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Procedure of the Standard Numerical Relativity

H 3+1 (ADM) formulation .
Need to solve elliptic PDEs

: . -- Conformal approach
B Preparation of the Initial Data -- Thin-Sandwich approach

€ Assume the background metric
@ Solve the constraint equations <—

singularity avoidance,
B Time Evolution simplify the system,

do time=1, time_end GW extraction, ...
& Specify the slicing condition =
® Evolve the variables _ Robust formulation 2
@ Check the accuracy -- modified ADM / BSSN

& Extract physical quantities - hyperbolization .
dd -- asymptotically constrained
enda do

Formulation Problem



strategy O

The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

3+1 decomposition of the spacetime.

Evolve 12 variables (;;, K;;)

surface normal line

shift vector, i

Bl dt %oordinate constant line

with a choice of gauge condition. -
/ A" A'
>(t+dt) /

lapse function, ¢y — (y dt /

/

ﬁz&é 2(t)
/ 4

t = constant hypersurface

Maxwell egs.

ADM Einstein eq.

constraints

div E =4mp
div B=0

DjKji — DZtI"K = HJJl'

evolution egs.

| 4
“OE =rot B —
C C

1
-0;B = —rot E
c

8t%-j = —QNKU + D]NZ + DiNj,

O K;; = N( YR + wKK;;) —2NKyK', — D;D;N
+ (D;N™ K i + (D;N™) K, + N™ D, K — Ny A
— ka{Si; + 5vi(pr — trS)}




Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

e Many (too many) trials and errors, hard to find a definit recipe.

Blow up Blow up

ADM

error

BSSN

|

time

strategy 0:  Arnowitt-Deser-Misner (ADM) formulation

strategy 1:  Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
strategy 2:  Hyperbolic formulations

strategy 3:  “Asymptotically constrained” against a violation of constraints

By adding constraints in RHS, we can kill error-growing modes
= How can we understand the features systematically?




Goals of the Lecture

What is the guiding principle for
selecting evolution equations for
simulations in GR?

Why many groups use the BSSN
equations?

Are there an alternative formulation m ey ssus e wee expicn
better than the BSSN?



Summary up to here (1st half)

[Keyword 1] Formulation Problem
Although mathematically equivalent, different set of equations
shows different numerical stability.

[Keyword 2] ADM formulation
The starting formulation (Historically & Numerically).
Successes in 90s, but not for binary BH-BH /NS-NS problems.

[Keyword 3] BSSN formulation
New variables and gauge fixing to ADM, shows better stability.
The reason why it is better was not known at first.
Many simulation groups uses BSSN. Technical tips are accumulated.

[Keyword 4] hyperbolic formulations
Mathematical classification of PDE shows "well-posedness”, but its meaning
is limited.
Many versions of hyperbolic Einstein equations are available.
Some group try to show the advantage of BSSN using "hyperbolicity".
But are they really helpful in numerics?



Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

e "The essential improvement is in the process of replacing terms by the momentum
constraints’,

Alcubierre, et al, [PRD 62 (2000) 124011]

~

e [ is replaced by —0;7" where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

e [-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]
Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]

Some guesses:

e BSSN has a wider range of parameters that give us stable evolutions in von
Neumann's stability analysis. Miller, [gr-qc/0008017]

e The eigenvalues of BSSN cvolution equations has fewer “zero eigenvalues” than
those of ADM, and they conjectured that the instability can be caused by “zero

eigenvalues’ that violate “gauge mode”.
M. Alcubierre, et al, [PRD 62 (2000) 124011]
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so-called BSSN
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error

strategy 3‘ “Asymptotically Constrained” system /“Constraint Damping” system

Formulate a system which is “asymptotically constrained” against a violation of constraints

Constraint Surface as an Attractor

Constrained / Surface
(satisfies /Einstein's constraints)

Blow up

— Stabilize?

