positive/negative, respectively. These judgements are made at the » ~ O (10M) region on their r = O slice.

Noin Schwarzschild/isotropic coordinates iEF/PG coordinates
No table 1 Adjustment Ist?  TRS  Real Imaginary Real Imaginary
0 0 - no adjustments yes - - - - -
P-1 2-P P;j —krady; i no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
pP-2 3 P;j —KLQYij no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
P-3 - Pij P, = —kor Py = —ka no no slightly enl.Neg. not apparent  slightly enl.Neg. not apparent
P-4 - Pij —KYij no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
P-5 - Pij —KVyr no no red. Pos./enl.Neg. not apparent  red.Pos./enl.Neg. not apparent
Q-1 - Q",-j K()lﬂk)/ij no no N/A N/A Kk ~ 1.35 min. vals.  not apparent
Q-2 - ok; i Q' =xk no yes red. abs vals. not apparent  red. abs vals. not apparent
Q-3 - Qk,-j Q"ij = «kyijor Q" = kay;j no yes red. abs vals. not apparent  enl.Neg. enl. vals.
Q-4 - ok, i Q" vy = KVyr no yes red. abs vals. not apparent  red. abs vals. not apparent
R-1 1 Rij KFAYij yes yes kp = —1/4 min. abs vals. kp = —1/4 min. vals.
R-2 4 Rij Ry = —kpaor Ry = —ky, yes no not apparent not apparent  red.Pos./enl.Neg. enl. vals.
R-3 - Rij R,y = —KYrr yes no enl. vals. not apparent  red.Pos./enl.Neg. enl. vals.
S-1 2-S sk, 1 KLOZZ[3(3(,'O[)5§) — ()i jy“ ] yes no not apparent not apparent  not apparent not apparent
S-2 - sk; 1 way® @y, i) yes no makes 2 Neg. not apparent  makes 2 Neg. not apparent
p-1 - pk,-j plij = —Kkay;j no no red. Pos. red. vals. red. Pos. enl. vals.
p-2 - pk,-j P =Kka no no red. Pos. red. vals. red.Pos/enl.Neg. enl. vals.
p-3 - p"ij P = KAy, no no makes 2 Neg. enl. vals. red. Pos. vals. red. vals.
q-1 - q"l,-J q"i; = Kkay;; no no K = 1/2 min. vals.  red. vals. not apparent enl. vals.
q-2 - g~ i 4" ==Ky, no yes red. abs vals. not apparent  not apparent not apparent
-1 - rk; i r'i = Kkayij no yes not apparent not apparent  not apparent enl. vals.
r-2 - r"ij ' = —ka no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
r-3 - rk,-j e = =KoYy no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
s-1 2-s sk’,-j KLoz3[(Sé‘i8§.) — (1/3)yij yk no no makes 4 Neg. not apparent ~ makes 4 Neg. not apparent
s-2 - skl i s = —Kkayij no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.
s-3 - s"'[,-j S = —KA Yy no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.

7101
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Numerical Tests (method)

- Cactus-based original “GR” code
http://www.cactuscode.org/
[CactusBase+CactusPUGH+GR]

- 3+1dim, linear wave evolution

(Teukolsky wave)

- harmonic slice

- periodic boundary, [-3,+3]

- iterative Crank-Nicholson method
- 1273, 2473, 4873, 963

Towards standard testbeds for numerical relativity
Mexico Numerical Relativity Workshop 2002 Participants
CQG 21 (2004) 589-613
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Numerical Tests (Detweiler-type)
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Numerical Tests (Simplified Detweiler)

error (norm of Hamiltonian constraint)
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Numerical Tests (Detweiler, k-adjust)
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Numerical Tests (Detweiler, k-adjust)
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Numerical Tests (Detweiler, k-adjust)

1273 ADM (standard)
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Formulation for Numerical Relativity
both for Einstein / Gauss-Bonnet

EBFH KXRIFEXZERRZEE

1. Introduction
ELHEE?

2. The Standard Approach to Numerical Relativity
ADM 2=, BSSN =, Hyperbolic =

3. Robust system for Constraint Violation
Adjusted systems .... better than lambda system! \ =
Adjusted ADM......... why ADM blows up? <z
Adjusted BSSN......... why BSSN works well?

4. HRTTBUERXFRIC R T

/
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SR




strategy 1| Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation

T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)
M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995)
T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)

The popular approach. Nakamura’'s idea in 1980s.
BSSN is a tricky nickname. BS (1999) introduced a paper of SN (1995).

e define new set of variables (¢, ’yij,K,Aij,fi), instead of the ADM'’s (,;,/K;) where

Yij = €O, Ajj = e (K — (1/3)y;,K), [ =I5k,

and impose det;; = 1 during the evolutions.

e The set of evolution equations become

(0= Ls)p = —(1/6)ak,
(0 = Loy = —2aAy,
0y — Lo)K = aAj ;A7 4+ (1/3)aKk? — 47 (V;V;a),
(0 — Ls)Ay = —e (V;V,a)"F + 6_4¢QRS’) — e a(1/3)y,;R® + a(K A;j; — 24;,A%))
O = —2(0;0)AY — (4/3)a(0;K)7" + 120 A7(9;¢) — 20A7 (0;7'F) — 201", A7 17"
—0; (B A — A (0B') — A (0) + (2/3)77 (018"))

Momentum constraint was used in ["-eq.



e Calculate Riemann tensor as

Ry = Ot — o}, + Tk — Tk = Ry, + R?, -
f?f; = —2D;D;¢ — 2g;;D' D¢ +~4(Diib)ng¢) — 4§¢j~(Dl~¢)(Dz¢) o
Rij = —(1/2)§" 0umij + G105 T + TFTijpn + 20" Ty + 9™ T D

e Constraints are H, M.
But thre are additional ones, G', A, S.

Hamiltonian and the momentum constraint equations
HBSSN _ RBSSN+K2 . KZjKljy
BSSN ADM
Mi = Ml 3
Additionally, we regard the following three as the constraints:
A = Ay,
S = ~v—1,

Why BSSN better than ADM?
Is the BSSN best? Are there any alternatives?



Constraints in BSSN system
The normal Hamiltonian and momentum constraints

HBSSN _ RBSSN+K2 _KZszja (1)
MBSSN _ MADM (2)

Additionally, we regard the following three as the constraints:
G' = I'" =5, (3)
A = A7, (4)
S - i/ T 17 (5)

Adjustments in evolution equations

0fp = 0o+ (1/6)ad — (1/12)771(9;S) 7, (6)
0y = 0y — (2/3)ad A+ (1/3)7 (0kS)8 sy, (7)
OPK = 07K — (2/3)aKA — aH""" +ae 7(D,;G7), (8)

+ae™9,1(0)G") — (1/3)ae™(0:G")

+(1/3) (k87757 1(9;S) + (5/6)8"3 257 (0xS)(9;S) +
+(1/3)8" 710,47 (9S).

