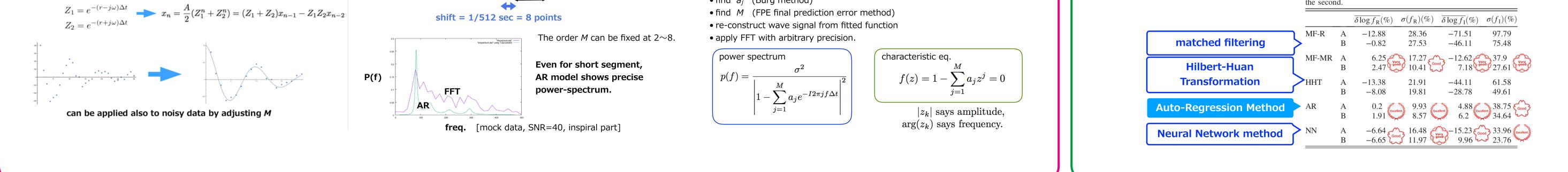
Auto-Regressive approach to find ring-down gravitational wave

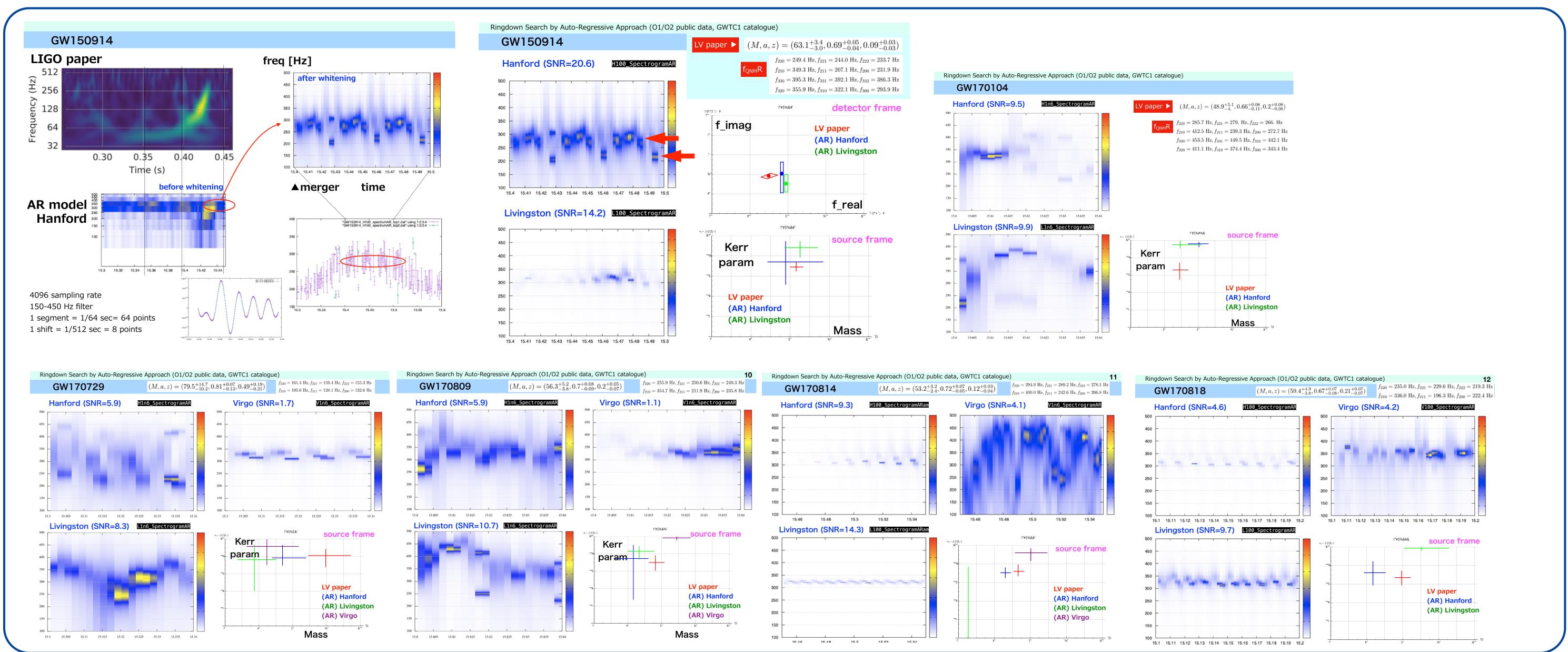
Hisaaki Shinkai (Osaka Institute of Technology) hisaaki.shinkai@oit.ac.jp

Outline & Summary

The ring-down part of gravitational waves in the final stage of merger of compact objects tells us the nature of strong gravity which can be used for testing the theories of gravity. The ring-down wave, however, fades out in a very short time with a few cycles, and hence it is challenging for gravitational wave data analysis to extract the ringdown frequency and its damping time scale.


