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Introduction

Why Wormhole?

They make great science fiction -- short cuts between otherwise distant regions.
Morris & Thorne 1988, Sagan “Contact” etc

JODIE FOSTER
MATTHEW McCONAUGHEY

™

CONTACT

US movie 1997



Wormbholes in spacetime and their use for interstellar travel: A tool for
teaching general relativity

Michael S. Morris and Kip S. Thorne
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

(Received 16 March 1987; accepted for publication 17 July 1987)

Rapid interstellar travel by means of spacetime wormholes is described in a way that is useful for
teaching elementary general relativity. The description touches base with Carl Sagan’s novel
Contact, which, unlike most science fiction novels, treats such travel in a manner that accords
with the best 1986 knowledge of the laws of physics. Many objections are given against the use of
black holes or Schwarzschild wormholes for rapid interstellar travel. A new class of solutions of
the Einstein field equations is presented, which describe wormholes that, in principle, could be
traversed by human beings. It is essential in these solutions that the wormhole possess a throat at
which there is no horizon; and this property, together with the Einstein field equations, places an
extreme constraint on the material that generates the wormhole’s spacetime curvature: In the
wormhole’s throat that material must possess a radial tension 7, with the enormous magnitude
7o~ (pressure at the center of the most massive of neutron stars) X (20 km)?/(circumference of
throat)?. Moreover, this tension must exceed the material’s density of mass-energy, p,c’. No
known material has this 7,> p,c® property, and such material would violate all the “energy
conditions” that underlie some deeply cherished theorems in general relativity. However, it is not
possible today to rule out firmly the existence of such material; and quantum field theory gives
tantalizing hints that such material might, in fact, be possible.

Am. J. Phys. 56 (5), May 1988 © 1988 American Association of Physics Teachers




Box 1. Excerpts from Contact by Carl Sagan."”

After traveling through some sort of “tunnel” that took them in less than an hour from Earth to an orbit around the star Vega, five of the characters in
the novel speculate on the nature of the tunnel:

“You see,” Eda explained softly, “if the tunnels are black holes there are real contradictions implied. There is an interior tunnel in the exact Kerr
solution of the Einstein Field Equations, but it’s unstable. The slightest perturbation would seal it off and convert the tunnel into a physical singularity
through which nothing can pass. I have tried to imagine a superior civilization that would control the internal structure of a collapsing star to keep the
interior tunnel stable. This is very difficult. The civilization would have to monitor and stabilize the tunnel forever. It would be especially difficult with
something as large as the dodecahedron falling through.”

“Even if Abonnema can discover how to keep the tunnel open, there are many other problems,” Vaygay said. “Too many. Black holes collect problems
faster than they collect matter. There are the tidal forces. We should have been torn apart in the black hole’s gravitational field. We should have been
stretched like people in the paintings of El Greco or the sculptures of . . . Giacometti. Then other problems: As measured from Earth it takes an infinite
amount of time for us to pass through a black hole, and we could never, never return to Earth. Maybe this is what happened. Maybe we will never go home.
Then, there should be an inferno of radiation near the singularity. This is a quantum mechanical instability. . .

“And finally,” Eda continued, “a Kerr-type tunnel can lead to grotesque causality violations. With a modest change of trajectory inside the tunnel, one
could emerge from the other end as early in the history of the universe as you might like--a picosecond after the big bang, for example. That would be a
very disorderly universe.

“Look, fellas,” she said, “I'm no expert in General Relativity. But didn't we see black holes? Didn't we fall into them? Didn't we emerge out of them?
Isn’t a gram of observation worth a ton of theory?”

“I'know, I know,"” Vaygay said in mild agony. “It has to be something else. Our understanding of physics can’t be so far off. Can it?”

He addressed this last question, a little plaintively, to Eda, who only replied, A naturally occurring black hole can’t be a tunnel; they have impassible
singularities at their centers.”

pages 347,348

Eda was, considering the circumstances, very relaxed. She soon understood why. While she and Vaygay had been undergoing lengthy interrogations, he
had been calculating.

“I think the tunnels are Einstein-Rosen bridges,” he said. “General relativity admits a class of solutions, called wormholes, similar to black holes, but
with no evolutionary connection—they cannot be generated, as black holes can, by the gravitational collapse of a star. But the usual sort of wormhole,
once made, expands and contracts before anything can cross through,; it exerts disastrous tidal forces, and it also requires—at least as seen by an observer
left behind—an infinite amount of time to get through.”

