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In the last 5 years, ...

Binary BH-BH coalescence

simulations are available!!
Breakthrough suddenly occurs.

* Pretorius (2005)
* Univ. Texas Brownsville (2006)
*NASA-Goddard (2006)

Newtonian / Post-Newtonian

INSPIRAL PHASE

Innermost Stable Circular Orbit

Post-Newtonian / GR

Coalescence / Merger

Black Hole Formation
Quasinormal Ringing



In the last 5 years, ...

Binary BH-BH coalescence
simulations are available!!

* Pretorius (2005) --> Princeton Univ.
* Univ. Texas Brownsville (2006) --> Rochester Univ.
*NASA-Goddard (2006)

* Louisiana State Univ.

*Jena Univ.

* Pennsylvania State Univ.

"Gold-Rush of parameter searches" (B. Bruegmann, July 2007 @GRG)
But ..... Why it works?



Goals of the Lecture

What is the guiding principle for
selecting evolution equations for
simulations in GR?

Why many groups use the BSSN
equations?

Are there an alternative formulation m ey s e wee expicn
better than the BSSN?



The Einstein equation

r geodesics 4—‘

spacetime curvature ——» matter distribution

1
Ry,y — égu,yR + Agp,y = 87TG Tuy
L | | |
Einstein tensor Energy-Momentum tensor
’ cosmological constant
Solve for metric
v (t,X,y,2)
(10 components) i = 5 gudstde’ = gudohds’
( )
flat spacetime (Minkowskii spacetime): I Gz Gy Iz
Gy = 9zz Gzy 9zz
ds* = —dt? + da? +dy2 + d2? w 9yy 9yz

= —dt? + dr? + r*(d6® + sin? 0dy?) \ Sym. 9zz )



The Einstein equation:

1
R, — igle + Ag = 87GT,




The Einstein equation:

1
R, — égWR + Ag = 87GT,

Chandrasekhar says ...
“Einstein equations are easy to solve. Look at the Exact Solutions book. There are
more than 400 solutions. "~




The Einstein equation:

1
R, — §9WR + Ag = 87GT,

Chandrasekhar says ...
“Einstein equations are easy to solve. Look at the Exact Solutions book. There are
more than 400 solutions. "~

Exact Solutions book says ...
Ist Edition (1980): “... checked 2000 references, ..., there are now over

100 papers on exact solutions every year, ..."
2nd Edition (2003): "“... we looked at 4000 new papers published during
1980-1999, ... "

D. Kramer, et al, Exact Solutions to Einstein's Field Equations, (Cambridge, 1980)
H. Stephani, et al, Exact Solutions to Einstein's Field Equations, (Cambridge, 2003)




Why don’t we solve it using computers?
e dynamical behavior, no symmetry in space, ...
e strong gravitational field, gravitational wave! ...

e any dimension, any theories, ...

Numerical Relativity
= Solve the Einstein equations numerically.
= Necessary for unveiling the nature of strong gravity.

For example:
e gravitational waves from colliding black holes, neutron stars, supernovae, ...
e relativistic phenomena like cosmology, active galactic nuclei, ...
e mathematical feedback to singularity, exact solutions, chaotic behavior, ...

e laboratory for gravitational theories, higher-dimensional models, ...

The most robust way to study the strong gravitational field. Great.



The Einstein equation:

1
R, — égWR + Ag = 87GT,

What are the difficulties?

e for 10-component metric, highly nonlinear partial differential equations.
mixed with 4 elliptic eqs and 6 dynamical egs if we apply 34+1 decomposition.

e completely free to choose cooordinates, gauge conditions, and even for decom-
position of the space-time.

e has singularity in its nature.

How to solve it?




Numerical Relativity — basic issues HS, APCTP Winter School 2003

0. How to foliate space-time

Cauchy (3 + 1), Hyperboloidal (3 + 1), characteristic (2 + 2), or combined?

= if the foliation is (3 + 1), then - --

1. How to prepare the initial data

Theoretical:

Numerical:

Proper formulation for solving constraints? How to prepare realistic initial data?
Effects of background gravitational waves?
Connection to the post-Newtonian approximation?

Techniques for solving coupled elliptic equations? Appropriate boundary conditions?

2. How to evolve the data

Theoretical:

Numerical:

Free evolution or constrained evolution?
Proper formulation for the evolution equations?
Suitable slicing conditions (gauge conditions)?

Techniques for solving the evolution equations? Appropriate boundary treatments?
Singularity excision techniques? Matter and shock surface treatments?
Parallelization of the code?

3. How to extract the physical information

Theoretical:

Numerical:

Gravitational wave extraction? Connection to other approximations?

Identification of black hole horizons? Visualization of simulations?




First Question: How to foliate space-time?

Cauchy approach Characteristic approach
or ADM 3+1 formulation (if null, dual-null 2+2 formulation)

time direction

1ngoing
direction

NN 4
%: Initial 3-dimensional Surface outgoing

direction

S: Initial 2-dimensional Surface



3+1 versus 2+2

Cauchy (3+1) evolution

Characteristic (2+2) evolution

pioneers ADM (1961), York-Smarr (1978) |Bondi et al (1962), Sachs (1962),
Penrose (1963)
variables easy to understand the concept of | has geometrical meanings
time evolution 1 complex function related to 2 GW
polarization modes
foliation has Hamilton structure allows implementation of Penrose's
space-time compactification
initial data need to solve constraints no constraints
evolution PDEs ODEs with consistent conditions
need to avoid constraint violation | propagation egs along the light rays
singularity need to avoid by some method can truncate the grid

disadvantages

can not cover space-time globally

difficulty in treating caustics
hard to treat matter




“3+1” formulatlon

R e R A . S A

‘.W“

-

Cauchy approach
or ADM 3+1 formulation

ﬁme direction

\

¥: Initial 3-dimensional Surface
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Procedure of the Standard Numerical Relativity

H 3+1 (ADM) formulation

B Preparation of the Initial Data
€ Assume the background metric
@ Solve the constraint equations

B Time Evolution
do time=1, time_end
& Specify the slicing condition
& Evolve the variables
@ Check the accuracy

& Extract physical quantities  2: Initial 3-dimensional Surface
end do

time direction




The 3+1 decomposition of space-time: The ADM formulation

[1 ] R. Arnowitt, S. Deser and C.W. Misner, in Gravitation: An Introduction to Current Research,
ed. by L. Witten, (Wiley, New York, 1962).