>

time

method 1: A-system (Brodbeck et al, 2000)

e Add aritificial force to reduce the violation of

constraints

e To be guaranteed if we apply the idea to a sym-
metric hyperbolic system.,

method 2: Adjusted system (Yoneda HS, 2000,
2001)

e We can control the violation of constraints by
adjusting constraints to EoM.

e Eigenvalue analysis of constraint propagation
equations may prodict the violation of error.

e This idea is applicable even if the system is not

symmetric hyperbolic. =
for the ADM/BSSN formulation, too!!




so-called BSSN
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ldea of \-system
Brodbeck, Frittelli, Hiibner and Reula, JMP40(99)909

We expect a system that is robust for controlling the violation of constraints

Recipe
1. Prepare a symmetric hyperbolic evolution system ou = Jou+ K

2. Introduce \ as an indicator of violation of constraint 9\ = aC — )\

which obeys dissipative eqs. of motion (a#£0,8>0)
: : u A 0 u
3. Take a set of (u, \) as dynamical variables ) (A) ~ (F 0) O, (A)
4. Modify evolution eqs so as to form p (u) B (A F) 5 (u)
a symmetric hyperbolic system W) AF o)

Remarks
e BFHR used a sym. hyp. formulation by Frittelli-Reula [PRL76(96)4667]

e The version for the Ashtekar formulation by HS-Yoneda [PRD60(99)101502]
for controlling the constraints or reality conditions or both.

e Succeeded in evolution of GW in planar spacetime using Ashtekar vars. [CQG18(2001)441]
e Do the recovered solutions represent true evolution? by Siebel-Hiibner [PRD64(2001)024021]

e The version for Z4 hyperbolic system by Gundlach-Calabrese-Hinder-MartinGarcia [CQG22(05)3767]
= Pretorius noticed the idea of " constraint damping” [PRL95(05)121101]



|dea of “Adjusted system” and Our Conjecture
CQG18 (2001) 441, PRD 63 (2001) 120419, CQG 19 (2002) 1027

General Procedure
1. prepare a set of evolution egs. Ou® = f(u®, Gus,---)

2. add constraints in RHS A = f(u, dyut,- ) +F(C* 9,C", - )

3. choose appropriate (C?, 9,C, - --)
to make the system stable evolution

How to specify F'(C*, 9,C",--+)?
4. prepare constraint propagation egs. 0,C = g(C*, 0,C", - - -)

5. and its adjusted version 0,C* = g(C*, 0,C°, - - ) +G(C, 0,C°, - )

6. Fourier transform and evaluate eigenvalues 9,C* = A(C) C*

————

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation egs.
If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more stable.




Example: the Maxwell equations

Yoneda HS, CQG 18 (2001) 441

Maxwell evolution equations.

&gEi = ceijkﬁjBk -+ PZ CE -+ Qz CB7 sym. hyp <~ PZ — Qz j Rz — Sz =0,
0,B; = —ce/*0.Ep+ R Cp+ S: Cp. strongly hyp < (P —S;)” +4R,Q; > 0,
o om0 Oy op mp, WK YD & (P S+ ARQ >0

Constraint propagation equations
0,Cp = (82P‘)CE + P&(a@CE) + (82Q&>CB + Qi(aiCB%
@CB = (6’LRZ>CE -+ RZ(&CE) + (@SZ)CB + 57(8103),
sym. hyp & Qi=R,
strongly hyp < (P — S;)? + 4R;Q; > 0,
weakly hyp & (P, — S;)* +4R:Q; >0
CAFs?
5 (OE) _ (@-Pé + Pk 0,Q +Q%) 9 (CE) N (P%ki Q?kz-) (CE> .7 (OE)
Cgp O;R'+ R'k; 0;S"+ S'k; Cpg R'k;, S'k; Cp ' Cg
= CAFs = (P'k; + S'k; £ \/(P'k; + S'k;)2 + A(Qk; Rik; — P'k;Sik;))/2

Therefore CAFs become negative-real when

Pk + Sk <0, and  QkREk;— PkS'k; <0



The Adjusted system (essentials):

Purpose: Control the violation of constraints by reformulating the system so as to have a
constrained surface an attractor.

Procedure: Add a particular combination of constraints to the evolution equations, and adjust
its multipliers.

Theoretical support: Eigenvalue analysis of the constraint propagation equations.
Advantages: Available even if the base system is not a symmetric hyperbolic.

Advantages: Keep the number of the variable same with the original system.

Conjecture on Constraint Amplification Factors (CAFSs):

(A) If CAF has a negative real-part (the constraints are forced to be diminished), then we see more
stable evolution than a system which has positive CAF.