Ellie did not see how this represented much progress, and asked him to clarify. The key problem was holding the wormhole open. Eda had found a class
of solutions to his field equations that suggested a new macroscopic field, a kind of tension that could be used to prevent a wormhole from contracting
fully. Such a wormhole would pose none of the other problems of black holes; it would have much smaller tidal stresses, two-way access, quick transit
times as measured by an exterior observer, and no devastating interior radiation field.

“I don’t know whether the tunnel is stable against small perturbations,” he said. “If not, they would have to build a very elaborate feedback system to
monitor and correct the instabilities.”

page 406

Am. J. Phys., Vol. 56, No. 5, May 1988 M. S. Morris and K. S. Thorne




Morris-Thorne's “Traversable” wormhole

M.S. Morris and K.S. Thorne, Am. J. Phys. 56 (1988) 395

M.S. Morris, K.S. Thorne, and U. Yurtsever, PRL 61 (1988) 3182
H.G. Ellis, J. Math. Phys. 14 (1973) 104

(G. Clément, Am. J. Phys. 57 (1989) 967)

Desired properties of traversable WHSs

1. Spherically symmetric and Static = M. Visser, PRD 39(89) 3182 & NPB 328 (89) 203

Einstein gravity

Asymptotically flat
No horizon for travel through
Tidal gravitational forces should be small for traveler

Traveler should cross it in a finite and reasonably small proper time

N o o e WD

Must have a physically reasonable stress-energy tensor
= Weak Energy Condition is violated at the WH throat.
= (Null EC is also violated in general cases.)

8. Should be perturbatively stable

9. Should be possible to assemble

“Ellis (Morris-Thorne) wormhole”
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Introduction

Why Wormhole?

They increase our understanding of gravity when the usual energy conditions
are not satisfied, due to quantum effects (Casimir effect, Hawking radiation)
or alternative gravity theories, brane-world models etc.

They are very similar to black holes --both contain (marginally) trapped
surfaces and can be defined by trapping horizons (TH).

Wormhole = Hypersurface foliated by marginally trapped surfaces

BH and WH are interconvertible? New duality?



BH & WH are interconvertible?
S.A. Hayward, Int. J. Mod. Phys. D 8 (1999) 373

They are very similar -- both contain (marginally) trapped
surfaces and can be defined by trapping horizons (TH)

Only the causal nature of the THs differs, whether THs
evolve in plus / minus density which is given locally.

Black Hole Wormhole [ —miETH WAL,

Locally iAchronal (spatial/null) iTemporaI (timelike) bt el
| ; > (=BT

elcjlpiciel outer TH outer THs i
0} — 1-way traversable — 2-way traversable —gggoﬂ

. . éPositive energy densit ) i ; , TSY IR~ LORR

Einstein § 9y Y 'Negative energy density “zascss ( ) A (7RTL) T13
‘normal matter (or | Z(tT5.

eqs.

Appear-
ance

‘vacuum)

............................................................................................................................................

‘Unlikely to occur
‘naturally.
‘but constructible??

‘occur naturally

E“exotic” matter

T—LK—ILDBRE
IR EEITHATRET
% (137) .




Introduction

Dynamics in Gauss-Bonnet gravity?

e Action

1
S — /./\/l dN—H:UV —g{@{@ﬂz + @2£(4B}+£matt01}
where L = R? — ARy RIY + Ry po RIVPT
e Field equation
alG/w + O‘QH/U/ -+ g/wA — KJQCF/U/
where H/w — Z[RR/U/ — QR/M'RQ)/ — ZRQ'SR/MW,A? + R/La"(wnya,[i’y] - %g/w»CGB

e has GR correction terms from String Theory

e has two solution branches (GR/non-GR).

e is expected to have singularity avoidance feature.
(but has never been demonstrated.)

e new topic in numerical relativity. e much attentions in WH community
S Golod & T Piran, PRD 85 (2012) 104015 H Maeda & M Nozawa, PRD 78 (2008) 024005
N Deppe+, PRD 86 (2012) 104011 P Kanti, B Kleihaus & J Kunz, PRL 107 (2011) 271101

F Izaurieta & E Rodriguez, 1207.1496 P Kanti, B Kleihaus & J Kunz, PRD 85 (2012) 044007



Part| Wormhole dynamics in 4-dim GR

PHYSICAL REVIEW D 66, 044005 (2002)

Fate of the first traversible wormhole: Black-hole collapse or inflationary expansion

Hisa-aki Shinkai*
Computational Science Division, Institute of Physical & Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama, 351-0198, Japan

Sean A. Hayward'
Department of Science Education, Ewha Womans University, Seoul 120-750, Korea

(Received 10 May 2002; published 16 August 2002)

Fate of Morris-Thorne (Ellis) wormhole?