[2 ] J.W. York, Jr. in Sources of Gravitational Radiation, (Cambridge, 1979)

Dynamics of Space-time = Foliation of Hypersurface

e Evolution of ¢ =const. hypersurface ().

ds* = gda'de”, (p,v=0,1,2,3) time direction
on X(t)... df* = v da'da’, (2,7 =1,2,3)

e The unit normal vector of the slices, n*.

n, = (—a,0,0,0) | Y: Initial 3-dimensional Surface
n' = g"n, =(1/a,—f3'/a)

e The lapse function, a.. The shift vector, 3.
ds* = —a dt* + ~;;(dx' + B'dt)(da’ + 3 dt)




The decomposed metric:

ds* = —a’dt* + v;;(da’ + B'dt)(da’ + 3 dt)
= (—a?+ BB dt* + 2B;dtdx’ + ~;dx' da’

2 [ ' —1 2
gIW:( Cv;;ﬁlﬁ iyj)) g/u/:( /Oz

where o and (3; are defined as a = 1/4/—¢", 3, = g,

| Pt
Bija? ~i — 3B /o’

e [he unit normal vector of the slices, n*.

shift vector, Bt
My = (—a,0,0,0) . surface normal ine Bl gt /coordinate constant line
W = g, = (1/a, /) TR EE=
S(t+dt) /
e The lapse function, «. lapse function g —y dt | /
e The shift vector, 3. / A () /

/

t = constant hypersurface



Projection of the Einstein equation:

e Projection operator (or intrinsic 3-metric) to (%),

Y — Guv =+ Ny
v, = o) +nfn, = L7

e Define the extrinsic curvature Kj;,

Ki' = _J—éLJ—?nM;V
= — (6" +nM'ny) (0% +n"nj)n,,
= TNy
N 1
= Lijna =---= %0y (=0ryij + Bilj + Bili) -
e Projection of the Einstein equation:
Gun'n” =8rG1T,, n'n" =8nrpy = the Hamiltonian constraint eq.
Gun' Ll =8rGTy,n" Ll = —-8nJ, = the momentum constraint egs.

G L LY =8rGT,, Li LY =38nS; = the evolution egs.



The Standard ADM formulation (aka York 1978):

The fundamental dynamical variables are (v;;, K;;), the three-metric and extrinsic
curvature. The three-hypersurface X is foliated with gauge functions, (c, 3'), the
lapse and shift vector.

e The evolution equations:

(P)’t%]‘ = —QOJKZ']' + Dzﬁ] + Djﬁi,

81;[(2'3' = (3)Rz'j + OZKKij — QQKikKkj _ DiDjOé
+(DiB") Ky + (D %) Kyi + 8" Di K
—87TGCU{SZ']' + (1/2)%’]’(011 — trS)},

where K = K%, and (3)Rz-j and D; denote three-dimensional Ricci curvature,
and a covariant derivative on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. HAPM — Gp 4 K2 — KUKU ~ 0,

momentum constr. M?DM = DjKjZ- — D;K =~ 0,

where GR =0) Ri..




strategy 0

The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

341 decomposition of the spacetime.

Evolve 12 variables (v;;, K;;)

shift vector, Bi

surface normal line| ¥

|31 dt %oordinate constant line

with a choice of gauge conditiy ,
A" A'
A ol >(t+dt) /

lapse function, ¢y —» o dt /

/

% 2(1)
/ -

t = constant hypersurface

Maxwell egs. ADM Einstein eq.
conctrainte | @V E=dmp R+ (0K)? — KiK' = 2kppg + 2
div B=20 DJK]Z — DZtI'K = /43]7;

evolution egs.

1 4
-0E =rot B — —WJ
c c

1
—(9tB — —rot E
C

Oryij = —2NK;; + D;N; + D;Nj,

0, K;; = N(®R;; + wKK;;) — 2NKyK', — D;D;N
+ (DjN™ K i + (D;iN™ K,y + N D, K — Ny
— wa{Sij + 37ij(pm — trS)}




Procedure of the Standard Numerical Relativity

H 3+1 (ADM) formulation

Need to solve elliptic PDEs
-- Conformal approach

B Preparation of the Initial Data - Thin-Sandwich approach

€ Assume the background metric
@ Solve the constraint equations J

B Time Evolution
do time=1, time_end
& Specify the slicing condition
& Evolve the variables
@ Check the accuracy

& Extract physical quantities  2: Initial 3-dimensional Surface
end do

time direction




Procedure of the Standard Numerical Relativity

m 3+1 (ADM) formulation
Need to solve elliptic PDEs
-- Conformal approach

B Preparation of the Initial Data - Thin-Sandwich approach

€ Assume the background metric
@ Solve the constraint equa’rionsJ

. . singularity avoidance,
B Time Evolution simplify the system,

do time=1, time_end GW extraction, ...

& Specify the slicing condition =
@ Evolve the variables
@ Check the accuracy

& Extract physical quantities
end do



Procedure of the Standard Numerical Relativity

H 3+1 (ADM) formulation .
Need to solve elliptic PDEs

: . -- Conformal approach
B Preparation of the Initial Data -- Thin-Sandwich approach

€ Assume the background metric
@ Solve the constraint equations <—

singularity avoidance,
B Time Evolution simplify the system,

do time=1, time_end GW extraction, ...
& Specify the slicing condition =
® Evolve the variables _ Robust formulation 2
@ Check the accuracy -- modified ADM / BSSN

& Extract physical quantities - hyperbolization .
dd -- asymptotically constrained
enda do

Formulation Problem



strategy 0| The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

341 decomposition of the spacetime. shift vector, pi

- I surface normal line| .
Evolve 12 variables (v;;, K;) BL gt %oordinate constant line

with a choice of gauge condition. -
/ A" A'
S(t+dt) /

lapse function, ( — (1 dt /

T/ V4 >

A
/ t = constant hypersurface
Maxwell egs. ADM Einstein eq.
. div E = 47p OIR + (trK)? — Ki; K7 = 2kpp + 2/

constraints : j

div B =0 DjKji — Dltl"K = IQJZ'

latE —rot B — 4_7Tj Oryij = —2NKij + D;N; + D;Nj,

. ¢ ¢ | 0;K;j=N(®R; +trKK;;) —2NK;K'. — D;D;N

evolution egs. o - .