(B) If CAF has a non-zero imaginary-part (the constraints are propagating away), then we see more
stable evolution than a system which has zero CAF.
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strategy 0| The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

3+1 decomposition of the spacetime. shift vector, Pt

- K surface normal line| .
Evolve 12 variables (%j A ) Bl dt %oordinate constant line

with a choice of gauge condition. -
/ A" A'
S(t+dt) /

lapse function, (f —» a dt /

Tt V4 o

A
/ t = constant hypersurface
Maxwell egs. ADM Einstein eq.
. div E = 47p OR + (trK)? — Ki; K7 = 2kpp + 2/

constraints : j

div B =0 DjKji — Dltl"K = IQJZ'

latE — rot B — 4_7Tj Oryij = —2NKij + D;N; + D;Nj,

. ¢ ¢ | 0;K;j=N(®R; +trKK;;) —2NK;K'. — D;D;N

evolution egs. o - .

1 + (DJN )sz + (DZN )ij + N DmKij — N’}/”A

OB =—rtE — ke Sy + 5%ij(pr — trS)}




The Standard ADM formulation (aka York 1978):

The fundamental dynamical variables are (v;;, K;;), the three-metric and extrinsic
curvature. The three-hypersurface X is foliated with gauge functions, (c, 3'), the
lapse and shift vector.

e The evolution equations:

(P)’t%]‘ = —QOzKZ'j + Dzﬁ] + Djﬁi,

81;[(2']' = (3)Rz'j + OZKKz'j — QQKikKkj _ DiDjOé
+(DiB") Ky + (D;3%) Kyi + 8" Di K
—87TGCU{SZ']' + (1/2)%’]’(011 — trS)},

where K = K%, and (3)Rij and D; denote three-dimensional Ricci curvature,
and a covariant derivative on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. HAPM — Gp 4 K2 — Kinij ~ 0,

momentum constr. M?DM = DjKjZ- — D;K =~ 0,

where GR =0) Ri..




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = B (0;H) + 2aKH — 2" (0;M;)
+Oyme) (29" = A" A M — 49 (9j0) M,
OM; = —(1/2)(8H) — (Bi2)H + F(O;,M;)
+aKM; — B (0ry) M + (087" M.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).

But this is NOT TRUE in NUMERICS....




Original ADM | The original construction by ADM uses the pair of (h;;, 7).

- 1
L = \/—gR=VhN[®R - K?+ K;;K"], where K;; = S Enhi
3 or 3 3
then 77 = — = \/E(K” — Kh"),
8hi]~
The Hamiltonian density gives us constraints and evolution egs.

H = why— L =Vh{NH(h,7) — 2N;M(h,7) + 2D;(h""*N;z")}
oM N

1
- OH. | 1N 1 N 1
Ol = — — —hN (S)Rw—*(g)Rh” A XY - mn 2 _ 9 (pin nj_i ij
s Shi VhN( 5 )+2\/ﬁ (Tmn T 27r) \/E(ﬂ' T ST )
+VhD'DIN — hiD™D,,N) + vVhD,,(h"Y2N"7'i) — 27 D, NJ)

Standard ADM (by York) ' NRists refer ADM as the one by York with a pair of (h;;, K;;).

(9th@~j = —QNKU + DJNZ + DZ'NJ',
0,Kij = N( PR+ KK;j) —2NKyK'; — D;D;N + (D;N™) Ky + (D;N™)Kp; + N™ Dy, K

In the process of converting, H was used, i.e. the standard ADM has already adjusted.




Adjusted ADM systems

PRD 63 (2001) 120419, CQG 19 (2002) 1027

We adjust the standard ADM system using constraints as:

Ovij = —2aK + ViB;+ V0, (1)
+PH + QY My + 0" (ViH) + ¢ (VM) (2)
OKy; = aRY +aK Ky — 20K K", — V V0 + (Vig" Ky, + (Vi85 Ky + 8"V K(3)
FRiH 4+ S* My + i (VieH) + 85 (VM) (4)

with constraint equations
H = R® 4+ K? - K;; K", (5)
M; = V,K’;, — VK. (6)

We can write the adjusted constraint propagation equations as

OM = (original terms) + H{™[(2)] + H;™0,[(2)] + Hy™"9:0;((2)] + H™[(4)],  (7)
ooM; = (original terms) + Mhmn[<2>] + Mgﬂm”é)j[@)] + Mgzmn[(4)] + M42‘7mn(9][(4)}(8)




3 Constraint propagation of ADM systems

3.1 Original ADM vs Standard ADM
0 the standard ADM
—1/4 the original ADM
e The constraint propagation eqs keep the first-order form (cf Frittelli, PRD55(97)5992):
H Ik —2ay/! H
% (M) B (—(1/2)04(% + R -8R O ) % (M) ' )
The eigenvalues of the characteristic matrix:
A= (8,68, 8"+ Ja2ll(1 + 4ky))

symmetric hyperbolic when xk; = 3/2

The hyperbolicity of (5): { strongly hyperbolic ~ when o~ (1 + 4k;) > 0

Try the adjustment R;; = kjay;; and other multiplier zero, where k1 = {

weakly hyperbolic when o~ (1 4+ 4k1) > 0

e On the Minkowskii background metric, the linear order terms of the Fourier-transformed
constraint propagation equations gives the eigenvalues

AL = (0,0, £y —E2(1 + 4k1)).