We develop a new method, the autoregressive modeling (AR) approach, which extracts waveform by fitting a linear function from bare data. It works well for small number of data points, and does not require any templates. After obtaining the best parameters using mockdata, we applied this method for blackhole merger events of the LIGO/Virgo O1 and O2. We find that for high SNR events, we can extract ring-down waves properly.

This method may work for extracting higher modes of ring-down waves, and implementations are on-going.


Motivation & 01/02 data

Mockdata Comparison

		LVC, PRX9 (2019) 031040	Phys. Rev. D 99, 124032 (2019) [arXiv:18	811.06443]
Towards testing gravity theories \Rightarrow Ringdown-part extra	action is a key	LIGO/Virgo O1/O2 catalogue		
			Mockdata preparatio	n
Merger	Event $m_{\rm c}/M_{\rm c}/M_{\rm c}$	\mathcal{M}/M_{\odot} $\chi_{\rm eff}$ M_f/M_{\odot} a_f $E_{\rm rad}/(M_{\odot}c^2) \ell_{\rm peak}/({\rm ergs^{-1}}) d_L/{\rm Mpc}$ $z \Delta\Omega/{\rm deg^2}$	SXS data + shifted ringdown injection + aLIGO) noise
		$\frac{328.6_{-1.5}^{+1.7}}{28.6_{-1.5}^{+1.7}} - 0.01_{-0.13}^{+0.11} = 63.1_{-3.0}^{+3.4} = 0.69_{-0.04}^{+0.05} = 3.1_{-0.4}^{+0.4} = 3.6_{-0.4}^{+0.4} \times 10^{56} = 440_{-170}^{+150} = 0.09_{-0.03}^{+0.03} = 182$	modified after t_merger (set A) 60 set	$egin{array}{c c c c c c c c c c c c c c c c c c c $
Ringdown	GW151012 23.2 $^{+14.9}_{-5.5}$ 13.6 $^{+4.1}_{-4.8}$	$15.2_{-1.2}^{+2.1} 0.05_{-0.20}^{+0.31} 35.6_{-3.8}^{+10.8} 0.67_{-0.11}^{+0.13} 1.6_{-0.5}^{+0.6} 3.2_{-1.7}^{+0.8} \times 10^{56} 1080_{-490}^{+550} 0.21_{-0.09}^{+0.09} 1523$	modified before/after t_merger (set B) 60 set	A-0160.013.81260.6844.58A-0260.012.73345.1650.49
		$8.9_{-0.3}^{+0.3} 0.18_{-0.12}^{+0.20} 20.5_{-1.5}^{+6.4} 0.74_{-0.05}^{+0.07} 1.0_{-0.2}^{+0.1} 3.4_{-1.7}^{+0.7} \times 10^{56} 450_{-190}^{+180} 0.09_{-0.04}^{+0.04} 1033$		A-0360.013.79382.5332.58A-0460.011.84284.1844.73
BH quasi-normal mo	CNV170C00 11 0+55 7 C+14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A-0560.016.78346.2023.07A-0630.05.57272.8533.40
S ↓ V V V V V V V V V V V V V V V V		$35.4_{-4.8}^{+6.5} 0.37_{-0.25}^{+0.21} 79.5_{-10.2}^{+14.7} 0.81_{-0.13}^{+0.07} 4.8_{-1.7}^{+1.7} 4.2_{-1.5}^{+0.9} \times 10^{56} 2840_{-1360}^{+1400} 0.49_{-0.21}^{+0.19} 1041$		A-0730.06.56272.8544.54A-0830.07.27301.8942.24
$\square_{-1,0} = \text{Inspiral} \qquad \square \qquad $		$24.9_{-1.7}^{+2.1} 0.08_{-0.17}^{+0.17} 56.3_{-3.8}^{+5.2} 0.70_{-0.09}^{+0.08} 2.7_{-0.6}^{+0.6} 3.5_{-0.9}^{+0.6} \times 10^{56} 1030_{-390}^{+320} 0.20_{-0.07}^{+0.05} 308$		A-0930.06.93324.6027.25A-1030.07.88282.5537.45
strongest gravity we	$CW17091714(\pm 0.12127\pm 0.09)$	$24.1_{-1.1}^{+1.4} 0.07_{-0.12}^{+0.12} 53.2_{-2.4}^{+3.2} 0.72_{-0.05}^{+0.07} 2.7_{-0.3}^{+0.4} 3.7_{-0.5}^{+0.4} \times 10^{56} 600_{-220}^{+150} 0.12_{-0.04}^{+0.03} 87$		A-1120.06.36314.2430.58A-1220.03.45382.1048.60