1 + (DJN )sz + (DZN )ij + N DmKij — N’}/”A

OB =—rtE — ke Sy + 5%ij(pm — trS)}




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = ﬁj(ﬁjH) + 20 KH — 2a7ij((9¢/\/lj)
(D) (27™ M — ATV M — 49 (9;0) M,
OM; = —(1/2)a(0/H) — (0;a)H + 3 (0;M;)
+aKM; — B0y ) M, + (0,87 M.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).
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Primary / Secondary constraint
First-class / Second-class constraint

* Primary Constraints  one4raint Cy(q, p) =~ 0

constraint Cs(g,p) =~ 0

« Secondary Constraints
= when propagation of constraints require additional constraints

Cg — {CI, H}P — {C’i’ H,(Qap) + AkC"‘f}P
= {Ci,H'}p + N*{C;,C}p =~ 0

* First-Class Constraints

set of constraints C; satisfy {C}, Cr}p = 0




Numerical Relativity in the 20th century

1960s

1970s

1980s

1990

1995

Hahn-Lindquist

May-White
OMurchadha-York

Smarr
Smarr-Cades-DeWitt-Eppley
Smarr-York

ed. by L.Smarr
Nakamura-Maeda-Miyama-Sasaki
Miyama

Bardeen-Piran

Stark-Piran
Shapiro-Teukolsky
Oohara-Nakamura
Seidel-Suen

Choptuik

NCSA group

Cook et al
Shibata-Nakao-Nakamura
Price-Pullin

NCSA group

NCSA group

Anninos et al
Scheel-Shapiro-Teukolsky
Shibata-Nakamura
Gunnersen-Shinkai-Maeda
Wilson-Mathews
Pittsburgh group
Brandt-Brigmann

[llinois group
Shibata-Baumgarte-Shapiro
BH Grand Challenge Alliance
Baumgarte-Shapiro
Brady-Creighton-Thorne
Meudon group

Shibata

2 BH head-on collision

spherical grav. collapse
conformal approach to initial data
3+1 formulation

2 BH head-on collision

gauge conditions

“Sources of Grav. Radiation”
axisym. grav. collapse

axisym. GW collapse

axisym. grav. collapse

axisym. grav. collapse

naked singularity formation

3D post-Newtonian NS coalesence
BH excision technique

critical behaviour

axisym. 2 BH head-on collision

2 BH initial data

BransDicke GW collapse

close limit approach

event horizon finder

hyperbolic formulation

close limit vs full numerical
BransDicke grav. collapse

3D grav. wave collapse

ADM to NP

NS binary inspiral, prior collapse?
Cauchy-characteristic approach
BH puncture data

synchronized NS binary initial data
2 NS inspiral, PN to GR
characteristic matching
Shibata-Nakamura formulation
intermediate binary BH
irrotational NS binary initial data
2 NS inspiral coalesence

AnaPhys29(1964)304
PR141(1966)1232
PRD10(1974)428
PhD thesis (1975)
PRD14(1976)2443
PRD17(1978)2529
Cambridge(1979)
PTP63(1980)1229
PTP65(1981)894
PhysRep96(1983)205
unpublished
PRL66(1991
PTP88(1992
PRL69(1992
PRL70(1993)9
PRL71(1993)2851

994
307
1845

—_ —

vv

PRD47(1993)1471
PRD50(1994)7304
PRL72(1994)3297
PRL74(1995)630
PRL75(1995)600
PRD52(1995)4462
PRD51(1995)4208
PRD52(1995)5428
CQG12(1995)133
PRL75(1995)4161
PRD54(1996)6153
PRL78(1997)3606
PRL79(1997)1182
PRD58(1998)023002
PRL80(1998)3915
PRD59(1998)024007
PRD58(1998)061501
PRL82(1999)892
PRD60(1999)104052
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Formation of Naked Singularities: The Violation of Cosmic Censorship

Stuart L. Shapiro and Saul A. Teukolsky

Center for Radiophysics and Space Research and Departments of Astronomy and Physics,
Cornell University, Ithaca, New York 14853
(Received 7 September 1990)

We use a new numerical code to evolve collisionless gas spheroids in full general relativity. In all cases
the spheroids collapse to singularities. When the spheroids are sufficiently compact, the singularities are
hidden inside black holes. However, when the spheroids are sufficiently large, there are no apparent hor-
izons. These results lend support to the hoop conjecture and appear to demonstrate that naked singulari-
ties can form in asymptotically flat spacetimes.
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FIG. 3. Growth of the Riemann invariant / (in units of
M ~*) vs time for the collapse shown in Fig. 2. The simulation
was repeated with various angular grid resolutions. Each curve
is labeled by the number of angular zones used. We use dots to
show where the singularity has caused the code to become
inaccurate,

FIG. 4. Profile of I in a meridional plane for the collapse

shown in Fig. 2. For the case of 32 angular zones shown here,

the peak value of I is 24/M* and occurs on the axis just outside
the matter.



Critical Phenomena in Gravitational Collapse

TABLE . Initial data specification for various one-param-
eter families discussed in text. For families (a)—(c), I specified
the initial pulses to be purely in-going. For family (d), the
functions X5 (r), Y<(r) and X5 (r), Y5 (r) are late-time fits
to subcritical and supercritical evolutions, respectively, of the
pulse shape shown in Fig. 1(d).

Family Form of initial data D
(a) o ¢(r) =gorlexp(—[(r—10)/6]?) ¢o,70,8,q
(b) ¢(r) = ¢o tanh[(r — o) /4] ¢o
()  (r+ro) = gor °[exp(1/r) — 17" ¢o
(d) X(r) = (1=n)Xc(r) + nX>(r) n
Y(r) = (1-n)Y<(r) +nY5(r)
TABLE II. Numerically determined xz

exponent 7y in the conjectured relationsh
Emin and Lmax are the minimum and makimae se=fg

(1 = Msu/M) of the black holes computed in the snmula.tmn
and v is the least-squares estimate of the scaling exponent.

Family Parameter Kmin Kmax @
(2) bo 79x107* 89x10"'  0.376
(a) ) 1.3x107% 94x107'  0.372
(a) q 31x107% 9.8x10"'  0.372
(a) To 1.3x 1072  9.2x 107!  0.379
(b) bo 28x107%  40x10"'  0.372
(c) bo 49x107%  99x107'  0.366
(d) n 22x107° 1.7x107%  0.380

Choptuik, Phys. Rev. Lett. 70 (1993) 9

Spherical Sym., Massless Scalar Field
(1) scaling

(2) echoing

(3) universality

0.3 T A T 1
Famiy () A, =344 A =343
02 A
o X(p1)
e X(p-A,T-4)
0.1 F £ u .
>
0.0 = -
If-Similarity
_O‘I -
-0.2 | | | |
-8 -6 -4 -2 0

. P
FIG. 2. Illustration of the rescaling or echoing property
observed in near-critical evolution of the scalar field. The
curve marked with open squares shows the profile of the scalar
field variable, X, at some proper central time Tp. The curve
marked with solid circles is the profile at a later time To+e®"
but on a scale e®? ~ 30 times smaller.