e “Dynamical wormhole” defined by local trapping horizon
e spherically symmetric, both normal/ghost KG field
e apply dual-null formulation in order to seek horizons

e Numerical simulation

ghost /normal Klein-Gordon fields

T = Tyu0) + Ton0) = [0 = g (TP + Vi) + [ 6000 = g (5762 +1200))|

g

-~

normal ghost

Oy = : O¢ = dVQ(gb). (Hereafter, we set V;(¢) = 0, Vo(¢) = 0)

de




Initial data on 7 =0, = = 0 slices and on S

Generally, we have to set :

(Qa f: ﬂﬂza qu w)

(Vﬂza 4+, Wi)

onS: x"=x"=0

onY 2zt =0,2T>0

Grid Structure for Numerical Evolution

Xminus

N\
N\

wormhole throat

xplus




dual-null formulation, spherically symmetric spacetime (4D)

e The spherically symmetric line-element:

ds? = —2e Tdatda™ + r2dS?,

e To obtain a system accurate near 3*, we introduce the conformal factor |2 = 1/r|

first-order variables, the conformally rescaled momenta

where r=r(zt,27), f= f(zt,27), -

We also define

expansions
inaffinities
momenta of ¢

momenta of

Oy = 20,1 = —20720.Q (0 = 2r '0.7)
ve =0 f

pr =10:0 =0 "0.0

T =10 = Q0L

The set of equations (remember the identity: 0,0_ = 0_0,):

0104 = —vi¥s — 2012 4+ 2007

00+ = — QI 0_/2+ e ),

Orvy = =P 024+ —2mm +2p,0),
O+p+ = _Qﬁxﬁi/l

Orme = =)y /2.




Initial data on 7 =0, = = 0 slices and on S

Generally, we have to set :

(Qa f: ﬂﬂza qu w)

(Vﬂza 4+, Wi)

onS: x"=x"=0

onY 2zt =0,2T>0

Grid Structure for Numerical Evolution

Xminus

N\
N\

wormhole throat

xplus




Ghost pulse input -- Bifurcation of the horizons (4d)

Figure 3: Horizon locations, ¥, = 0, for perturbed wormhole. Fig.(a) is the case we supplement the ghost field, ¢, = 0.1,
and (bl) and (b2) are where we reduce the field, ¢, = —0.1 and —0.01. Dashed lines and solid lines are ¥, = 0 and ¢ = 0
respectively. In all cases, the pulse hits the wormhole throat at (z",z ") = (3,3). A 45° counterclockwise rotation of the figure
corresponds to a partial Penrose diagram.
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Bifurcation of the horizons
-- go to a Black Hole or Inflationary expansion

Black Hole
or
Inflationary

expansion

------ amplitude = +0.10

I
: =, 5 amplitude = +0.01
1 S no perturbation :
| £ 4 || — - -amplitude =-0.01 { !
I = Tl ; —. : / 7
: ,-8_, amplitude = -0.10 !
[ ® 30 ! |
| ® d
1 2 /
1 2 ’
c 2 /
—_ /
X minus 4 < 1 P
S N\
\
£ 0 :
0 2 4 6 8 10 12
proper time on the "throat"

Figure 4: Partial Penrose diagram of the evolved space-time.
Figure 6: Areal radius r of the “throat” z* = z~, plotted as a function of proper time. Additional negative energy causes
inflationary expansion, while reduced negative energy causes collapse to a black hole and central singularity.



Normal pulse (a traveller) input -- Forming a Black Hole

Figure 9: Evolution of a wormhole perturbed by a normal scalar field. Horizon locations: dashed lines and solid lines are ¥, = 0
and ¥ = 0 respectively.



Travel through a Wormhole
-- with Maintenance Operations!
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Figure 11: A trial of wormhole maintenance. After a normal scalar pulse, we signalled a ghost scalar pulse to extend the life

of wormhole throat. The travellers pulse are commonly expressed with a normal scalar field pulse, (é,, é,¢.) = (+0.1,6.0,2.0).
Horizon locations ¥, = 0 are plotted for three cases:

(A) no maintenance case (results in a black hole),
(B) with maintenance pulse of (¢,, ¢, ¢.) = (0.02390, 6.0, 3.0) (results in an inflationary expansion),
(C) with maintenance pulse of (¢c,, ¢, ¢.) = (0.02385,6.0,3.0) (keep stationary structure upto the end of this range).



Summary of Part | HS & Hayward, PRD66 (2002) 044005
Dynamics of Ellis (Morris-Thorne) traversible WH

WH is Unstable

(A) with positive energy pulse ---> BH
---> confirms duality conjecture between BH and WH.