O Ajj = O Ay + ((1/3)aiy K — (2/3)adiy) A+ ae” ¥ ((1/2)(07;) — (1/6)7:7(9:8))G"

(9)

O = 9T — ((2/3)(9j0)7”" + (2/3)a(0;7") + (1/3)047‘””7 1(0;8) — 4077 (05)) A
—(2/3)07"(9;A) + 2077 M; — (1/2)(08)7571(0;8) +

(1/6)(9;8")777 1 (0kS)
(1/2)8"51(077)(9;S)
(10)




A Full

aBS

set of BSSN constraint propagation eqs.

HBS All A12 A13 A14 A15 HBS
M, —(1/3)(0ia) + (1/6)8;, oK Ay 0 Ass M,
G | = 0 ay? 0 Asy Ass G’
S 0 0 0 B45S)  —2a7 S
A 0 0 0 0 aK + 3%0, A

= +(2/3)aK + (2/3)aA + B0,

= —46_4“°a(8k50)'~ykj - 26_4"0(61601)’3/]%

= —20e Y A¥,0), — ae™(0;A1)AM — e (9;0) A — e 3500, — (1/2)e % 3%471(0,8) 0
+(1/6)e™**571(0;8") (0S) — (2/3)e™ " (0uB")0;

= 2ae 3715 lk(al<p)Aak+(1/2)ae 3719, A)7 lk8k+(1/2) A7 H0,)3 " ADy, + (1/2)e 371 3m3%0,.0,0,

o8y e 553+ 405 (0,900 + (12 BB
+(3/4)e 4‘”_35’ FH(0:8)(9;8)0h — (3/4)e™ 772 B'(:57%)(9;8)h + (1/3)e™ 771537 (9;8") 0, 0%
—(5/12)e” 57230 8) (0:8)0; + (1/3)e™ 71 (r77)(9;5°)0; — (1/6)e %7 o T (OkOB")Orm

= (4/9)aKA — (8/9)aK? + (4/3)ae™*(0:0;0)77 + (8/3)ae™*?(Op) (OF™) + ce™#(0;577%) 0,
+8ae 3% (0,0)0), + ae**37%0,0), 4+ 8¢ (1) (Orp) A 4 e (0,0) (kF*) + 2¢7 (1) 7 O
+e” 4“””’“(81(%04)

= ae 3 (04p) (0ymi) — (1/2)ae” ¥ THAM (9;7ms)

(1/2)046 5 (D405 mi) + (1/2)ae” 5 72(8:8)(9;8) — (1/4)ae™ ¥ (0Am) (0;7™) + ae™ 5" (94)7ji0m
+ae™%(9;0)0; — (1/2)ae T 0AM3,,0,, + ae™1%5 mkfzﬂﬁ + (1/2)ae**3%5,,0,.0,
+(1/2)e™ 5" (05im) (D) + (1/2)e™9(0;0)0; + (1/2)e™ 5™ 353 (0 ) O

= —A%(0pa) + (1/9)(0;0) K + (4/9)(9;K) 4 (1/9)a K d; — e AF ;0

(1/2)ﬂk F208)0k — (1/2)(0B)F* 5 0k + (1/3) (0873 Ok — (1/2)8'F™ (OFmn)T™*5 " O

+(1/2) %5571 0,04
= —(Op)y™ +4047 *(Op) — Y™ Ok




BSSNN Constraint propagation analysis in flat spacetime

e The set of the constraint propagation equations, d;(H?*N, M;,G?, A, S)T ?

e For the flat background metric g, =

atm»@ -

at(l iy _2(1 ~2]

O\VK =

o =

—(1/6)VK + (1/6)x HA
(2/3)50 U 5;\NA
—(0;0,") + k10, Uj—/{

813(1)14@]' _ 1)(RBSSN TF 1)<DD CV

1)7_(BSSN

Fy R 410k ( Ck

~(4/3)(0VK) — (2/3)¢, (D 1~A)+2"‘3F2( )Mz'

We express the adjustements as

N, the first order perturbation equations of (6)-(10):

1/3 /’{A25m 8k: Ck

Radj = (’@p) Ry, KK1, KK2, KA1, KA2, Ry K/f‘Q)'

e Constraint propagation equations at the first order in the flat spacetime:

at(l)i_(BSSN

= ("37 - (2/3)"%1 -
;= (_(2/3)'%[(1 + (1/2)/@41 —

+(1/2)k 110,02 G + ((2/3)k k2 — (1/2)) O,
= 2y M+ (—(2/3)kp, —

— _2,%(12/47

= (KA1 — KA2)

(91).

(1/3)r5)(012A),

(4/3)kp +2) ;0 A + 2(k5y — 1)(01M;),

(1/3)ka2 + (1/2))
(1jBSSN

0,0{1G7

A~~~
—_ = =
=~ W N =

 — —

Ot

(16)



Effect of adjustments

No. Constraints (number of components) Amplification Factors (AFs)
H(1) M;(3) G (3 A(l) S (1) | in Minkowskii background

0. standard ADM use use - - - (0,0,3, )

1.  BSSN no adjustment | use use use use use (0,0,0,0,0,0,0,, )

2. the BSSN uset+adj usetadj use+adj usetadj usetadj| (0,0,0,5, 3,83, S, S)

3.  no S adjustment use+adj use+adj use+ad] use+ad] use no difference in flat background

4.  no A adjustment use+adj use+adj use+ad] use  usetadj | (0,0,0,9,5,3, 9, S, Q)

5.  no G’ adjustment use+adj use+ad] use usetadj use+adj || (0,0,0,0, 0 0 O )

6. no M, adjustment | use+ad] use usetadj use+adj use+adj | (0,0,0,0,0,0,0, 3%) Growing modes!