Head-on Collision of 2 Black-Holes (Misner initial data)
NCSA group 1995

Fig. ©C.6. 3D evolution of the radistion field ¥, of the head-on collsion ol twds
exjizal: tnass Ik el shomn as a Blae and yelliow wulod-fuag



S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = ﬁj(ﬁjH) + 20 KH — 2a7ij((9¢/\/lj)
(D) (27™ M — ATV M — 49 (9;0) M,
OM; = —(1/2)a(0/H) — (0;a)H + 3 (0;M;)
+aKM; — B0y ) M, + (0,87 M.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = ﬁj(f)ﬂ'() + 20 KH — ZOzyij((?i/\/lj)
(D) (27™ M — ATV M — 49 (9;0) M,
OM; = —(1/2)a(0/H) — (0;a)H + 3 (0;M;)
+aKM; — B0y ) M, + (0,87 M.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).

But this is NOT TRUE in NUMERICS....




e By the period of 1990s, NR had provided a lot of physics:
Gravitational Collapse, Critical Behavior, Naked Singularity, Event Horizons,
Head-on Collision of BH-BH and Gravitational Wavve, Cosmology, - - -

e However, for the BH-BH/NS-NS inspiral coalescence problem, - - - why 777

Many (too many) trials and errors, hard to find a definit recipe.

.
s

time

Constrained / Surface
(satisfies /Einstein's constraints)

Best formulation of the Einstein eqs. for long-term stable & accurate simulation?




“Convergence”

e T e e M N el N S T P MO bl P i,

R TG N I SE A

= higher resolution runs approach to the continuum limit.
(All numerical codes must have this property.)

« When the code has 2nd order finite difference scheme, O ((Az)?)
then the error should be scaled with O ((Az)?)

e “Consistency”, Choptuik, PRD 44 (1991) 3124

N _— N - - : - - P e - ~
N S S~ - - - - ! 3 P <~ - — - ~ . -
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F L els

“Accu racy”

R TG N I SE A

e T e e M el N S T P MO el P iy

= The numerical results represent the actual solutions.
(All numerical codes must have this property.)

e (Check the code with known results.

1e-08 1= 7 Tih T T T
5e-09 |- a
L ot O 1l ll
k
-5e-09 |- /- 3
Exact N
-1e-08 | P=2 R :
p=
TR s R N Gauge wave test in BSSN;
06 04 02 0 02 04 06 Kiuchi, HS, PRD (2008)




“Stability”

* We mean that a numerical simulation Blow up
continues without any blow-ups and
data remains on the constrained surface. E ?
ey Stabilize?
-
time

p— " s, ] — - - — - . o g
N e ey o e o e T i iy el




“Stability”

We mean that a numerical simulation Blow up
continues without any blow-ups and
data remains on the constrained surface. E
R
time

 Mathematicians define in terms of the PDE well-posedness.

(@] < e™[|u(0)]]
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“Stability”

R R IR S IR SR e R P T T Tl R SR DS et
 We mean that a numerical simulation Blow up
continues without any blow-ups and
data remains on the constrained surface. E
time
 Mathematicians define in terms of the PDE well-posedness.
lu(®)]] < e™||u(0)]] )
 Programmers define for selecting a finite differencing scheme ~.
(judged by von Neumann's analysis).
Lax's equivalence theorem says that if a numerical scheme is

consistent (converging) and stable, then the simulation represents
the right (converging) solution.

£ i ¥ AN = : e syt i St ot J i - A Y LA LR AN L3R '
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Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

e Many (too many) trials and errors, hard to find a definit recipe.

Blow up Blow up

ADM

;

| =

time

strategy 0:  Arnowitt-Deser-Misner (ADM) formulation

strategy 1:  Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
strategy 2:  Hyperbolic formulations

strategy 3:  “Asymptotically constrained” against a violation of constraints

By adding constraints in RHS, we can kill error-growing modes
= How can we understand the features systematically?
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strategy 1| Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation

T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)
M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995)
T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)

The popular approach. Nakamura's idea in 1980s.
BSSN is a tricky nickname. BS (1999) introduced a paper of SN (1995).

e define new set of variables (gb,’yij,K,AU,fi), instead of the ADM'’s (,;,/K;;) where

Yij = € i, Ajj = e (K — (1/3)y;,K), [ =I5k,

and impose det;; = 1 during the evolutions.

e The set of evolution equations become

(0 — Ls)p = —(1/6)ak,
(0 — Ls)yi; = —20Ay,
0y — Lo)K = aAj ;A7 4+ (1/3)aK? — 47 (V;V;a),
(0; — Ls)Ay = —e (V;V,a)"F + 6_4¢O4RS)) — e a(1/3)y,;R® + a(K A — 24;,.A%))
oI = —2(0;0)AY — (4/3)c(0;K)7" + 120A7(9;¢) — 20A7 (0;7'F) — 201", A7 13"
-0, (8077 = AN(08') = 7 (Ou) + (2/3)7 (95Y))

Momentum constraint was used in ["-eq.



e Calculate Riemann tensor as

Ry = Ot —oTf +Trk, — 1Tk = Ry, + R, -
f?f; = —2D;D;¢ — 2g;;D' D¢ +~4(D¢?)ED1¢) — 4§¢j~(Dl~¢)(Dz¢) o
Rij = —(1/2)" 0umij + G105 " + T¥Tijpn + 20" Ty + 9™ T D

e Constraints are H, M.
But thre are additional ones, G', A, S.

Hamiltonian and the momentum constraint equations
HBSSN _ RBSSN | g2 K, K,
BSSN ADM
Mi = Ml 3
Additionally, we regard the following three as the constraints:
A = A7,
S = ~v—1,

Why BSSN better than ADM?
Is the BSSN best? Are there any alternatives?



Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

e "The essential improvement is in the process of replacing terms by the momentum
constraints’,

Alcubierre, et al, [PRD 62 (2000) 124011]

~

e [ is replaced by —0;7" where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

e [-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]
Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]

Some guesses:

e BSSN has a wider range of parameters that give us stable evolutions in von
Neumann's stability analysis. Miller, [gr-qc/0008017]

e The eigenvalues of BSSN cvolution equations has fewer “zero eigenvalues” than
those of ADM, and they conjectured that the instability can be caused by “zero

eigenvalues” that violate “gauge mode”.
M. Alcubierre, et al, [PRD 62 (2000) 124011]
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strategy 2 Hyperbolic formulation

Construct a formulation which reveals a hyperbolicity explicitly.
For a first order partial differential equations on a vector wu,

(5] (5] (5]

Oplug | =| A | 0s|u| + DBlu

characteristic part lower order part



--------
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Hyperbolic Formulation
(1) Deflnltlon

Pl S S ks SRS S S RN s R ST P E S i B
For a first order partial differential equations on a vector u,
Ul Uy up
O |l us | = A Or | up + B us
characteristic part lower order part

if the eigenvalues of A are
weakly hyperbolic all real.

strongly hyperbolic  all real and 3 a complete set of eigenvalues.

symmetric hyperbolic if A is real and symmetric (Hermitian). [ Weakly hyp. E g
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Hyperbolic Formulation
(2) Expectatlons

e R e PR A IO B INA

A -

“.

If strongly/symmetric hyperbolic ==> well-posed system
— Given initial data + source terms -> a unique solution exists

— The solution depends continuously on the data

— Exists an upper bound on (unphysical) energy norm

lu(®)]| < €™|[w(0)]]

Better boundary treatments
<== existence of characteristic field -

Known numerical techniques in
Newtonian hydro-dynamics
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strategy 2 Hyperbolic formulation

Construct a formulation which reveals a hyperbolicity explicitly.
For a first order partial differential equations on a vector wu,

uy uy uy
&g Uy | = A (9;,3 U9 + B | us
characteristic part lower order part

However,
e ADM is not hyperbolic.
e BSSN is not hyperbolic.

e Many many hyperbolic formulations are presented. Why many? = Exercise.

One might ask ...

Are they actually helpful?

Which level of hyperbolicity is necessary?




Wave equation

(0t(9t — czﬁx(?x)u =0




Exercise 1 of hyperbolic formulation Wave equation (0;0; — 0,0, )u = 0

[1a] use u as one of the fundamental variables.

a(2)- §)ar(?)

Eigenvalues = 4-c. Not a symmetric hyperbolic, but a kind of strongly hyperbolic.

15 o(3)=(0 5o (7)

Eigenvalues = £c. Symmetric hyperbolic.

[2a] Let U =@,V =/,
U 0 ¢ U
(v )= 5] ()

Eigenvalues = 4-c. Not a symmetric hyperbolic, but a kind of strongly hyperbolic.

[2b] Let U = u,V = cu/,
U 0 c U
at(v)_(c o)af”(v)

Eigenvalues = £c. Symmetric hyperbolic.




Exercise 1 of hyperbolic formulation Wave equation (0;0; — 0,0, )u = 0

[3a] Let v = @, w =7/,

U 0 0 0 U v

| v |= (O 0 02) Ol v [+]0 (10)
w 0 1 0 w 0

Eigenvalues = 0, £c. Not a symmetric hyperbolic, nor a strongly hyperbolic.
[3b] Let v = @, w = ¢/,

U 0 0 0 U v

| v |= (O 0 c) Ol v [+]0 (11)
w 0 ¢ 0 w 0

Eigenvalues = 0, £c. Not a symmetric hyperbolic, nor a strongly hyperbolic.

(o) (0 ) 2

Eigenvalues = £c. Symmetric hyperbolic, de-coupled.

[4] Let f=u—cu',g =1+ c,



Exercise 2 of hyperbolic formulation Maxwell equations

Consider the Maxwell equations in the vacuum space,

divE =
divB =
10E
tB— — =
o i
1
rot B+ — =

c Ot

0, (a)
0, (1b)
0, (1c)
0 (1d)



Exercise 2 of hyperbolic formulation Maxwell equations (cont.)

e Take a pair of variables as u' = (Ey, Ey, E3, By, By, B3)!, and write (1c) and
(1d) in the matrix form

E, Ald Bty E;
14 BZ Cli] Dlz_j [ Bj <>
Hermitian?

e In the Maxwell case, we see immediately

0 Gilm
Oyu; = ¢ ( Cedm ) O,
or with the actual components
En 0 =& 4 En
) 0 o 0 =4 )
by | —5, o0 L
M |=C o 8 —d o B,
Bs -6, 0 & 0 Bs
B; o =86t 0 Bs

That is, symmetric hyperbolic system.



Exercise 2 of hyperbolic formulation Maxwell equations (cont.)

e The eigen-equation of the characteristic matrix becomes

A0 0 0 -8 6
| | | 0 =X 0 cl &4 0 =6
AT —\sl B 0 0 =\ 8L 80
c [ —5 0 4 ] ( 0 =X 0 ]
) S LI 0 0 =\

We therefore obtain the eigenvalues as

0 (2 multi), :I:c\/(5i)2 + (05)% + (64)2 = +c (2 each)




Exercise 3 of hyperbolic formulation Adjusted Maxwell equations

By adding constraints (1a) and (1b) in the RHS of equations, and see what will be
happend.

0 —€;
Eilm 0

where x, y, z, w are parameters.

Im
ﬁtui:c( )ﬁlum+c(§)6kEk+c( )6kBk, (3)

Z
w



Exercise 3 of hyperbolic formulation Adjusted Maxwell equations (cont.)

By adding constraints (1a) and (1b) in the RHS of equations, and see what will be
happend.

0 —€;
Eilm 0

where x, y, z, w are parameters.

Im
Oyl ZC( )8lum+c(§)8kEk+c( )8kBk, (3)

<
w

e The actual components are

E s oy o s o ol 0 -8 & Er
Ey x| o 6 6L z| 60 o S+ 6 0 =& Ey
By | s 5L 4l soob o) \os s o Es
Ol g = (ot sy o8 5 3 o % B,
B; TR O A N A 5l oL ol B,

We see that adding constraint terms break the symmetricity of the characteristic
matrix.

e The eigenvalues will be changed as

g (:1: +w £ /22 — 22w + w? + 4yz) (6% + &, + &%) (1 each), +c (2 each).