(B) with negative energy pulse ---> Inflationary expansion
---> provides a mechanism for enlarging a quantum WH

to macroscopic size

(C) can be maintained by sophisticated operations
---> a round-trip is available for our hero/heroine

The basic behaviors has been confirmed by
A Doroshkevich, J Hansen, | Novikov, A Shatskiy, IIMPD 18 (2009) 1665
J A Gonzalez, F S Guzman & O Sarbach, CQG 26 (2009) 015010, 015011
J A Gonzalez, F S Guzman & O Sarbach, PRD80 (2009) 024023
O Sarbach & T Zannias, PRD 81 (2010) 047502



observation?

Abe, APJ 725 (2010) 787.

THE ASTROPHYSICAL JOURNAL, 725:787-793, 2010 December 10 doi:10.1088/0004-637X/725/1/787
© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

GRAVITATIONAL MICROLENSING BY THE ELLIS WORMHOLE

F. ABE

Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; abe @stelab.nagoya-u.ac.jp
Received 2010 February 21; accepted 2010 October 7; published 2010 November 19

ABSTRACT

A method to calculate light curves of the gravitational microlensing of the Ellis wormhole is derived in the
weak-field limit. In this limit, lensing by the wormhole produces one image outside the Einstein ring and another
image inside. The weak-field hypothesis is a good approximation in Galactic lensing if the throat radius is less
than 10'' km. The light curves calculated have gutters of approximately 4% immediately outside the Einstein
ring crossing times. The magnification of the Ellis wormhole lensing is generally less than that of Schwarzschild
lensing. The optical depths and event rates are calculated for the Galactic bulge and Large Magellanic Cloud
fields according to bound and unbound hypotheses. If the wormholes have throat radii between 100 and 107 km,
are bound to the galaxy, and have a number density that is approximately that of ordinary stars, detection can
be achieved by reanalyzing past data. If the wormholes are unbound, detection using past data is impossible.

Key words: gravitational lensing: micro

Online-only material: color figures




Part 2 WH in higher-dim. (1) Exact Solution

(1) Exact Solution : Basic eqns.

Torii & HS, PRD88 (2013) 064027
» general relativity, n-dimension /massless scalar field (ghos?)

= [@ay=a| gk ge@or - VG| o=

» static, spherical sym., asymptotically flat

2
ds; =

—f(?“)dt2 + f(?“>_1d7“2 + R(T)2h¢jd$id£€j

» Basic equations

(t,1) - n—2f2 [2R// N 'R’ N (n—3)R’2] N (n—2)(n—3)kf

Ve i :mif[%ef¢’2+%)},

R fR R2
(r,7) : ”;QR'[J” ] n_ifRz —%:%efqﬁﬂ—%):,
(4,7) : f?ﬁ+(n—3>f(R” f’R’ 4R’2> ng =/~”vi :%6f¢’2+%):,
(KQG) : Rn—? (R"=2f¢) = _Ed‘;- - o — ¢ *— constant

fRn—Q



Part 2 WH in higher-dim. (1) Exact Solution
Solution
ds2 = —f(r)dt* + f(r)"dr® + R(r)*hdx"d2’

» regularity at the throat ( »=0)

R = a ~— throat radius % from the scaling rule

R'=0, f=fo, f'=0, ¢=0 a=1 fo=1

. 22 . . 2(n—3)
Basics egns. ™ finC" = (n—2)(n - 3)a

» Exact solution

z=R™ B.(p,q):= / tP~1(1 —#)7"'dt  Incomplete Beta func.
0

% in another metric form: V. Dzhunushaliev+, 2013



Part 2 WH in higher-dim. (1) Exact Solution
Configurations

» configurations ds2 = —f(r)dt* + f(r)~'dr® + R(r)*h;;dz'dx’

3

2.5

2.5

o
3]
w
N

2.5 3 -2 0 2 4 6 8

expansion is O

trapping horizon

% large curvature near the throat.
% scalar field goes steep if n is large.

% In the n — o |imit

R=r+1 ¢=0 (r=0) 5 (r>0)

s
2



Part 2 WH in higher-dim. (2) Linear Stability
(2) Linear Stability: Master egn.

Torii & HS,PRD88 (2013) 064027

» metric

ds} = —f(t,r)e U0 dt® + f(t,r) " dr® + R(t,r)*hijda’ da?

n

» linear perturabation static solution

f=fo(r)+ fi(r)e™, R = Ro(#) + Ru(r)e’”",
o = 6o(r) + 51(T)eiwt7 b = do(r) + (bl(r)em.