(two Os, two pure imaginary) for the standard ADM BETTER STABILITY
(four 0s) for the original ADM

That is, {



Comparisons of Adjusted ADM systems (Teukolsky wave)

3-dim. harmonic slice, periodic BC HS original Cactus/GR code
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Figure 1: Violation of Hamiltonian constraints versus time: Adjusted ADM systems applied for Teukolsky wave initial data evolution
with harmonic slicing, and with periodic boundary condition. Cactus/GR/evolveADMeq code was used. Grid = 243, Ax = (.25, iterative
Crank-Nicholson method.



4 Constraint propagations in spherically symmetric spacetime

4.1 The procedure

The discussion becomes clear if we expand the constraint C,, := (H, M;)" using vector harmonics.

C =3 (A"™(t,r)aim(8, ) + B" by, + C"" i + D" di, ) (1)
where we choose the basis of the vector harmonics as
Yim 0 0 0
S 0 _— Yim S r 0 g r 0
Im 0 » Ulm 0 » Llm l(l n 1) a@}ﬁm y Wim l(l n 1) _ﬁﬁgp}/lm
O O agp}/}m Sin e a@%m

The basis are normalized so that they satisfy
(Cs Gy = [ de [T CEC, 1" sin 06,
where 1" is Minkowskii metric and the asterisk denotes the complex conjugate. Therefore
Alm = (a%, C,), A= (a%, 0,C,), etc.

We also express these evolution equations using the Fourier expansion on the radial coordinate,

Alm = > Al e ete. (2)
So that we will be able to obtain the RHS of the evolution equations for (/All(?,?) (t), -, ﬁ%(t))T

in a homogeneous form.



4.2 Constraint propagations in Schwarzschild spacetime

1.

the standard Schwarzschild coordinate
2M dr?
ds* = —(1 — T)dt2 + W +r2d)?, (the standard expression)
. the isotropic coordinate, which is given by, r = (1 + M/27;4,)*7;s0:

1 — M/2r,, _ _ _
ds® = —(1 - M?2:¢so>2dt2 + (1 + QTzso)4[dT§SO + 2 dO?), (the isotropic expression)
the ingoing Eddington-Finkelstein (iEF) coordinate, by t;pp =t + 2M log(r — 2M) :

2M 4M 2M
ds* = —(1 — “)dt?pp + ——dtippdr + (1 + ——)dr* 4+ r*dQ? (the iEF expression)
r r r
. the Painlevé-Gullstrand (PG) coordinates,
2 M 2M
ds® = — (1 — —) dt5e + 2,| ———dtpg dr + dr* + r*dQ* (the PG expression)
r r

which is given by tpg =t + V8Mr — 2M log{ (\/r/2M + 1)/(r/2M — 1)}



Example 1: standard ADM vs original ADM (in Schwarzschild coordinate)
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Figure 1: Amplification factors (AFs, eigenvalues of homogenized constraint propagation equations) are shown for the standard
Schwarzschild coordinate, with (a) no adjustments, i.e., standard ADM, (b) original ADM (kr = —1/4). The solid lines and
the dotted lines with circles are real parts and imaginary parts, respectively. They are four lines each, but actually the two

eigenvalues are zero for all cases. Plotting range is 2 < r < 20 using Schwarzschild radial coordinate. We set £k = 1,1 = 2, and
m = 2 throughout the article.

Orvij = —2akK;+ Vb + V0,
0K; = aRY +aKK;j — 20K K", — V,V,a+ (Vi) Ky + (V8" K + 8V K + kpav H,



Example 2: Detweiler-type adjusted (in Schwarzschild coord.)
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Figure 2: Amplification factors of the standard Schwarzschild coordinate, with Detweiler type adjustments. Multipliers used in
the plot are (b) k;, = +1/2, and (c¢) Kk, = —1/2.