The zero eigenvalues disappear by adding constraints, and they can be also || if

the parameters have the relation (yz — 2w — 1)* = (z + w)*.
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Kidder-Scheel-Teukolsky hyperbolic formulation (Anderson-York + Frittelli-Reula)
Phys. Rev. D. 64 (2001) 064017

e Construct a First-order form using variables (K, gi;, dyi;) where dy;; = 0r9;;
Constraints are (H, M;, Ciij, Criij) where Crij = dipij — Orgij, and Cryij = Opdyy;

e Densitize the lapse, () = log(Ng~7)
e Adjust equations with constraints
Oogij = —2NK;;
OKi; = () +7NgyH + (NG Copip
Qodri; = (-++) +nNgpM;jy + xNgi;M,,
e Re-deining the variables (P;;, gi;, My;;)
P = Kij + 295K,
Myij = (1/2)[kdyij + edgjy + gij(ady + bbg) + gr(edyy + dby)),  di = g% diab, b = g dapi
The redefinition parameters

— do not change the eigenvalues of evolution egs.
— do not effect on the principal part of the constraint evolution egs.
— do affect the eigenvectors of evolution system.

— do affect nonlinear terms of evolution eqs/constraint evolution egs.



Numerical experiments of KST hyperbolic formulation

Weak wave on flat spacetime.
-> No non-principal part.

-> We can observe the
features of hyperbolicity.

-> Using constraints in RHS
may improve the blow-up.

_Errors in the metric
Densitizing the lapse (WH case)
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FIG. 7. L, norms of the errors for the metric.

PHYSICAL REVIEW D 66, 064011 (2002)

Stability properties of a formulation of Einstein’s equations

Gioel Calabrese,* Jorge Pullin,T Olivier Sarbach,i and Manuel Tiglio§
Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001
(Received 27 May 2002; published 19 September 2002)

We study the stability properties of the Kidder-Scheel-Teukolsky (KST) many-parameter formulation of
Einstein’s equations for weak gravitational waves on flat space-time from a continuum and numerical point of

view. At the continuum, performing a linearized analysis of the equations around flat space-time, it turns out
that they have, essentially, no non-principal terms. As a consequence, in the weak field limit the stability
properties of this formulation depend only on the level of hyperbolicity of the system. At the discrete level we
present some simple one-dimensional simulations using the KST family. The goal is to analyze the type of
instabilities that appear as one changes parameter values in the formulation. Lessons learned in this analysis
can be applied in other formulations with similar properties.
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FIG. 9. L, norm of the errors for the metric.
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FIG. 12. L, norm of the errors for the metric.
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Hyperbolic formulations and numerical relativity:
experiments using Ashtekar’s connection variables

Hisa-aki Shinkaif and Gen Yonedaf

T Centre for Gravitational Physics and Geometry, 104 Davey Laboratory, Department of Physics,
The Pennsylvania State University, University Park, PA 16802-6300, USA
i+ Department of Mathematical Sciences, Waseda University, Shinjuku, Tokyo, 169-8555, Japan

E-mail: shinkai@gravity.phys.psu.edu and yoneda@mn.waseda.ac.jp
Received 3 May 2000, in final form 13 September 2000

Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on
Ashtekar’s connection variables. The primary advantage for using this connection formulation in
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity.
Our numerical code demonstrates gravitational wave propagation in plane-symmetric spacetimes,
and we compare the accuracy of the simulation by monitoring the violation of the constraints.
By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail.
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Figure 2. Images of gravitational wave propagation and comparisons of dynamical behaviour of
Ashtekar’s variables and ADM variables. We applied the same initial data of two +-mode pulse
waves (@ = 0.2,b = 2.0, ¢ = £2.5 in equation (21) and Ko = —0.025), and the same slicing
condition, the standard geodesic slicing condition (N = 1). (a) Image of the 3-metric component
gyy of a function of proper time t and coordinate x. This behaviour can be seen identically both
in ADM and Ashtekar evolutions, and both with the Brailovskaya and Crank—Nicholson time-
integration scheme. Part (b) explains this fact by comparing the snapshot of gy, at the same proper
time slice (t = 10), where four lines at = 10 are looked at identically. Parts (c¢) and (d) are of the
real part of the densitized triad E3, and the real part of the connection .A%, respectively, obtained
from the evolution of the Ashtekar variables. ’
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Hyperbolic formulations and numerical relativity:
experiments using Ashtekar’s connection variables
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Hisa-aki Shinkaif and Gen Yonedaf

7 Centre for Gravitational Physics and Geometry, 104 Davey Laboratory, Department of Physics,
The Pennsylvania State University, University Park, PA 16802-6300, USA
+ Department of Mathematical Sciences, Waseda University, Shinjuku, Tokyo, 169-8555, Japan

E-mail: shinkai@gravity.phys.psu.edu and yoneda@mn.waseda.ac.jp
Received 3 May 2000, in final form 13 September 2000

Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on
Ashtekar’s connection variables. The primary advantage for using this connection formulation in
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity.
Our numerical code demonstrates gravitational wave propagation in plane-symmetric spacetimes,
and we compare the accuracy of the simulation by monitoring the violation of the constraints.
By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail.
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Figure 6. Comparisons of the ‘adjusted’ system with the different multiplier, «, in equations (31)
and (32). The model uses +-mode pulse waves (@ = 0.1, b = 2.0, ¢ = £2.5) in equation (21) in a
background Ko = —0.025. Plots are of the L2 norm of the Hamiltonian and momentum constraint
equations, CI"_\ISH and C,‘[“,ISH ((a) and (b), respectively). We see some « produce a better performance
than the symmetric hyperbolic system.

No drastic differences in stability
between 3 levels of hyperbolicity.



BSSN Pros:

e With Bona-Masso-type o (1+log), and frozon 3 (0,1 ~ 0), BSSN plus auxiliary
variables form a 1st-order symmetric hyperbolic system,

Heyer-Sarbach, [PRD 70 (2004) 104004]

e If we define 2nd order symmetric hyperbolic form, principal part of BSSN can be
one of them,

Gundlach-MartinGarcia, [PRD 70 (2004) 044031, PRD 74 (2006) 024016]

BSSN Cons:

e Existence of an ill-posed solution in BSSN (as well in ADM)
Frittelli-Gomez [JMP 41 (2000) 5535]

e Gauge shocks in Bona-Masso slicing is inevitable. Current 3D BH simulation is
lack of resolution.

Garfinke-Gundlach-Hilditch [arXiv:0707.0726]



strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group

“Well-posed!”, ||u(t)]] < e||u(0)|]
Mathematically Rigorous Proofs
IBVP in future
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strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group “Really?” group
“Well-posed!”, ||u(t)]] < e||u(0)|] “not converging”, still blow-up
Mathematically Rigorous Proofs Proofs are only simple egs.

Discuss only characteristic part.
lgnore non-principal part.

IBVP in future




strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group “Really?” group
“Well-posed!”, [|u(t)|| < e||u(0)]] “not converging”, still blow-up
Mathematically Rigorous Proofs Proofs are only simple egs.