» master equation

—U W (r)U, = WUy,

1 3(n—2)? =
Wr) = — [ —(n—4)(n—6)}.
ARg L R2n=3)
_ d N ) S
U, = D+'¢1 D+ = % - E ¢1 - RO <¢1 R6 Rl)’ * pOtential W

% W1 : Gauge invariant in spherical sym.



Part 2 WH in higher-dim. (2) Linear Stability

- —n
----- n
-——n
--------- n
—n=10

~
=

=
[ |l

(LR

6
7
8
9

Unstable!
» exist negative mode
n w2 12
4 —1.39705243371511
5) —2.98495893027790
§ —4.68662054299460
7 —6.46258414126318
8 —8.28975936306259 e
9 —10.1535530451867
10 —12.0442650147438
11 —13.9552091676647
20 —31.5751101285105
50 —91.3457759137153
100 — 191.283017729717 02 | 5

eigenvalues of negative mode

% In all dimensions, we found negative modes.

% Higher dimension, instability appears in short time scale

-
eigenfunction of negative

=) Ellis’s wormhole is unstable |




Part 2 WH in higher-dim. (3) Numerical Evolution
(3) Numerical Evolution
HS & Torii, in preparation

n-dim., Spherical Symmetry, Dual-null coordinate

ds? = —2¢ T ) gt dp™ + 7“2(£C+, 93_>d§2:(3n_2)

Evolution \

Space-time Variables
1

0 = —

r
19:& = (n—Q)Gir
vy = O+f

We also define n as

of
(n—2)?

DO

/Z = k+

19+19_Ek+W




Introduction

Dynamics in Gauss-Bonnet gravity?

e Action

1
S — /./\/l dN—H:UV —g{@{@ﬂz + @2£(4B}+£matt01}
where L = R? — ARy RIY + Ry po RIVPT
e Field equation
alG/w + O‘QH/U/ -+ g/wA — KJQCF/U/
where H/w — Z[RR/U/ — QR/M'RQ)/ — ZRQ'SR/MW,A? + R/La"(wnya,[i’y] - %g/w»CGB

e has GR correction terms from String Theory

e has two solution branches (GR/non-GR).

e is expected to have singularity avoidance feature.
(but has never been demonstrated.)

e new topic in numerical relativity. e much attentions in WH community
S Golod & T Piran, PRD 85 (2012) 104015 H Maeda & M Nozawa, PRD 78 (2008) 024005
N Deppe+, PRD 86 (2012) 104011 P Kanti, B Kleihaus & J Kunz, PRL 107 (2011) 271101

F Izaurieta & E Rodriguez, 1207.1496 P Kanti, B Kleihaus & J Kunz, PRD 85 (2012) 044007



Part 2 WH in higher-dim. (3) Numerical Evolution
matter variables

normal field v (u,v) and/or ghost field ¢(u, v)

T = Tult) + Tul0)
— |t = g (50 + Vi) | + |60 — g (V0P + Valo))]

this derives Klein-Gordon equations

_dv

=i
Klein-Gordon egs.

Y09 = = (260 + (0 = 2Jrudy + (0 = 2)ru.)

- _Qef¢uv — e/ (29_]9+ + 194-]?—)

0¢

Scalar field variables

1
T+ = Taﬂb — ﬁaﬂb

1
P+ roLp = Qaﬂb

Energy-momentum tensor

Ty = Qz(”i—pi)
T = Q*(n* —p*)

T = el () + Vi),

T.. = 6f<7T+7T_ _p—l—p—) - @ (Vl(?ﬁ) - ‘/2<¢))



evolution equations (1)

: : ~ 2A .
a:+-d|rect|on Let & = (n —3)(n —4)ao, A = ,and A = g + 2a0%(k + W).
(n—1)(n—2)
1 2
9.0 = ——9.0
n—2
1
8+"l9+ = —19+V+ — Z:‘QQQ(T(’_%_ —p?{_)
le/f 5 (n—2)(n—3) 5 & 4 _s(n—2)(n—->5) 9
= ——— - X3 T2 L T
0+9_ 10 { a2 5 (k+W)+A+/<L(V1—|-V2)} A_Zf 5 {(L+H) +H}
oLf = vy
J+v4 = no equation
Oyv—_ = %Ze_fQQQ{—%Z(n—B)an—él}
1, 1 _;(o12(n—3)
— Qe K2 (mym_ —pyp —/f{—l——1} A+ K2(V1 4V,
e RN (o —pip-) + eT 4 (n ) {A+ K2(Vi+ Va)}
X pe2 ey Qo2 2 oW 7 1972 B PN ¢ do(n _=NS1.2 Loty 7\ 7
70 1% (n —5) x L Q%(n 3){/\ +_1u+~4} 70 T2 (n —5) x Z0%2(n {)){/\ +Ju}z
X2 — 5y x 2 L k2 oW 7 — 472\ & 2 _ B« - 7N 4 12(Vi 4 V.
e T t))xszQ{(;; N2 +2W Z 44}+Af 02(n .>)><A”_24{A\+h (L1+L_))}
PN 4 A
%esz (n =27 {u+z)+((')_ﬂ_) +v 9 _(0,9)+ (0,90)(0-V_) +vyiv_ 9,09 — (0_ z)+)2}
o+ = Qmy
0+¢ = Qpy
O+m+ = no equation
1 1 1 1 d\y
dim_ = 2 ) QI — Q9w — A
o (n—2 2) =TT T 0000
J1p+ = no equation
1 1 1 1 dVs
- = (o3 3) W~ W 5oy