Oyyij = (original terms) + P;/’H.
0, K;; = (original terms) + R, ;/H + Skz‘,jMIg - s"’lijw,f/\/u),
where P, = —rkpa’y;;, Rij= ko (K — (1/3)K7;),
S*ij = kpa’3(0u)df) — (Ba)yy™], sMij = ka0 — (1/3)7in ],



Detweller’s criteria vs Qur criteria

e Detweiler calculated the L2 norm of the constraints, C',, over the 3-hypersurface and imposed

its negative definiteness of its evolution,
Detweiler's criteria < (%/ZC’?M dVv <0,
(0%

This is rewritten by supposing the constraint propagation to be 0,C, = Aaﬁég in the Fourier
components,

&0 /lZCA'aéa dV = /ZA&ﬁCA'géa -+ C’&Aaﬁég dV < 0, V non zero C’a

& eigenvalues of (A + AT) are all negative for Vk.

e Our criteria is that the eigenvalues of A are all negative. Therefore,

Our criteria © Detweiller's criteria

e We remark that Detweiler's truncations on higher order terms in C-norm corresponds our
perturbative analysis, both based on the idea that the deviations from constraint surface (the
errors expressed non-zero constraint value) are initially small.



Constraint propagation of ADM systems

(2) Detweiler’s system

Detweiler's modification to ADM [PRD35(87)1095] can be realized in our notation as:
Py = —La’yy,
Rij = La’(Kj; — (1/3)Kv),
Sfj = Lozz[S(@(iozﬁf) — (éboz)%ﬂkl],
Sf} = La3[25@5§) — (1/3)7:9™), and else zero, where L is a constant.
e This adjustment does not make constraint propagation equation in the first order form, so
that we can not discuss the hyperbolicity nor the characteristic speed of the constraints.

e For the Minkowskii background spacetime, the adjusted constraint propagation equations
with above choice of multiplier become

OH = —2(0;M;)+4L(0;0;/H),
OM; = —(1/2)(0/H) + (L/2)(0k0rM;) + (L/6)(0:0pMy).
Constraint Amp. Factors (the eigenvalues of their Fourier expression) are

Al = (—(L/2)k*(multiplicity 2), —(TL/3)k* & (1/3)\/k2(=9 + 25L2k2).)

This indicates negative real eigenvalues if we chose small positive L.



Example 3: standard ADM (in isotropic/iEF coord.)
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Figure 3: Comparison of amplification factors between different coordinate expressions for the standard ADM formulation (i.e.
no adjustments). Fig. (a) is for the isotropic coordinate (1), and the plotting range is 1/2 < ry,. Fig. (b) is for the iEF
coordinate (1) and we plot lines on the ¢ = 0 slice for each expression. The solid four lines and the dotted four lines with circles
are real parts and imaginary parts, respectively.



Example 4:
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Figure 4: Similar comparison for Detweiler adjustments. xk;, = +1/2 for all plots.



“Einstein equations” are time-reversal invariant. So ...

Why all negative amplification factors (AFs) are available?

Explanation by the time-reversal invariance (TRI)

e the adjustment of the system I,

adjust term to @Kij = k1 y;
S )

~—

preserves TRI. ... so the AFs remain zero (unchange).

e the adjustment by (a part of) Detweiler

adjust term to ?L%j =—L a1

—~~ -
(=) () (+) (1) (+)
violates TRI. ... so the AFs can become negative.

Therefore

We can break the time-reversal invariant feature of the “ADM equations”.




Adjusted ADM systems

PRD 63 (2001) 120419, CQG 19 (2002) 1027

We adjust the standard ADM system using constraints as:
Orvij = —2aK;;+ V.iB; + V03, (
+PiH + Q My + 1"y (ViH) + ¢ (ViMy), (
0K, = aRY +aKK;; — 20K K" — ViVja + (V685 Ky, + (V85 Ky + BV K (3
FRiH A+ S* My + 1 (VieH) + sM5(ViMy), (
with constraint equations

H = R® 4+ K? - K;; K, (5)
Mi = VjKji — VZK (6)

We can write the adjusted constraint propagation equations as

O/H = (original terms) + H"™"[(2)] + H;m”@[@)] + ngm”aiaj[@)] + H;fm[(ll)], (7)
oM, = (original terms) + My;""[(2)] + Mo/ 0;[(2)] + M3,""[(4)] + My 0;[(4)](8)



Table 3. List of adjustments we tested in the Schwarzschild spacetime. The column of adjustments are nonzero multipliers in terms of (13) and (14). The column ‘Ist?” and “TRS’ are
the same as in table 1. The effects to amplification factors (when k > 0) are commented for each coordinate system and for real/imaginary parts of AFs, respectively. The ‘N/A’ means
that there is no effect due to the coordinate properties; ‘not apparent’ means the adjustment does not change the AFs effectively according to our conjecture; ‘enl./red./min.” means
enlarge/reduce/minimize, and ‘Pos./Neg.’ means positive/negative, respectively. These judgements are made at the » ~ O (10M) region on their r = O slice.