7.  no H adjustment use  usetadj use+adj usetadj use+adj| (0,0,0,9,5,3, 9,9, Q)

8. ignoreG’, A, S use+adj use+tad] - - - (0,0,0,0)

9. ignore G', A use+adj usetadj use+ad; - - 0,%,9,9,9,9,9)

10. ignore G’ use+adj use+ad] - usetadj use+adj || (0,0,0,0,0,0)

11. ignore A use+adj use+adj use+ad] - use+adj | (0,0,3,S, 3,9, S, Q)

12. ignore S uset+adj use+adj use+adj use+ad] - 0,0,3,95,3, 9, S, 9)




New Proposals :: Improved (adjusted) BSSN systems

TRS breaking adjustments

In order to break time reversal symmetry (TRS) of the evolution egs, to adjust (9tgz5,(9fyij,8tf‘i using S, G', or to adjust

(9tK, &gAij using .A

oo = (9tBS¢ + li(/)HOéHBS + H/(/)gOéDkgk + li(/)SlOéS + li(/)SQOéDijS
OFi; = 0P + ko HP® + ksg1adi; DiGF + kagoadniDyGr + kss1095S + ksseaDiD;S
0K = 0P K + ket (DjMy) + kg gy A + iy ,aD? DA

OAij = O Aij+ ko (D" M) + manea(DaMy) + ki 11055A + i ya DDA
oIt = oPST + /{fH&DiHBS + /{fglagi + /if@oz[?j[?jgi + /{f%abif)jgj + /{fsozDiHBs

or in the flat background

0PI = 4 rgHPS 4 kg OGR4 ks NS - Fiys20;0,1S

OAPTIE, —= 4 rag0i IHPY 4 k5610508168 + (1/2)ka60(9YG + 011G + 151018 + kx520:0,1S
OPME = gm0 M+ e A kg ,0,0{0A

OPPIVA = +rann 00 My + (1/2) ka2 (0:M + ;M) + 5 1,01 A+ iy 1,0i0;.A

0PN = rip O D 4 kg MG+ 005016+ gy 0i0{G + ki sONS



Constraint Amplification Factors with each adjustment

adjustment CAFs diag? effect of the adjustment
o KenaH (0,0, £v/—k2(%3), 8k gpik?) no | rgr < 0 makes 1 Neg.
0o  Keg aDRGF (0,0, v/ —k2(x2), long expressions) yes | kgg < 0 makes 2 Neg. 1 Pos.
Oyi;  Ksp oY H (0,0, £v/—k2(%3), (3/2)kspk?) yes | ksp < 0 makes 1 Neg. Case (B)
Oi;  Ksgr i DiG" (0,0, £+ —k?(%2), long expressions) yes | kg1 > 0 makes 1 Neg.
~ 2, 2(_ 2
Oij  Ksg2 O@k(iDj)gk (0,0, (1/4)k _KJVQ? + \/k (-1+k K7g2/16)(*2)’ yes | kyga < 0 makes 6 Neg. 1 Pos. Case (E1)
long expressions)
&ﬁ,;j K381 Oéﬁ/jjg? (0, 0, +v —]{72(*3), 3I€§31) no Rays1 < 0 makes 1 Neg
&ﬁij K382 OéD,;DjS (0, 0, :|:\/ —]{32(*3), —K§52k2) no K482 > (0 makes 1 Neg
il (0,0,0,iv _kQ(*Q)a

oK (D, < 0 makes 2 Neg.

W R @ DM | e e (1/3)/k2(=9 + k2K p) RO | Bra s TRakes 2 Jeg
@flij KAMI a’yij(ﬁkj\/lk) (0,0, £v/—k2(%3), =k ar1k?) yes | Kanm > 0 makes 1 Neg.

_ . 2 2(_ 2
OAi;  Kamz a(DMy) (0,0, -k KAM2/4 + \/k (=14 K?karmz/16)(x2) , yes | Kanme > 0 makes 7 Neg Case (D)
long expressions)

(‘Z{L;j RKAAl Oé’?ij./fl (0 0 +v —]{32(*3) 3/€AA1) yes Raa < 0 makes 1 Neg
OtAij  KaazaD;D;A (0,0, £ —k2(%3), —k aa2k?) yes | ka4 > 0 makes 1 Neg.
oI Kpy aD'"H (0,0, £V —k2(%3), —k au2k?) no | kg, > 0 makes 1 Neg.
(9th" Kig1 agf ] (0,0, (1/2)’<¢Fg1 +,/—k*+ Iif,gl(*Z) long.) yes | kpg; < 0 makes 6 Neg. 1 Pos. Case (E2)
8{"’ Kfgs a?ﬂ?jgz (0,0, =(1/2)kpgy £ /—k* + “fg2( 2) , long.) yes | Kpgo > 0 makes 2 Neg. 1 Pos.
O KpgsaD'D;G (0,0, =(1/2)kpgg £ /—K? + ngg( 2) , long.) yes | Kpgs > 0 makes 2 Neg. 1 Pos.

Yoneda-HS, PRD66 (2002) 124003



An Evolution of Adjusted BSSN Formulation
by Yo-Baumgarte-Shapiro, PRD 66 (2002) 084026

Mass/M Constraint residual
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Kerr-Schild BH (0.9 J/M), excision with cube, 1+ log-lapse, ['-driver shift.

O = ()4 I, -+ )G x=2/3 for (A4)-(A8)

8{%]' = ( . ) - IiOz’%jH k=0.1~0.2 for (A5), (AG) and (A8)
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Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

e "The essential improvement is in the process of replacing terms by the momentum
constraints’

Alcubierre, et al, [PRD 62 (2000) 124011]

o I is replaced by —9,4" where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

~

e [-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]
Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]



Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

This is because A-violation affects to all other constraint violations.

e "The essential improvement is in the process of replacing terms by the momentum
constraints’
Alcubierre, et al, [PRD 62 (2000) 124011]
This is because M-replacement in ['" equation kills the positive real eigenvalues
of CAFs. eigenvalues

o I is replaced by —9,4" where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]
This is because G-violation affects to H, M -violation constraint violations.

e [-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]
Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]
No doubt about this.



Numerical Experiments of Adjusted BSSN Systems

Kenta Kiuchi  Waseda University
AN EBX FHEHKRZ BIPE
kiuchi@gravity.phys.waseda.ac. jp
Hisa-aki Shinkai Osaka Institute of Technology

ERFH KRIEXTE BREZEE

shinkai@is.oit.ac.jp

e BSSN vs adjusted BSSN Numerical tests

e gauge-wave, linear wave, and Gowdy-wave tests, proposed by the Mexico workshop 2002
e 3 adjusted BSSN systems.
e Work as Expected

— When the original BSSN system already shows satisfactory good evolutions (e.g., linear wave test),
the adjusted versions also coincide with those evolutions.

— For some cases (e.g., gauge-wave or Gowdy-wave tests) the simulations using the adjusted systems
last 10 times longer than the standard BSSN.

Phys. Rev. D77, 044010 (2008)



Adjusted BSSN systems; we tested

from the proposals in Yoneda & HS, Phys. Rev. D66 (2002) 124003
1. A-equation with the momentum constraint:
8tflij = @Bfll-j + &Aaﬁ(i/\/lj), (1)
with k4 > 0 (predicted from the eigenvalue analysis).
2. v-equation with G constraint:
Oy = 0P 3i; + ko DyG", (2)
with k5 < 0.
3. [-equation with G constraint:
O = OPT" + kraG'. (3)

with Kp < 0.