evolution equations (2)

1~ -direction

0_Q
d_1.
0_9_

o_f

0_vy
O_v_
0-v
0_¢

(9_ T+

O_m_

O-p+
o_p_

1
n—2
0+ _

—_v_ — %QFLQ(WE —p?)

902

v_
O1v_
no equation
Qm_
Qp_

1 11
Q0T ) Qomy —
o VAT *’(n-Q 2) i

no equation

1 1 1
-——Qﬂ+p_+-(—————~{>Qﬁ_p+—————~——
2 n 2

no equation

This constitutes the first-order dual-null form, suitable for numerical coding.



initial data

e Static condition

( ) =0 = 7mp+71_=0
(5++8—)</5— — py+p-=0
(04 +0_

(0 +8§19+:0} — 19+1/+—|—£Q/<;2(773L— ) =v_v_+ Q/{ (72 —p?)
+ —

v =0 A A

e Solve ™ and x~ equations with the starting condition at the throat

Y, =9 _(=0)
vy =v_(=0)

1 —2)(n — o (7
—k2Qr2 — p)el = -5 {—alfﬁ (n )2<n g)k + A+ &V + Vg)} + af)’

If we assume only ghost field ¢, then

p+:_p_:J 1 [al(n—Q)(n—:a)k_1(AH%H192(4,;—2)(72—5)]{2]

/{2€f

e add perturbation

pi(xT = 2,27 = 0) = py(solution) + a exp[—100(z — 0.5)]



4d 5d 6d GR
ghost pulse (negative amp.) input

double trapping horizon

positive energy input --> BH formation



4d 5d 6d GR

Q

double trapping horizon

ghost pulse (

--> throat inflates



Part 2 WH in higher-dim. (3) Numerical Evolution
existence of the minimum mass of BH

» BH mass (Misnher-Sharp mass)

(n—2)A, ( 1 - ( 2 , )1 200 l
En = —— 55— |—5A+ | k+ 2/, —e— M_MS(t_BH) 4dim
2K e (n—2)* ] —-m-- M_MS(t_BH) 5dim 5
-=-ge=== VI_M3S(t_BH) 6dim f
(Maeda & Nozawa, 2008) 50 6-d 4
== existence of minimum mass 4 £ g P
§ N
i 100 - e ]
(@]
<
2
o
.__'_'_,_.--'-.
50 & -
4.4
00
1072 102 10" 109 10!



Part 3. Wormhole in Gauss-Bonnet gravity

Dynamics in Gauss-Bonnet gravity?

e Action

1
S — /./\/l dN—H:UV —g{@{@ﬂz + @2£(4B}+£matt01}
where L = R? — ARy RIY + Ry po RIVPT
e Field equation
alG/w + O‘QH/U/ -+ g/wA — KJQCF/U/
where H/w — Z[RR/U/ — QR/M'RQ)/ — ZRQ'SR/MW,A? + R/La"(wnya,[i’y] - %g/w»CGB

e has GR correction terms from String Theory

e has two solution branches (GR/non-GR).

e is expected to have singularity avoidance feature.
(but has never been demonstrated.)

e new topic in numerical relativity. e much attentions in WH community
S Golod & T Piran, PRD 85 (2012) 104015 H Maeda & M Nozawa, PRD 78 (2008) 024005
N Deppe+, PRD 86 (2012) 104011 P Kanti, B Kleihaus & J Kunz, PRL 107 (2011) 271101

F Izaurieta & E Rodriguez, 1207.1496 P Kanti, B Kleihaus & J Kunz, PRD 85 (2012) 044007