Noin Schwarzschild/isotropic coordinates iEF/PG coordinates
No table 1 Adjustment Ist?  TRS  Real Imaginary Real Imaginary
0 0 - no adjustments yes - - - - -
P-1 2-P P;j —krady; i no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
pP-2 3 P;j —KLQYij no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
P-3 - Pij P, = —kor Py = —ka no no slightly enl.Neg. not apparent  slightly enl.Neg. not apparent
P-4 - Pij —KYij no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
P-5 - Pij —KVyr no no red. Pos./enl.Neg. not apparent  red.Pos./enl.Neg. not apparent
Q-1 - Q",-j K()lﬂk)/ij no no N/A N/A Kk ~ 1.35 min. vals.  not apparent
Q-2 - ok; i Q' =xk no yes red. abs vals. not apparent  red. abs vals. not apparent
Q-3 - Qk,-j Q"ij = «kyijor Q" = kay;j no yes red. abs vals. not apparent  enl.Neg. enl. vals.
Q-4 - ok, i Q" vy = KVyr no yes red. abs vals. not apparent  red. abs vals. not apparent
R-1 1 Rij KFAYij yes yes kp = —1/4 min. abs vals. kp = —1/4 min. vals.
R-2 4 Rij Ry = —kpaor Ry = —ky, yes no not apparent not apparent  red.Pos./enl.Neg. enl. vals.
R-3 - Rij R,y = —KYrr yes no enl. vals. not apparent  red.Pos./enl.Neg. enl. vals.
S-1 2-S sk, 1 KLOZZ[3(3(,'O[)5§) — ()i jy“ ] yes no not apparent not apparent  not apparent not apparent
S-2 - sk; 1 way® @y, i) yes no makes 2 Neg. not apparent  makes 2 Neg. not apparent
p-1 - pk,-j plij = —Kkay;j no no red. Pos. red. vals. red. Pos. enl. vals.
p-2 - pk,-j P =Kka no no red. Pos. red. vals. red.Pos/enl.Neg. enl. vals.
p-3 - p"ij P = KAy, no no makes 2 Neg. enl. vals. red. Pos. vals. red. vals.
q-1 - q"l,-J q"i; = Kkay;; no no K = 1/2 min. vals.  red. vals. not apparent enl. vals.
q-2 - g~ i 4" ==Ky, no yes red. abs vals. not apparent  not apparent not apparent
-1 - rk; i r'i = Kkayij no yes not apparent not apparent  not apparent enl. vals.
r-2 - r"ij ' = —ka no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
r-3 - rk,-j e = =KoYy no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
s-1 2-s sk’,-j KLoz3[(Sé‘i8§.) — (1/3)yij yk no no makes 4 Neg. not apparent ~ makes 4 Neg. not apparent
s-2 - skl i s = —Kkayij no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.
s-3 - s"'[,-j S = —KA Yy no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.

7101
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Numerical Tests (method)

- Cactus-based original “GR” code
http://www.cactuscode.org/
[CactusBase+CactusPUGH+GR]

- 3+1dim, linear wave evolution

(Teukolsky wave)

- harmonic slice

- periodic boundary, [-3,+3]

- iterative Crank-Nicholson method
- 1273, 2473, 4873, 963

Towards standard testbeds for numerical relativity
Mexico Numerical Relativity Workshop 2002 Participants
CQG 21 (2004) 589-613



error (norm of Hamiltonian constraint)

Numerical Tests (Detweiler-type)

at%'j = —20Ky + Vz'ﬁj + V]ﬁzf — fi'fl,(,'l’gf}’gj H
OcKij = O‘Rz('?) + aK Ky — 20Ky K" — V;Via + (Vi) Kij + (V8" Ky + B Vi Ky