-25 -20 -15 -10 -5 0 5 \Rightarrow test of gravity the		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2	A-1320.04.68249.3647.97A-1420.04.13299.3241.88
		$29.2_{-3.6}^{+4.6} 0.09_{-0.26}^{+0.22} 65.4_{-7.4}^{+10.1} 0.72_{-0.12}^{+0.09} 3.3_{-0.9}^{+1.0} 3.6_{-1.1}^{+0.7} \times 10^{56} 1940_{-900}^{+970} 0.35_{-0.15}^{+0.15} 1666$		A-15 20.0 4.54 319.42 31.55 B-01 60.0 17.58 352.56 36.20
				B-0260.014.27210.7842.77B-0360.013.67258.8348.42
	divergence for χ_p , we quote the KL diverge	ween the prior and posterior for the effective aligned spin χ_{eff} and the effective precession spin χ_p . For the computation of the KL ence with the prior conditioned on the χ_{eff} posterior, $D_{KL}^{\chi_p}(\chi_{eff})$, and without conditioning, $D_{KL}^{\chi_p}$. For GW170817, $D_{KL}^{\chi_p}$ is given for the high for the KL discrepance is estimated by experimentation the statistic for expected draws of a statistic precession and prior PDFs. Sinch	-0.2 -0.1 0 0.1 t [s]	B-0460.020.09271.1325.40B-0560.017.07291.9934.20
For 60M BH of a=0	1.75, spin prof. The median and 90% interval is detector optimal SNRs from parameter-es	for the KL divergences is estimated by computing the statistic for repeated draws of a subset of the posterior and prior PDFs. Single- stimation analyses for Hanford (H), Livingston (L), and Virgo (V).	FIG. 1. Examples of sets A and B. (Inset) The ringdown part. Here, set A [(red) thick] with SXS:BBH:0174 and set B [(blue)	B-0630.09.53411.5729.48B-0730.06.29295.7859.38
frequency = 300	HZ $\frac{\text{Event}}{D_{\text{KL}}^{\text{Xeff}}} = \frac{\text{GW150914}}{0.71_{-0.03}^{+0.04}} = \frac{\text{GW151012}}{0.23_{-0.02}^{+0.03}}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	thin] with SXS:BBH:0002 are shown. The solid lines denote the modified amplitude $A_{22}(t)$, and the dashed lines are the GW	B-0830.06.03312.3959.24B-0930.06.01198.3457.91
damping time sca	ale = 3.7 ms $D_{\text{KL}}^{\chi_p} = 0.16^{+0.03}_{-0.02} = 0.09^{+0.03}_{-0.02}$	$0.17^{+0.03}_{-0.04} \qquad 0.05^{+0.01}_{-0.01} \qquad 0.07^{+0.01}_{-0.02} \qquad 0.09^{+0.02}_{-0.02} \qquad 0.05^{+0.01}_{-0.01} \qquad 0.02^{+0.01}_{-0.01} \qquad 0.19^{+0.04}_{-0.03} \qquad 0.06^{+0.02}_{-0.01} \qquad 0.03^{+0.01}_{-0.01} \qquad 0.03^{+0.01}_{-0.01}$	frequency $\omega_{22}(t)/(2\pi)$. The total mass is $M = 60M_{\odot}$, and the real and imaginary parts of the ringdown frequency are 300 and	B-1030.08.31323.3237.86B-1120.05.20208.8039.75
	$\begin{array}{ccc} D_{12}^{\chi_p} \left(\chi_{sc} \right) & 0.09^{+0.02}_{-0.2} & 0.08^{+0.02}_{-0.01} \\ \text{H SNR} & 20.6^{+1.6}_{-1.6} & 6.4^{+1.3}_{-1.3} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 Hz, respectively. The real frequency is obtained by multiply-	B-1220.06.60246.6627.85B-1320.04.46323.7162.51