Initial Data

initial data (5-dim, Gauss-Bonnet alpha) initial data (5-dim, Gauss-Bonnet alpha)
1.2 I ! 2.0
-— Omega alpha=+1.00
----- Omega alpha=+0.50
1.0 N | mmmmmna Omega alpha=+0.10 |
Omega alpha=+0.05 15 G S S s
Omega GR5d || L e me T eeessseecoissssemsozsoasresssosiozoooisasiianos
Omega alpha=-0.05
0.8 Omega alpha=-0.10 || | g L eeeessemmeesememssmmonemassssapnssensnsnsnnnnne
. T 10
2 o6 2
£ 3
o ©
:u’:/ 0.5
0.4 £ -— phi alpha=+1.00
e A ey phi alpha=+0.50
--------- phi alpha=+0.10
0.0 phi alpha=+0.05
0.2 phi GR5d
phi alpha=-0.05
--------- phi alpha=-0.10
0.0 05 i i
0.0 0.0 2.0 4.0 6.0 8.0 10.0
x-plus x-plus

conformal factor scalar field

1

S = /M dN+1:l)\/ —g[@{alR + 012£GB}+£matter]

where L = R? — 4R, R* + Ryup RV



tability appears

sd GR vs Gauss-Bonnet

Inflates

throat

B }+£mattcr]

BH formation

~
X

C

{alR + Olgﬁ

b
k2

Hay/=g|

r
/

¢

B = R4 — 472/;11./7?}[” 4 R;.u./pa R Hvpo

-~y
x

where L,
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tability appears easily

6d 7d Gauss-Bonnet

agp > 0

[/ dim.

6 dim.



Part 5. In Search of Stable Wormholes : Previous approaches

Thin-shell wormhole
» Poisson & Visser, PRD52 (1995) 7318

% They defined the parameter Bo, which

Schwarzschild corresponds to the sound velocity in the
X077, shell. / pressure
dp
53 = 9o
o)

AN surface density

% They found the parameter regions where

Schwarzschild o
' the solution iIs stable.

3
2 — +
Two Schwarzschild spacetimes are By > 2 +V3 (ag < ap <ag)
connected by a singular thin shell
_ . . . 2~ _ —
using the Israel’s junction condition. ﬁo =75 (Clo > Qg )

Sound speed is faster than the light
speed or become imaginary.

% “There is no guarantee that Bo actually is the speed of sound because the matter
is exotic (negative energy)!”



Part 5. In Search of Stable Wormholes : Previous approaches

(peculiar) EOS

» Bronnikov, et al (Grav. Cosmol. 19 (2013) 269, arXiv:1312.692

% In 4-dim. GR. perfect fluid and source free electro-magnetic field.

% The pressure of the fluid is zero for the static solution. However, if we
perturb it, the pressure appears ! mmp stable wormhole i
% However, the matter field must satisfy a certain EQOS. @
Does the matter behaves like this?

dilatonic Einstein-Gauss-Bonnet theory
» Kanti, Kleihaus and Kunz, (PRL107 (2011) 271101)

% No exotic matter and linearly stable |

% However, they fix the throat radius.

The stability analysis is insufficient.



Part 5. In Search of Stable Wormholes : with cosmological constant

Wormhole in GR with A

» general relativity, n-dimensions
massless scalar field

S= / d%ﬁ[%(}z—_@ _ %e(w)? _ %)] ¢ — _1 (ghost)

» static spacetime
R is the area radius.

ds? = —f(r)dt* + f(r)~'dr* + R(r)?h;;dz"dz’

n e S \

the line element of the (n-2)-dimensional sub-manifold.

A radial It is assumed to be a constant curvature space with
_ coordinate curvature k.
area radius r

» AN =0
» 4-dim : Ellis wormhole (1973)
» n-dim : Torii & HS (2013)




Part 5. In Search of Stable Wormholes : with cosmological constant

equations

» Einstein equations and the Klein-Gordon equation

(t,1) f2[ 2R" f/R/ (n—3)R’21+(n—2)(n—3)kf_Af:%%€f2¢,27

fRTTR 2R2
I LG R SEEE s e
e L 2(Rn o) = integration

/ constant

. . . C
The Klein-Gordon equation can be integrated, and the — > o W’ D

scalar field is obtained by integrating the metric functions.

@

The Einstein (n—2)R [L’ N (n — S)R’} - (n—=2)(n -~ 3)k+2A _ K2 C?
equations are R f R fR? f f2R2(n—2)
—

reduced to (n —2)R" 22
two equations. R = fQRZ(n_Q) ©)




Part 5. In Search of Stable Wormholes : with cosmological constant

boundary conditions

» regularity condition (+ symmetry) at the throat r =20

throat radius —— R =g¢

r_
& =0 We also assume the mirror symmetry at the

throat. We can extend the solution to non-

f=Jo
=0 / symmetric one.

shift symmetry —— ¢ =0

mirror sym.