Discuss only characteristic part.
lgnore non-principal part.

IBVP in future

Which level of hyperbolicity is necessary?

symmetric hyperbolic C strongly hyperbolic C weakly hyperbolic systems,

Advantages in Numerics (90s)

Advantages in sym. hyp.
— KST formulation by LSU




strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group “Really?” group
“Well-posed!”, [|u(t)|| < e||u(0)]] “not converging”, still blow-up
Mathematically Rigorous Proofs Proofs are only simple egs.

Discuss only characteristic part.
lgnore non-principal part.

IBVP in future

Which level of hyperbolicity is necessary?

symmetric hyperbolic C strongly hyperbolic C weakly hyperbolic systems,

Advantages in Numerics (90s) These were vs. ADM
Advantages in sym. hyp. Not much differences in hyperbolic 3 levels
— KST formulation by LSU — FR formulation, by Hern

— Ashtekar formulation, by HS-Yoneda
sym. hyp. is not always the best
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Summary up to here (1st half)

[Keyword 1] Formulation Problem
Although mathematically equivalent, different set of equations
shows different numerical stability.

[Keyword 2] ADM formulation
The starting formulation (Historically & Numerically).
Successes in 90s, but not for binary BH-BH /NS-NS problems.

[Keyword 3] BSSN formulation
New variables and gauge fixing to ADM, shows better stability.
The reason why it is better was not known at first.
Many simulation groups uses BSSN. Technical tips are accumulated.

[Keyword 4] hyperbolic formulations
Mathematical classification of PDE shows "well-posedness”, but its meaning
is limited.
Many versions of hyperbolic Einstein equations are available.
Some group try to show the advantage of BSSN using "hyperbolicity".
But are they really helpful in numerics?



error

strategy 3‘ “Asymptotically Constrained” system /“Constraint Damping” system

Formulate a system which is “asymptotically constrained” against a violation of constraints

Constraint Surface as an Attractor

Constrained / Surface
(satisfies /Einstein's constraints)

Blow up

— Stabilize?

>

time

method 1: A-system (Brodbeck et al, 2000)

e Add aritificial force to reduce the violation of
constraints

e To be guaranteed if we apply the idea to a sym-
metric hyperbolic system.

method 2: Adjusted system (Yoneda HS, 2000,
2001)

e We can control the violation of constraints by
adjusting constraints to EoM.

e Eigenvalue analysis of constraint propagation
equations may prodict the violation of error.

e This idea is applicable even if the system is not

symmetric hyperbolic. =
for the ADM/BSSN formulation, too!!




ldea of \-system
Brodbeck, Frittelli, Hiibner and Reula, JMP40(99)909

We expect a system that is robust for controlling the violation of constraints

Recipe
1. Prepare a symmetric hyperbolic evolution system ou = Jou+ K

2. Introduce \ as an indicator of violation of constraint 9\ = aC — )\

which obeys dissipative eqs. of motion (a#£0,8>0)
: : u A 0 u
3. Take a set of (u, \) as dynamical variables ) (A) ~ (F 0) O, (A)
4. Modify evolution eqs so as to form p (u) B (A F) 5 (u)
a symmetric hyperbolic system W) AF o)

Remarks
e BFHR used a sym. hyp. formulation by Frittelli-Reula [PRL76(96)4667]

e The version for the Ashtekar formulation by HS-Yoneda [PRD60(99)101502]
for controlling the constraints or reality conditions or both.

e Succeeded in evolution of GW in planar spacetime using Ashtekar vars. [CQG18(2001)441]
e Do the recovered solutions represent true evolution? by Siebel-Hiibner [PRD64(2001)024021]

e The version for Z4 hyperbolic system by Gundlach-Calabrese-Hinder-MartinGarcia [CQG22(05)3767]
= Pretorius noticed the idea of " constraint damping” [PRL95(05)121101]
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Figure 1. Demonstration of the A system in the Maxwell equation. (@) Constraint violation (L2
norm of Cg) versus time with constant 8 (= 2.0) but changing «. Here o = 0 means no A system.
(b) The same plot with constant o (= 0.5) but changing 8. We see better performance for 8 > 0,
which is the case of negative eigenvalues of the constraint propagation equation. The constants in
(2.18) were chosen as A =200 and B = 1.
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Ashtekar-lambda system works
as expected, as well.
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Figure 3. Demonstration of the A system in the Ashtekar equation. We plot the violation of the
constraint (the L2 norm of the Hamiltonian constraint equation, Cg) for the cases of plane-wave
propagation under the periodic boundary. To see the effect more clearly, we added an artificial error
at t = 6. Part (a) shows how the system goes bad depending on the amplitude of artificial error.
The error was of the form A§ — A§(1 + error). All the curves are of the evolution of Ashtekar’s
original equation (no A system). Part (b) shows the effect of the A system. All the curves have
20% error amplitude, but show the difference of the evolution equations. The full curve is for
Ashtekar’s original equation (the same as in (a)), the dotted curve is for the strongly hyperbolic
Ashtekar equation. Other curves are of A systems, which produce a better performance than that
of the strongly hyperbolic system.



|dea of “Adjusted system” and Our Conjecture
CQG18 (2001) 441, PRD 63 (2001) 120419, CQG 19 (2002) 1027

General Procedure
1. prepare a set of evolution egs. Opu® = f(u®, dus,- - -)

2. add constraints in RHS A = f(u, dyut,- ) +F(C 9,C", - )

3. choose appropriate (C“, 9,C%, - --)
to make the system stable evolution

How to specify F'(C*, 9,C",--+) ?
4. prepare constraint propagation egs. 0,C" = g(C*, 9,C*,--+)

5. and its adjusted version 0,C* = g(C*, 0,C°, - - ) +G(C, 0,C°, - )

6. Fourier transform and evaluate eigenvalues 9,C* = A(C) C*

—_———

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation egs.
If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more stable.




Example: the Maxwell equations

Yoneda HS, CQG 18 (2001) 441

Maxwell evolution equations.