107

102 L

103

10 L
10° L

10

+rpo(Ky — (1/3)Ky;)) H+ K La?[.‘f)’(a(@a)df) — (D)™ My

+KR
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0
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Numerical Tests (Simplified Detweiler)

error (norm of Hamiltonian constraint)

at%’j
atK@«j

10°

10

102

10° §

10™
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Numerical Tests (Detweiler, k-adjust)

Orvi; = —2aKj+ VB + V6 — kra’yi; H

0Ky = (Z}’R,(j) + aK Ky — 2(‘v[(,-k[\’"‘.- — V.V o+ ( V.65 Ky -+ V‘,,-,Hk) Ky 40V K;
Fop o K;; — (1/3)K7;;) H+ ko | (D)o ’ — (O« _)“,,,‘j-v""] M,
+rpa’[0405 — (1/3)7i7™ (VaMy)

ADM (standard)
Detweiler k=0.05
2473 zero
10-1 S —— L —— I Detweiler k=0.05 cut 10/\{'4} 10-1 all
F Detweiler k=0.05 cut 10°{-5}
= . cut4
'% - ‘ i cuts
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Numerical Tests (Detweiler, k-adjust)

Orvi; = —2aKj+ VB + V6 — kra’yi; H

0Ky = ('}’R(;) + aK Ky — 20K K" — V,Va + (V,-[}"')[\",fj +(V,;85 K + BV K
FeLa®(Kij — (1/3)Ki;) H + kra®[3(00) () — (D )y 7™ My
"I*H./_(‘v’;[()(,()]) — (1/3)7Y™ (VM)
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Numerical Tests (Detweiler, k-adjust)

Orvij = —2aKi;+ VB + V6, — K Lo, i H
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APCTP Winter School, January 25-26, 2008

Formulation Problem in Numerical Relativity

Hisaaki Shinkai (Osaka Institute of Technology, Japan)
tI7t ol Sl Abor7

1. Introduction
2. The Standard Approach to Numerical Relativity
ADM /BSSN /hyperbolic formulations
3. Robust system for Constraint Violation
Adjusted systems
Adjusted ADM system -- why the standard ADM brows up?
Adjusted BSSN system -- should be better than BSSN
4. Outlook



strategy 1| Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation

T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)
M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995)
T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)

The popular approach. Nakamura’'s idea in 1980s.
BSSN is a tricky nickname. BS (1999) introduced a paper of SN (1995).

e define new set of variables (¢, ’yij,K,Aij,fi), instead of the ADM'’s (,;,/K;) where

Yij = €O, Ajj = e (K — (1/3)y;,K), [ =I5k,

and impose det;; = 1 during the evolutions.

e The set of evolution equations become

(0= Ls)p = —(1/6)ak,
(0 = Loy = —2aAy,
0y — Lo)K = aAj ;A7 4+ (1/3)aKk? — 47 (V;V;a),
(0 — Ls)Ay = —e (V;V,a)"F + 6_4¢QRS’) — e a(1/3)y,;R® + a(K A;j; — 24;,A%))
O = —2(0;0)AY — (4/3)a(0;K)7" + 120 A7(9;¢) — 20A7 (0;7'F) — 201", A7 17"
—0; (B A — A (0B') — A (0) + (2/3)77 (018"))

Momentum constraint was used in ["-eq.



e Calculate Riemann tensor as

Ry = Ot — o}, + Tk — Tk = Ry, + R?, -
f?f; = —2D;D;¢ — 2g;;D' D¢ +~4(Diib)ng¢) — 4§¢j~(Dl~¢)(Dz¢) o
Rij = —(1/2)§" 0umij + G105 T + TFTijpn + 20" Ty + 9™ T D

e Constraints are H, M.
But thre are additional ones, G', A, S.

Hamiltonian and the momentum constraint equations
HBSSN _ RBSSN+K2 . KZjKljy
BSSN ADM
Mi = Ml 3
Additionally, we regard the following three as the constraints:
A = Ay,
S = ~v—1,

Why BSSN better than ADM?
Is the BSSN best? Are there any alternatives?



Constraints in BSSN system
The normal Hamiltonian and momentum constraints

HBSSN _ RBSSN+K2 _KZszja (1)
MBSSN _ MADM (2)

Additionally, we regard the following three as the constraints:
G' = I'" =5, (3)
A = A7, (4)
S - i/ T 17 (5)

Adjustments in evolution equations

0fp = 0o+ (1/6)ad — (1/12)771(9;S) 7, (6)
0y = 0y — (2/3)ad A+ (1/3)7 (0kS)8 sy, (7)
OPK = 07K — (2/3)aKA — aH""" +ae 7(D,;G7), (8)

+ae™9,1(0)G") — (1/3)ae™(0:G")

+(1/3) (k87757 1(9;S) + (5/6)8"3 257 (0xS)(9;S) +
+(1/3)8" 710,47 (9S).