Numerical Testbed Models A: Gauge-wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589
The trivial Minkowski space-time, but time-dependent tilded slice.
ds* = —Hdt* + Hdz? + dy* + d2°,

H_H(x_t)—l—Asin(%‘l_t)),

Parameters:
e Gauge-wave parameters: d = 1 and A = 1072
e Simulation domain: x€[—0.5,0.5, y =2 =10
o Grid: 2’ = —0.5+ (n — )dx with n =1, - 50p, where dz = 1/(50p) with p = 2,4,8
e Time step: dt = 0.25dx
e Periodic boundary condition in  direction
e Gauge conditions: d,a = —a’K, (3 =0.

The 1D simulation is carried out for a T = 1000 crossing-time or until the code crashes, where one
crossing-time is defined by the length of the simulation domain.



Error evaluation methods

It should be emphasized that the adjustment effect has two meanings, improvement of stability and of
accuracy. Even if a simulation is stable, it does not imply that the result is accurate.

e We judge the stability of the evolution by monitoring the L2 norm of each constraint,

[10C] |2t Z (t:2,y, 2)

xyz

where N is the total number of grid points,

e We judge the accuracy by the difference of the metric components g;;(t; z,y, z) from the exact

solution ggjxad) (t; .y, 2),

1 exac 2
ARCE \/NZ (9 — o)’

L,Y,%



A.1 The plain BSSN system
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FIG. 1: The one-dimensional gauge-wave test with the plain BSSN system. The L2 norm of H and M., rescaled by p?/4, are plotted with a function of the crossing-time. The
amplitude of the wave is A = 0.01. The loss of convergence at the early time, near the 20 crossing-time, can be seen, and it will produce the blow-ups of the calculation in the
end.

e The poor performance of the plain BSSN system has been reported.
Jansen, Bruegmann, & Tichy, PRD 74 (2006) 084022.

e The 4th-order finite differencing scheme improves the results.
Zlochower, Baker, Campanelli, & Lousto, PRD 72 (2005) 024021.



A.2 Adjusted BSSN with A-equation
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FIG. 2: The one-dimensional gauge-wave test with the adjusted BSSN system in the A-equation (1). The L2 norm of H and M., rescaled by p>/4, are plotted with a function
of the crossing-time. The wave parameter is the same as with Fig. 1, and the adjustment parameter x4 is set to k4 = 0.005. We see the higher resolution runs show convergence
longer, i.e., the 300 crossing-time in H and the 200 crossing-time in M, with p = 4 and 8 runs. All runs can stably evolve up to the 1000 crossing-time.

e We found that the simulation continues 10 times longer.
e Convergence behaviors are apparently improved than those of the plain BSSN.

e However, growth of the error in later time at higher resolution.

3 o 3 _ 9 3 3 By
8tAij = —¢ 4 [DiDjOt + O{Rij]TF + OtKAij — QOéAikAkj + @ﬂkAkj + 8jﬁkz4ki — g@kﬁkAij + ﬁkﬁkAij—i—F&AOzD(iMj)



A.4 Evaluation of Accuracy

e L2 norm of the error in 7,,, (4), with the function of time.

e The error is induced by distortion of the wave; the both phase and amplitude errors.
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FIG. 4: Evaluation of the accuracy of the one-dimensional gauge-wave testbed. Lines show the plain BSSN, the adjusted BSSN with A-equation, and with [-equation. (a) The
L2 norm of the error in 7.5, using (4). (b) A snapshot of the exact and numerical solution at 7' = 100.



Numerical Testbed Models B: Linear wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589

Check the ability of handling a travelling gravitational wave.
ds®* = —dt* +dx® + (1 + b)dy* + (1 — b)d=?,

Parameters:
e Linear wave parameters: d =1 and A = 1078
e Simulation domain: z€[—0.5,0.5], y =0, z=0
o Grid: 2’ = —0.5+ (n — §)dz with n =1, ---50p, where dz = 1/(50p) with p = 2,4,8
e Time step: dt = 0.25dx
e Periodic boundary condition in  direction
e Gauge conditions: o = 1 and 3' =0

The 1D simulation is carried out for a I" = 1000 crossing-time or until the code crashes.



Numerical Results B: Linear Wave Test

1e-08 2e-10 T T T T T
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Snapshot of errors with the exact solution for the Linear Wave testbed with the plain
Snapshots of the one-dimensional linear wave at different resolutions with the plain ~ BSSN system and the adjusted BSSN system with the A equation at 7" = 500. The
BSSN system at the simulation time 500 crossing-time. We see there exists phase  highest resolution p = 8 is used in both runs. The difference between the plain and
error, but they are convergent away at higher resolution runs. the adjusted BSSN system with the A equation is indistinguishable. Note that the
maximum amplitude is set to be 1078 in this problem.

e The linear wave testbed does not produce a significant constraint violation.

e The plain BSSN and adjusted BSSN results are indistinguishable.
This is because the adjusted terms of the equations are small due to the small violations of constraints.



Numerical Testbed Models C: Collapsing polarized Gowdy-wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589
Check the formulation in a strong field context using the polarized Gowdy metric.
ds? = t V2N (—di? + d2?) + t(eFdx? + e Tdy?).
P = Jy(2mt) cos(2mz),
A = —2mtJy(2mt)J(27t) cos*(2mz) + 27t [ J; (2mt) + JE(27t)]
1
—5[(27)2[J3(27r) + J2(2m)] — 27 Jo(2m) Jy(27)],

where J,, is the Bessel function.
Parameters:

e Perform the evolution in the collapsing (i.e. backward in time) direction.

e Simulation domain: z € [—0.5,0.5], v =y =0

o Grid: 2 =—0.5+ (n — £)dz with n = 1,---50p, where dz = 1/(50p) with p = 2,4,8
e Time step: dt = 0.25dz

e Periodic boundary condition in z-direction

e Gauge conditions: the harmonic slicing O,a = —a?K, [('=0.and 3 =0

e Set the initial lapse function is 1, using coordinate transformation.

The 1D simulation is carried out for a I" = 1000 crossing-time or until the code crashes.



C.1 The plain BSSN
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FIG. 5: Collapsing polarized Gowdy-wave test with the plain BSSN system. The L2 norm of H and M., rescaled by p? /4, are plotted with a function of the crossing-time.
(Simulation proceeds backwards from ¢t = 0.) We see almost perfect overlap for the initial 100 crossing-time, and the higher resolution runs crash earlier. This result is quite
similar to those achieved with the Cactus BSSN code, reported by [? ].

e Our result shows similar crashing time with that of Cactus BSSN code.

Alcubierre et al. CQG 21, 589 (2004)

e Higher order differencing scheme with Kreiss-Oliger dissipation term improves the results.