» Asymptotically AdS



Part 5. In Search of Stable Wormholes : with cosmological constant

existence of solutions

» At the throat, Einstein equation @ becomes

@ w=p L2C? = f [(n —2)(n — 3)ka2<”_3)—21\a2(”_2>}

» For the positive c.c., k is positive and the cosmological horizon should appear.

@ wup k=1 and

f=0at r=r¢

OB =mPp ¢ — oo, R — 00 at r =rc The spacetime becomes singular!

There is no regular wormhole solution for positive cosmological constant.

» For the negative c.c,,

there is no constraint for £ =1, 0.

(n—2)(n-3)

k=—-1 @& =p a> 21|

Throat radius has the lower limit.

A=0 A>0 A<O
k=1 exist X exist
k=0 X X exist
k=1 X X exist




Part 5. In Search of Stable Wormholes : with cosmological constant

linear stability analysis

In the rest of this section, we examine the linear stability of the higher-dimensional Ellis wormhole.

» metric ansatz

dst = —f(t,r)e 2LDdt? + f(t,r) " dr? + R(t,r)*h;jda’da?

mn
A"

We consider only the spherically symmetric perturbations.

» These functions are expanded. _ _ _ _
The variables with O are the static solutions.

F= B0+ A, R = Fulr) + R,

d = do(r) + 51£T)€th, ¢ = ¢o(r) + ¢1(r)ei”t.\ w is a frequency.
N The variables with 1 are the perturbations.

» By taking linear combination, we can find the single master equation.

on gauge invariant under
), —— _
Ry spherical symmetry

P = R(?%Q (¢1 —



Part 5. In Search of Stable Wormholes : with cosmological constant

linear stability analysis (2)

» By taking linear combination, we can find the single master equation.

o ) gauge invariant under

1 :Ro%<¢1 — — Ry,

R, spherical symmetry
T vy = W
dr? — e—

V(r) = 20°R, gy — 2]y (=2 2(n — 3)k — (n — 2) foR]

(T)_(n—Q)fOR{)Q[(n_ ) _n—Z}_ Jo+ 4R3 " " 070 -

| v | , | <
N\ diverges at the throat !
=P The potential is positive definite. .. stable

» O-mode solution ), <@=m The mode which changes the throat radius.

The O-mode diverges at the throat.

This divergence is canceled by the divergence of the potential function.



Part 5. In Search of Stable Wormholes : with cosmological constant

linear stability analysis (3)

» regularize the perturbation equation by the O-mode

the perturbation equation

» D_D+¢1 = w2¢1.

- Operating D+ on the equation and defining ¥, = D, , ....

» We find the regularized equation. n=4 o = 1.0

d>W,

— d’)“2 +W(r)\111:w2\1!1
1 dipy\”
W) =273 (55 ) - v

-80

0 0.5 1 1.5 2

For n=4 and lds= 1, the potential W is positive definite for a > 1. Hence these
wormholes are stable !



Part 5. In Search of Stable Wormholes : with cosmological constant

linear stability analysis (4)

» Solving this equation numerically, we can find a negative mode for a < 0.4.

0

-20

-40

-60

-80

-100

0.1

eigenvalue of negative mode

0.2

a

0.3 0.4

Y For n=4 and las=1,

—>

0.5

-=-- a=0.4
--------- a=0.3
— —a=0.2
a=0.1

eigenfunction of the negative mode

a>04

stable

a<04

unstable




AdS wormhole evolution

Ellis WH with negative A, n=4
with pulse (added ghost field momentum)

1.6 : .
—— 0.000E+00
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% /
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2 o \
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0.4 \
0.2

-1.5 -1.0 -0.50 0.0 0.50 1.0 1.5
X-plus

pr = Dol Faep{-100GT 057}
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Summary
Ellis (Morris-Thorne) traversable WHEE R8BS & RHEHEE
(A) IEDOTXRILF—/NILA ---> BH

(B) EDITXRIL¥X—/SILR ---> Inflationary expansion
(C) EERNIEX VT F > X HEE

5,6,7%5t Gauss-Bonnet IBEAD HEAEX TCORMAEE
& a® GB coupling --> BH collapse

1IF a ® GB coupling --> Inflationary expansion

FHIEIZ, BOETDHEHHDZD
throatE:EHNAASEF ER UEEDordertcohnlE, &E (oIFWY)

by JAWheele'"
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