&gEi = ceijkﬁjBk -+ PZ CE -+ Qz CB7 sym. hyp <~ PZ — Qz j Rz — Sz =0,
0,B; = —ce/*0.Ep+ R Cp+ S: Cp. strongly hyp < (P —S;)” +4R,Q; > 0,
o om0 Oy op mp, WK YD & (P S+ ARQ >0

Constraint propagation equations
0,Cp = (82P‘)CE + P&(a@CE) + (82Q&>CB + Qi(aiCB%
@CB = (6’LRZ>CE -+ RZ(&CE) + (@SZ)CB + 57(8103),
sym. hyp & Qi=R,
strongly hyp < (P — S;)? + 4R;Q; > 0,
weakly hyp & (P, — S;)* +4R:Q; >0
CAFs?
5 (OE) _ (@-Pé + Pk 0,Q +Q%) 9 (CE) N (P%ki Q?kz-) (CE> .7 (OE)
Cgp O;R'+ R'k; 0;S"+ S'k; Cpg R'k;, S'k; Cp ' Cg
= CAFs = (P'k; + S'k; £ \/(P'k; + S'k;)2 + A(Qk; Rik; — P'k;Sik;))/2

Therefore CAFs become negative-real when

Pk + Sk <0, and  QkREk;— PkS'k; <0
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Adjusted-Maxwell system works as well.

3.2.1. Adjusted system. Here we again consider the Maxwell equations (2.9)—(2.11). We
start from the adjusted dynamical equations

WE; = ce&/* 3B+ P;,Cp + p’1(3;Cp) + Q;Cp + ¢’ (3;Cp), (3.7)
&Bi = —ce;Md;Ex + RiCp +17;(3;Cg) + S;Cp +57;(3;Cp), (3.8)

where P, Q, R, S, p,q,r and s are multipliers. These dynamical equations adjust the
constraint propagation equations as

3Cr = (3; P)Cg + P'(3;Cp) + (3;Q")Cp + Q' (3;Cp)

+@ p')(3;Cp) + p’(8;0;Cr) + (3;97)(3;Cp) + ¢’ (3;9;Cp), 3.9)
3Cp = (3;R)Cr + R (3;Cp) + (3;S)Cp + S'(8;Cp)
+(3;r7)(3;CE) + 17" (8;0;CE) + (8:7)(3;Cp) + 57" (3;0;Cp). (3.10)

This will be expressed using Fourier components by
5 <éE> (BiPi+iP’ki+ikj(3ipji)—kikjpfi 8iQi+iQiki+ikj(a,*qji)—kiquji)
"\Cs)  \ R +iRk; +ik; ;7)) — kik;rit 3,8 +iS'k; +ik;(0;s97) — kikjsii

X(CE>=T(CE> (3.11)
Cx o
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Figure 4. Demonstrations of the adjusted system in the Maxwell equation. We perform the same
experiments with section 2.2.3 (figure 1). Constraint violation (L2 norm of Cg) versus time are
plotted for various k (= p/; = s/;). We see that k > 0 gives a better performance (i.e. negative
real part eigenvalues for the constraint propagation equation), while excessively large positive «
makes the system divergent again.



Example: the Ashtekar equations
HS Yoneda, CQG 17 (2000) 4799

Adjusted dynamical equations:

OE, = —iDj(" NEE)) + 2D;(NVE}) + iAje, B +-XiCu +YiCury + P'Ca
adjust
OA! = —ie™ NEJF: + N'F% + DAL+ ANE! +Q/Cy + R{Cor; + Z{"Ce
adjust

Adjusted and linearized:
X=Y=2=0, P“=ri(iN6}), QF = k(e >NE?), RY; = ry(—ie 2Ne*yEIE])

Fourier transform and extract Oth order of the characteristic matrix:

Cu 0 i(142k3)k; 0 ( Ch
@ C]\/[z = 2(1 — 2/4;2)]% /i3€kj2']€k 0 CMj
CGa 0 2/%352 0 CGb

Eigenvalues:

(0, 0,0, Hrg—ka? — ky? — k22, £/(—1 + 2k0)(1 + 2r3) (ka? + ky® + kz2))
In order to obtain non-positive real eigenvalues:

(—1 + 2/432)(1 + 2/433) <0
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3.3.1. Adjusted system for controlling constraint violations.

Gen Yoneda' and Hisa-aki Shinkai?

! Department of Mathematical Sciences, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
2 Centre for Gravitational Physics and Geometry, 104 Davey Lab., Department of Physics, The
Pennsylvania State University, University Park, PA 16802-6300, USA

E-mail: yoneda@mn.waseda.ac.jp and shinkai @ gravity.phys.psu.edu

Received 27 July 2000, in final form 13 December 2000

Here we only consider the

adjusted system which controls the departures from the constraint surface. In the appendix,
we present an advanced system which controls the violation of the reality condition together
with a numerical demonstration.
Even if we restrict ourselves to adjusted equations of motion for (Efp A{) with constraint
terms (no adjustment with derivatives of constraints), generally, we could adjust them as

&E!

3t A?

—iD;j(e® NEJE}) +2D;(NVE) +idbe,, CE' + X\ Cy + Y Cypj + PPCy,

(3.14)

—ie® NE] Ff+ N/FS + DA + ANES + QUCry + R“Cyj + Z%Cay, (3.15)

where X!, Y, Ze P, Q¢ and Rf"i are multipliers. However, in order to simplify the
discussion, we restrict multipliers so as to reproduce the symmetric hyperbolic equations
of motion [10, 11], i.e.

X=Y=2=0,
PP = k| (N'8% +iNe, " EY),
0% = Ky(e *NED),

R = k3(ie > Ne“, EPEY).

(3.16)
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Figure 5. Demonstration of the adjusted system in the Ashtekar equation. We plot the violation of
the constraint for the same model as figure 3(b). An artificial error term was added at ¢ = 6, in the
form of A3 — A2(1+ error), where error is + 20% as before. (a), (b) L2 norm of the Hamiltonian
constraint equation, Cy, and momentum constraint equation, Cpsy, respectively. The full curve is
the case of k = 0, that is the case of ‘no adjusted’ original Ashtekar equation (weakly hyperbolic
system). The dotted curve is for k = 1, equivalent to the symmetric hyperbolic system. We see
that the other curve (¢ = 2.0) shows better performance than the symmetric hyperbolic case.



The Adjusted system (essentials):

Purpose: Control the violation of constraints by reformulating the system so as to have a
constrained surface an attractor.

Procedure: Add a particular combination of constraints to the evolution equations, and adjust
its multipliers.

Theoretical support: Eigenvalue analysis of the constraint propagation equations.
Advantages: Available even if the base system is not a symmetric hyperbolic.

Advantages: Keep the number of the variable same with the original system.

Conjecture on Constraint Amplification Factors (CAFs):

(A) If CAF has a negative real-part (the constraints are forced to be diminished), then we see more
stable evolution than a system which has positive CAF.

(B) If CAF has a non-zero imaginary-part (the constraints are propagating away), then we see more
stable evolution than a system which has zero CAF.
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