Zlochower, Baker, Campanelli & Lousto, PRD 72, 024021 (2005)



C.2 Adjusted BSSN with A-equation
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FIG. 6: Collapsing polarized Gowdy-wave test with the adjusted BSSN system in the fi-equation (1), with k4 = —0.001. The style is the same as in Fig. 5 and note that both
constraints are normalized by p?/4. We see almost perfect overlap for the initial 1000 crossing-time in both constraint equations, H and M, even for the highest resolution run.

e Adjustment extends the life-time of the simulation 10 times longer.

e Almost perfect convergence upto ¢t = 1000t for both 'H and M, while we find oscillations in M.,
later time.

N L N N 9 N N 5
8tAij = —¢ 4 [DiDjOt + O{Rij]TF + OtKAij — QOzAikAkj + @ﬂkAkj + 8jﬁkAki — gé?kﬁ’“Aij + ﬁkakAij+/€AaD(iMj)



C.3 Adjusted BSSN with 4-equation
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FIG. 7: Collapsing polarized Gowdy-wave test with the adjusted BSSN system in the 4-equation (2), with k5 = 0.000025. The figure style is the same as Figure 5. Note the
almost perfect overlap for 200 crossing-time in the both the Hamiltonian and Momentum constraint and the p = 2 run can evolve stably for 1000 crossing-time.

e Almost perfect convergence up to t = 200t.,,ss in both H and M.
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C.4 Adjustment works for Accuracy

Error of 7., to the exact solution normalized by ~...

e Accurate Evolution < Error < 1 %.
(Zlochower, et al., PRD72 (2005) 024021 )

the Plain BSSN = ¢t = 200,455
adjusted BSSN A-eq ~ t = 1000¢ 055
adjusted BSSN 7-eq ~ t = 400t 05
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Comparisons of systems in the collapsing polarized Gowdy-wave test.
The L2 norm of the error in .., rescaled by the L2 norm of .., for the
plain BSSN, adjusted BSSN with A-equation, and with 4-equation are
shown. The highest resolution run, p = 8, is depicted for the plots. We
can conclude that the adjustments make longer accurate runs available.
Note that the evolution is backwards in time.
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A Full

aBS

set of BSSN constraint propagation eqs.

HBS All A12 A13 A14 A15 HBS
M, —(1/3)(0ia) + (1/6)8;, oK Ay 0 Ass M,
G | = 0 ay? 0 Asy Ass G’
S 0 0 0 B45S)  —2a7 S
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= —46_4“°a(8k50)'~ykj - 26_4"0(61601)’3/]%

= —20e Y A¥,0), — ae™(0;A1)AM — e (9;0) A — e 3500, — (1/2)e % 3%471(0,8) 0
+(1/6)e™**571(0;8") (0S) — (2/3)e™ " (0uB")0;

= 2ae 3715 lk(al<p)Aak+(1/2)ae 3719, A)7 lk8k+(1/2) A7 H0,)3 " ADy, + (1/2)e 371 3m3%0,.0,0,

o8y e 553+ 405 (0,900 + (12 BB
+(3/4)e 4‘”_35’ FH(0:8)(9;8)0h — (3/4)e™ 772 B'(:57%)(9;8)h + (1/3)e™ 771537 (9;8") 0, 0%
—(5/12)e” 57230 8) (0:8)0; + (1/3)e™ 71 (r77)(9;5°)0; — (1/6)e %7 o T (OkOB")Orm

= (4/9)aKA — (8/9)aK? + (4/3)ae™*(0:0;0)77 + (8/3)ae™*?(Op) (OF™) + ce™#(0;577%) 0,
+8ae 3% (0,0)0), + ae**37%0,0), 4+ 8¢ (1) (Orp) A 4 e (0,0) (kF*) + 2¢7 (1) 7 O
+e” 4“””’“(81(%04)

= ae 3 (04p) (0ymi) — (1/2)ae” ¥ THAM (9;7ms)

(1/2)046 5 (D405 mi) + (1/2)ae” 5 72(8:8)(9;8) — (1/4)ae™ ¥ (0Am) (0;7™) + ae™ 5" (94)7ji0m
+ae™%(9;0)0; — (1/2)ae T 0AM3,,0,, + ae™1%5 mkfzﬂﬁ + (1/2)ae**3%5,,0,.0,
+(1/2)e™ 5" (05im) (D) + (1/2)e™9(0;0)0; + (1/2)e™ 5™ 353 (0 ) O

= —A%(0pa) + (1/9)(0;0) K + (4/9)(9;K) 4 (1/9)a K d; — e AF ;0

(1/2)ﬂk F208)0k — (1/2)(0B)F* 5 0k + (1/3) (0873 Ok — (1/2)8'F™ (OFmn)T™*5 " O

+(1/2) %5571 0,04
= —(Op)y™ +4047 *(Op) — Y™ Ok




Which constraint should be monitored?

Yoneda & HS, PRD 66 (2002) 124003 Kiuchi & HS, PRD 77 (2008) 044010
1e+08 | SI( /s |0) T |
o 1et07 A(t)/A(t=0) E
s 1e+06 glx_l(tt)/ X§E=8§ ffffffff .
Order of constraint violation? g 100000 F MX(tS M, (t=0 E
) ] o 10000 [ ;. -
e A and S constraints propagate independently of E 1000 £ E
the other constraints. 'c_é 100 f . .
e (-constraint is triggered by the violation of the g 10 _ _
momentum constraint. 1 L E
01 ] ] ] ] ]
e H{ and M constraints are affected by all the other O 20 40 60 80 100 120
constraints. T

The violation of all constraints normalized with their initial values, ||0C||2(t)/]|6C||2(0),
are plotted with a function of time. The evolutions of the gauge-wave testbeds with

the plain BSSN system are shown.

By observing which constraint triggers the other constraint’s violation from the constraint propagation
equations, we may guess the mechanism by which the entire system is violating accuracy and stability.



CCETODFEED ()

[Keyword 1]  Adjusted Systems
B AR ZHRRFHZAUVWTHIET 2D EFTRICEHONTULDIFE.
ChEFEEUTHEEILLL, lambda Y RTADK S [CHFRNER (C ZEH S AL,

[Keyword 2]  Constraint Propagation Analysis -> Constraint Damping System
HRFGEOREBRABRRZFHEINL, EBHABERZESHETNEIVHDDOHLS.
(Step 1) Fourier mode expression of all terms of constraint propagation egs.
(Step 2) Eigenvalues and Diagonalizability of constraint propagation matrix.
Eigenvalues = Constraint Amplification Factors
(Step 3) If CAF=negatives -> Constraint surface becomes the attractor.