	L SNR $14.2^{+1.6}_{-1.4}$ $5.8^{+1.2}_{-1.2}$	$6.9^{+1.2}_{-1.1} \qquad 9.9^{+1.5}_{-1.3} \qquad 9.2^{+1.5}_{-1.2} \qquad 8.3^{+1.4}_{-1.4} \qquad 10.7^{+1.6}_{-1.8} \qquad 14.3^{+1.5}_{-1.4} \qquad 26.3^{+1.4}_{-1.3} \qquad 9.7^{+1.5}_{-1.5} \qquad 9.2^{+1.7}_{-1.5}$	ing by 538.609 Hz, and the real amplitude of set A is derived by dividing by 1.37903. The large difference in the inspiral phase is	B-1420.06.20215.1533.15B-1520.05.85335.2025.11
	V SNR ···· ···	$\cdots \qquad \cdots \qquad 1.7^{+1.0}_{-1.1} \qquad 1.1^{+1.2}_{-0.8} \qquad 4.1^{+1.1}_{-1.1} \qquad 3.0^{+0.2}_{-0.2} \qquad 4.2^{+0.8}_{-0.7} \qquad \cdots$	due to the difference of the binary parameters.	
			https://gw-genesis.scphys.kyoto-u.ac.jp/ilia	as/aoto root fold 669.ht
			http://www.oit.ac.jp/is/shinkai/mockdatachallenge/	
				-
Method				Nakano+, PRD99 (2019) 124032
			mockdata-challenge com	parison
			PHYSICAL REVIEW D 99 , 124032 (2019)	Merger
Auto-Regressive model (idea)	Auto Dogwoodiyo model ya Chart FFT	Auto-Bogrossivo model (Method, general)	1.0	
	Auto-Regressive model vs Short FFT	Auto-Regressive model (Method, general)	Comparison of various methods to extract ringdown frequency from gravitational wave data	
Fitting data with linear func. sampling ra	rate=4096 segment = 1/64 sec = 64 points	Fitting data with linear func.		
$x_n = a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_M x_{n-M} + \varepsilon$ h(t)		$x_n = a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_M x_{n-M} + \varepsilon$	Hiroyuki Nakano, ^{1,*} Tatsuya Narikawa, ^{2,3,†} Ken-ichi Oohara, ^{4,‡} Kazuki Sakai, ^{5,§} Hisa-aki Shinkai, ^{6,} Hirotaka Takahashi, ^{7,8,¶} Takahiro Tanaka, ^{3,9,**} Nami Uchikata, ^{2,4,††} Shun Yamamoto, ⁶ and Takahiro S. Yamamoto ^{3,‡‡}	Inspiral
$= \sum_{j=1}^{M} a_j x_{n-j} + \varepsilon$		M		-25 -20 -15 -10 -5 0 5
$-\sum_{j=1}^{\omega_j \omega_n - j + c}$		$=\sum_{i=1}^{n}a_{j}x_{n-j}+arepsilon$	ringdown search TABLE III. We show	the values of $\overline{\delta \log f_{\rm R}}$, $\sigma(f_{\rm R})$, $\overline{\delta \log f_{\rm I}}$, and
e.g. $x_n = Ae^{-rn\Delta t}\cos(\omega n\Delta t)$		j=1	60 mockdata $\sigma(f_{\rm I})$ for various method	ods. The results limited to set A are given method, while those limited to set B are on
$\sum_{n=1}^{\infty} a_n - Ac = \cos(\omega n \Delta t)$		• find a_j (Burg method)	the second.	include, while those innice to set D are on

Results

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant No. JP17H06358 (and also JP17H06357) [A01: Testing gravity theories using gravitational waves, as a part of the innovative research area, "Gravitational wave physics and astronomy: Genesis"], by JSPS KAKENHI Grant No. JP18K03630 [Non-linear dynamics in the modified gravity theories as a test of string theory] and by No. 19H01901 [New directions in gravitational-wave data analysis: both in computing algorithms and hardwares including its outreach activities].

http://www.oit.ac.jp/is/shinkai/

JGRG29 @ Kobe Univ., 2019/11/25-29