[Keyword 3]  Adjusted ADM systems
Standard ADM (&, HRFHZEDE—RBFELTWDRZ D DH o1,
WS DD\ DEIEEREDL D D, EERICHEBEEFIREIL L TEHRISHBUS.
[Keyword 3]  Adjusted BSSN systems
BSSN OfFr(E momentum constraint ZRAUL\/=fEIEICH o Tz,
W< DHDE SR DMIEER@EH DD, RRICFHRIELEL L TEHEDBIBUS.
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Goals of the Talk

(MZEZR(IC U TREARENZIEIR
INERVDH?

--- Constraint Propagation egs.
ESULTELDTIL—TH BSSN
FERXZEE>TLWBDH?

--- Just rush, not to be late.
BSSN #Zz((C1N10 D formulation
(TdHDH 7?7

--- Yes, there are. But we do not know the best.
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Formulation for Numerical Relativity
both for Einstein / Gauss-Bonnet
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1. Introduction
ELHEE?

2. The Standard Approach to Numerical Relativity
ADM 2=, BSSN =, Hyperbolic =

3. Robust system for Constraint Violation
Adjusted systems .... better than lambda system! \ =
Adjusted ADM......... why ADM blows up? <z
Adjusted BSSN......... why BSSN works well?
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Discussion
Application 1 : Constraint Propagation in N + 1 dim. space-time

HS-Yoneda, GRG 36 (2004) 1931
Dynamical equation has N-dependency

Only the matter term in J,K;; has N-dependency.

0~ Cy = (G — ST, )n'n" = %((N)R + K? — KYKyj) — 8tpy — A,
0~ Cyi = (G — 81T, )" LY = D;K] — D;K — 8r.J;,

Oyij = —2aK;+ Dl + Dif;,

0K;; = a"WR;+aKK;; —2aK' Ky — D;Dja

+8%(DLK;) + (D; 85 K + (D8 Ky, — 8mar (s ! 20

N—lij ) N—lfyj

Constraint Propagations remain the same

From the Bianchi identity, VS, = 0 with §,,, = Xn,n, +Y,n, +Y,n,+ 2Z,,, we get

0=n"V"S, = —Z,(V'n")—-V"Y,+Y,n'V,n" =2Yn,(V'n') — X(V'n,) —n,(V"X),
0= hi'V"S,, = VI'Zi, + Yi(V',) + Ya(V') + X (V') + n,(V'Y)).

o (S, XY, Zij) = (T, pu, Ji, Sij) with VFT,, = 0 = matter eq.
¢ (SMWX? Yi, Zij) — (Guv - SWTuuacHacMiy Kv%'jCH) with VM(G,W — 87TT/W) =0 = CP eq.



N + 1 formalism in Einstein-Gauss-Bonnet Gravity

Takashi Torii  Osaka Institute of Technology
OOo0o0o0nd OO0o00o00 ogo
Hisa-aki Shinkai Osaka Institute of Technology
OO00o00n0d 000000 00000

e (N + 1)-dimensional space-time decomposition of Einstein-Gauss-Bonnet gravity

e Due to the quasi-linear property of the Gauss-Bonnet gravity, we find that the
evolution equations can be in a treatable form in numerics.

e We also show the conformally-transformed constraint equations for construct-
ing an initial data.

e Both for timelike and spacelike foliations.

Phys Rev D 78, 084037 (2008).



e (N + 1)-dimensional spacetime (./\/l,g,w)

S:/MdN—i-lX\/__g

1
9,2 (R —2A + OZGBLGB) + Lnatter

Lop =R —4ARwR™ + Ryuwpo R
e The action gives the gravitational equation
G + acsH,w = K> T,
where

1
g,uy — R,uu - _g,uyR + Agw/:

2
1
Huw = 2|RRyuw — 2RuaR”, — 2R Ry + R, Roasn| — SgwLan.
5£ma er
Zw = —2 = + g,uyﬁmatter-

g



Projections to Hypersurface Yy (spacelike or timelike) (1)

e the projection operator,
Ly =guw—enun,, nn'=c¢ (3)
where n,, is the unit-normal vector to ¥ with n, is timelike (if ¢ = —1) or spacelike (if ¢ = 1).

> is spacelike (timelike) if n, is timelike (spacelike).

e The projections of the gravitational equation:

(Guw + agsHuw)n''n” = k*Tn'n’ = Kpy, (4)
(G +agpHy)nt LY, = K> T, " 17 = —K%J,, (5)
(Guv + ageHyuw) L1 LY = KT, LF 1Y = K*S,,, (6)

where we defined
T, = panyny, + Jyn, + Jon, + S, T = —pg + st
e Introduce the extrinsic curvature K;;
1 0 1B

where £, denotes the Lie derivative in the n-direction and V and D; is the covariant differ-

entiation with respect to g,,, and ~;;, respectively.



e Projection of the (N 4 1)-dimensional Riemann tensor onto Xy

Gauss eq.  Rags L J_ﬁj 1% L% = Rijy — e K K + e Ky K, (8)
Codaccieq.  Rapys L% J_ﬂj 17%n’ = =2Dy K ., (9)
Ropys L% L nn® = £, Ky + Ky K (10)

e Curvature relations
Ruvpe = Ruvpe — s(KMpKW - KK, —n,D,K,; +n,D;K,, +n,D,Ks, —n,D,K,,

—n,D, K, +n,D,K,, +n,D,K,, —n,D,K,,)
+1,n, Ko K — nyne Ko K6, — n,n, 1,0 K, + n,,nC,KWKO;

+n,n,£n Ko — nyne Lo K,y — nyn, £ K6 + nyng £,K,,, (11)
Ru = Ry — e[KKyy — 2K, K% +n, (DK% — D,K) + n, (D, K°, — D,K)]
—I—nﬂn,,KaﬁKo‘ﬁ +elp K, + nun,/y“ﬁi’nKag, (12)

R = R—e(K?* 3K 3K — 2y £,K,3). (13)



N + 1 Einstein-Gauss-Bonnet equations Substituting (11)-(13) into (3) or (4)-(6), we find:

(a) dynamical equations for ~;;:

1
Mz’j - QM,YZ'] - 5(_KiaKaj =+ ’YinabKab - "EnKz] + ’)/z'j/)/abvgnKab)
+20¢GB[HU -+ 8(M£an — 2Mia£nKaj — QMJ-QGE”KM' — I/Vijabanab)] = /{27;”’7%’}/1/]-

(b) Hamiltonian constraint equation:
M + agp(M? — 4AMgM™ + MypogM ™) = —2eK*T,,n"'n"

(c) momentum constraint equation:

N; + 2agp (MN; = 2M,"N, + 2M " Ny, — M, “*Nye) = —&> Ty

Hy = MM;; —2(MigM% + M®M;qjp) + MigpeM 2%
Mijkl _ Rijkl . 5(KikKjl . KilKjk) i ij ( ia j + l(ljb) + Miabe j

My = ¥®Migjp = Rij — e(KKij — Kia K%) —2e| — Ko, K®M;; — %M KioK% + Kig KM + Kjo KM, + KK Mg,
M = ~%My =R—e(K?— K, KP)
Nijk = DiKj, — DKy
N; = 4Ny = DoK,* — D;K _l%j (M2 — AMp M 4 Mopoq M)

4
W”kl = M~ kl_2M kl_2 Mkl+2M _ak,_ bl
YigY ijY Yij iajbY Y e [KabKabM o 2MabKacch —2N,N® + Nachabc}

1
+NiNj = N(Naij + Nagi) = 5 NapiN " — Niap N,



® We generalized the Conformal approach by York and OMurchadha (1974) to N-dim & for

Gauss-Bonnet gravity.

e Conformal transformation

solution Yij = P A = op2mAY trial metric

this gives
R = ™R —2(N - 1)my(D"Dat)) + (N = 1)[2 = (N = 2)m]me~2(Dy)?},
Rij = Rij—mAip~ DaD" — (N = 2)my™ DiDjsp + (N = 2)m(m + 1) 2Dy Djyp — m[(N — 2)m — 1]o=*(Dy))*3,
0™ Rijra + my ™ 3u[D; Dy — (m + 1)~ Dy D] = mep™ 334 [D; D — (m + 1)~ Dy Dyy]
+ i 5[ DD — (m + 1) Dt D] — mp ™ 5[ DiDyp — (m + 1)~ Ditp D] + m?%~ (Do) GAge — i) }-

o 1
e Decompose the extrinsic curvature K;; as K;; = A;; + N%‘jK’ and assume

=

S

=
I

/ g o Aid
Ajj = P Ay, AV =AY,
K = ¢y'K
e When matter exists, define also the conformal transformation

p=yvp, =yl



Hamiltonian constraint

2N — 1)mD,D% — (N — 1)[2 — (N — 2)m]m(D1)*p~}
. N —1

¥ 5¢2m—|—27‘—|—1k2 4+ €¢_2m+2€+1Aa6Aab + 2€K2ﬁw—p o 2[\

+ aap <M2 . 4MabMab 4+ Mabchade> ¢2m+1. (14)

O = (M —4MypM™ + MypgM™?)

= (N— 3)m¢4m{4(N — 2)my > {(Daﬁ%f -~ ﬁaﬁbd)ﬁ“ﬁbd)} — 4yt [M — (N = 2)[(N = 3)m — 2]mip~ 2Dad)D“w} Do
807 M1 (N = 2)m(m + 1) DUDP| DuDiyh + (N — Dam?[(N — 4)m — 4~ (Dap D) — 26 [(N — d)m — AN Dep D
= 8(m + 1)y M “”f?awbw} + (L = AT T 4 Tapea T,

N -1
N2

A A N -1
where T:R—E[

- P22 1/)2Z_2mz‘1ab/1“b], T, = Rij — 5[

. N —2 PN PN
1/)2m+27',%jK2 + N ¢E+TKA7;]' _ 1/)2(_2mAiaAaj:| 7

. 1 . 1 . . . . o o
Yiji = Rijr — € {Ng VP (R — Aadie) K2+ NW”(/MWJ‘Z — ApFik + Ak — ApAa) + 02T (A Ay — AizAjk;)}

(A) If we specify 7 = ¢ —2m and m = 2/(N — 2), then (14) becomes

AN —1 . o ) A
<]</vv_2) Daw — Rw _ 8w2£-ﬁ-1—4/(1\7—2) (K2 o KabKab) + 25/‘62@#_17 —9A + aG36¢1+4/(N—2)‘ (15)
(B) If we specify 7 =0 and m = 2/(N — 2), then (14) becomes

4(]<[V2)D Daw — Rw—gN 1¢1+4/(N 2)K2+8¢2£+1 4/ (N=2) 4 Aab+2gﬂ2ﬁw P 2A+05GB@w1+4/(N72)- (16)



Momentum constraint

e Introduce the TT part and the longitudinal part of A%, and its vector potential as
L L R SR
DjAY, =0, A} = AT — A A} = D'W’ + D'W' — N&”DkW’“.

e Conformal transformations: D;A,” = ' 2>"{D; A + ¢~ [ + m(N — 2)]A,” D;3b}

A A N—-2. . .
D, D*W; + TDZ-D;CW’C + R Wk

“ “ 2 “ “
+p 7 [0+ (N — 2)m)(D* W’ + D'W* — N”yakaWk)%iDaw

—me_ﬂVA_flf)i(wa() + ¢2m762&6~3éi = /€2¢4m7€7qji (See next page for =;.) (17)
(A) If we specify 7 = ¢ —2m and m = 2/(N — 2), then (17) becomes
DD W, 2 DD 4 W 40+ 2)(DW 4 DW* — 24 DD
(= o) DR DA O D05, = g (18)
(B) If we specify 7 =0 and m = 2/(N — 2), then (17) becomes
D,D*W; + N]\_[QD@,CW’“ + Ry W* 4+ 71 + 2)[D*W® + DWW — ;fyakaW’“mDaw
_1/}4/(N—2)—£]V]\_[1Dif{ b Dt B 28 (N2~ ], (19)




N2 _3N +4

= =yt 4m{R — 2(N = 3)map~ Dy Db1p — (N — 3)ym[(N — 4)m + 24y =2 Dyip D — Nz

€w+2m+27'f(2 - 6¢2€—2mAbcAbc}ﬁaAai
(—am Ab ERE o ap 2N =3) s 2w-2miciblh ia
o) 2R, + 2N = 3 DPDigp — 2N = Bjm(m + 1)y Dy Do + TP epHTRAL — 2022 A A LD, A,

. A . . 2(N — oA P A a P
Lt R (N~ By DYDY — 2N — Dym(m + 12Dy — 2N =) ~ 3yt kA Qszp?‘—?mAacAcb}(DiAab — Do Ay)

+2e®7m A2 A% (D, Ape — DyAge) + Ri + Di + AV Dy + AP DK + A®) D,ap A%,
2N —2) 2(N — 3)
N2 N

N — A A ap oA A AL AL A
+7)6w2£—4m+7DbKAbaAai _ 2[(N _ 6)m + 3€]€w3ﬁ—6m—1Dc,¢}AchbaAai’

W22 R (DR + 7 K Do) A°, + (N = 4)m + 20 4 7)o+ K Dy A, A°,

N

R = {[(N By A Dy — NSyt (iR + Tw‘lf(f?z-w)}f?

2(N — 3 -3 . o .

+{(]V) ]\7)7,[1_2m+TDaK o 2[(N o 3)m + E]T/)Z_Zlm_lAabDbd}}Rza
—2(m — O Ay Dty — A Datp) R™ + 2(m — 09 41 Dyap Ay R,

N2 —8N 411

D {N

_{2(1\7 —2)3

P2 D + 2(N

mp 2T YD K 4+ rp UK D) — 2m[(N? = 6N + T)m + (N — 3)41/;“”1215!,@2}15@15%

N
+2(N = 3)m(m — )" "2(AyDitp — Ajg Dyip) D® D4,
N

AL 2{_1\72m(m D)2 PUR 4 7 R Do) (DR + 7o K DY)

N —2)? PPN N -2 o
<N)m(m )= 2m+ 72D K D%) + Wm[(N2 — 4N + 5)m 4 2]7p 2T S K D g4p D4
3

. . A N — aAn o apoa A
— (N _ 2)3m2(m + 1)w574m73Da¢waAab + T(m /- T)€w2€f4m+TflKAabAab _ (m _ £)€w3£6m1AabAbcAca}a

mp~ 2T DK + 7 T K Datp) — 2m[(N? — AN + 5)m + (N — 2)(¢ — 2)Jg "2 Dyp A®,, }f)“[)iw

A(2) — ]1[{(]\7 _ 2)3m[(]\7 _ 3)m _ 2]w72m+772ﬁawﬁaw - (N — 13\?5]\] + 1)51/}37—K2 _ (N _ 3)57/)2Z4m+7—121ab121ab},
AB = (N = 2)2(N = 5)m? + (N — 2)3(¢ — 2)m + (N — 1)(3¢ — 2)]* "3 D,y D)
1

— 3z [(N = (V? = 8)m + (N? = N + 2)fJeq) 2" 2R + [(N — 6)m + 3e)eqy™ 01 A, A,



(A) Hamiltonian constraint

A(N —1)

N5 DaDaw _ Rw . €¢2€+1—4/(N—2)([A(2 . [A(abkab) + 2€K2ﬁw—p . 2[\ + QGB@¢1+4/(N—2).

(A) momentum constraint

A A A . R R 2 R R
D,D*W; + D;DW* 4+ RyW* 710 + 2)(DW° + D'W* — N?yakakaDa;/}
N -1 4 .

(0= A D) + DR+ v D08, = g1,

Procedures to construct the initial hypersurface data (v, K;j, p, J')
1. Give the initial assumption (trial values) for 4;;, trK, A%’;T and p, J.
2. Solve above 2 equations for 1) and WW*,
3. inverse conformal transformations,
_9) A - Lo a/n—2)4
s = N4, Kij = ¢ AT + (IW)] + NW YIN=2)3, 4K
p=yv7p, T =y




(1 + QCYGBM) £nKij — (%j’)’ab + QCYGBVVi]-ab) £nKab — 8(,YGBM<Z-G£”K|GU>

1
= —€<Mij — §M%j> — KioK% 4+ 7K K™ + ex*Sij — evijA — 2eaapH;j , (20)

o £,[,, terms appear only in the linear form, due to the quasi-linear property of the Gauss-

Bonnet gravity.

e |terative scheme is necessary, but treatable in numerics.

£n11 £n11 K1
£n712 0 0 £n12 Ko
£n Y13 £ 113 K3
: _ : n :
£nK11 .. £nK11
O  Mixing

vEnKlZ vEnKlZ Source
°€nK13 £nK13

e Coding is in progress, .... but .... |Are the evolution eqs always invertible??




R TOEED (SRITA\DHA)

[S2IT GR #EHERERIE)
conformal Z#1%Z AL\ T Constraint Zf# < F&E—RNICEE TE .

[ERTT GR R ERIRE]
4 R%cERUL, formulation problem HEEL,
4 KT ER UBRAENBRAEINTHLS THSS.

[Gauss-Bonnet #1HA{ERIRE]
conformal Z#a%& AL\ T Constraint Zf# < AEF—EVICEE TEH,
fR(FDIDESHIHHMSILN,

[Gauss-Bonnet BREIFERIRE]
ADM BB ER(LITTET=.
AL, MRICK> TKEFHREN BB BRIUEMEHEZSNS.



Discussion
Future : Construct a robust adjusted system
HS-Yoneda, in preparation

(1) dynamic & automatic determination of x under a suitable principle.

e.g.) Efforts in Multi-body Constrained Dynamics simulations

9 o o
apl = E + )\a %, with C (ﬂfl,t) ~ ()

e J. Baumgarte (1972, Comp. Methods in Appl. Mech. Eng.)
Replace a holonomic constraint 97C' = 0 as 97C' + ad,C + $*C = 0.

e Park-Chiou (1988, J. Guidance), “penalty method"
Derive “stabilization eq.” for Lagrange multiplier A(%).

e Nagata (2002, Multibody Dyn.)
Introduce a scaled norm, J = C*SC, apply 0;J +w?J = 0, and adjust \(¢).

e.g.) Efforts in Molecular Dynamics simulations
e Constant pressure ~ ------ potential piston!

e Constant temperature ------ potential thermostat!! (Nosé, 1991, PTP)




(2) target to control each constraint violation by | Momentum constr.

adjusting multipliers. grow

CP-eigenvectors indicate directions of con-

straint grow/decay, if CP-matrix is diagonal-
grow

dec >
. —///// Hamiltonian constr.

decay

izable.

(3) clarify the reasons of non-linear violation in the

last stage of current test evolutions.

(4) Alternative new ideas?

— control theories, optimization methods (convex functional theories), mathematical pro-
gramming methods, or ....

(5) Numerical comparisons of formulations, links to other systems, ...

— “Comparisons of Formulations” (e.g. Mexico NR workshop, 2002-2003); more formula-
tions to be tested, ...

Find a RECIPE for all. Avoid un-essential techniques.



Discussion
Application 2 : Constraint Propagation of Maxwell field in Curved space
HS-Yoneda, in preparation
Towards a robust GR-MHD system:

e Maxwell egs in curved space-time

OE = €*Di(aBy) —4nat + aKE' + £3E

OB = —€'"Di(aFE})+aKB' + £3B'
Cp = D,E' —4rp,
Cp = D;B'

e CP of Maxwell system in curved space-time

0,Cp = aKCg —|—5ij03

0,Cp = OJKCB-J-ﬁijCB
o CP of ADM+Maxwell
CE x x 0 0 CE
5 Cg| |* * 0 0|]|Cg
“| H 00 = || H
MZ' 0 0 x = MZ

e CP of ADM+Maxwell+Hydro

in progress.