O Ajj = O Ay + ((1/3)aiy K — (2/3)adiy) A+ ae” ¥ ((1/2)(07;) — (1/6)7:7(9:8))G"

(9)

O = 9T — ((2/3)(9j0)7”" + (2/3)a(0;7") + (1/3)047‘””7 1(0;8) — 4077 (05)) A
—(2/3)07"(9;A) + 2077 M; — (1/2)(08)7571(0;8) +

(1/6)(9;8")777 1 (0kS)
(1/2)8"51(077)(9;S)
(10)




A Full

aBS

set of BSSN constraint propagation eqs.

HBS All A12 A13 A14 A15 HBS
M, —(1/3)(0ia) + (1/6)8;, oK Ay 0 Ass M,
G | = 0 ay? 0 Asy Ass G’
S 0 0 0 B45S)  —2a7 S
A 0 0 0 0 aK + 3%0, A

= +(2/3)aK + (2/3)aA + B0,

= —46_4“°a(8k50)'~ykj - 26_4"0(61601)’3/]%

= —20e Y A¥,0), — ae™(0;A1)AM — e (9;0) A — e 3500, — (1/2)e % 3%471(0,8) 0
+(1/6)e™**571(0;8") (0S) — (2/3)e™ " (0uB")0;

= 2ae 3715 lk(al<p)Aak+(1/2)ae 3719, A)7 lk8k+(1/2) A7 H0,)3 " ADy, + (1/2)e 371 3m3%0,.0,0,

o8y e 553+ 405 (0,900 + (12 BB
+(3/4)e 4‘”_35’ FH(0:8)(9;8)0h — (3/4)e™ 772 B'(:57%)(9;8)h + (1/3)e™ 771537 (9;8") 0, 0%
—(5/12)e” 57230 8) (0:8)0; + (1/3)e™ 71 (r77)(9;5°)0; — (1/6)e %7 o T (OkOB")Orm

= (4/9)aKA — (8/9)aK? + (4/3)ae™*(0:0;0)77 + (8/3)ae™*?(Op) (OF™) + ce™#(0;577%) 0,
+8ae 3% (0,0)0), + ae**37%0,0), 4+ 8¢ (1) (Orp) A 4 e (0,0) (kF*) + 2¢7 (1) 7 O
+e” 4“””’“(81(%04)

= ae 3 (04p) (0ymi) — (1/2)ae” ¥ THAM (9;7ms)

(1/2)046 5 (D405 mi) + (1/2)ae” 5 72(8:8)(9;8) — (1/4)ae™ ¥ (0Am) (0;7™) + ae™ 5" (94)7ji0m
+ae™%(9;0)0; — (1/2)ae T 0AM3,,0,, + ae™1%5 mkfzﬂﬁ + (1/2)ae**3%5,,0,.0,
+(1/2)e™ 5" (05im) (D) + (1/2)e™9(0;0)0; + (1/2)e™ 5™ 353 (0 ) O

= —A%(0pa) + (1/9)(0;0) K + (4/9)(9;K) 4 (1/9)a K d; — e AF ;0

(1/2)ﬂk F208)0k — (1/2)(0B)F* 5 0k + (1/3) (0873 Ok — (1/2)8'F™ (OFmn)T™*5 " O

+(1/2) %5571 0,04
= —(Op)y™ +4047 *(Op) — Y™ Ok




BSSNN Constraint propagation analysis in flat spacetime

e The set of the constraint propagation equations, d;(H?*N, M;,G?, A, S)T ?

e For the flat background metric g, =

atm»@ -

at(l iy _2(1 ~2]

O\VK =

o =

—(1/6)VK + (1/6)x HA
(2/3)50 U 5;\NA
—(0;0,") + k10, Uj—/{

813(1)14@]' _ 1)(RBSSN TF 1)<DD CV

1)7_(BSSN

Fy R 410k ( Ck

~(4/3)(0VK) — (2/3)¢, (D 1~A)+2"‘3F2( )Mz'

We express the adjustements as

N, the first order perturbation equations of (6)-(10):

1/3 /’{A25m 8k: Ck

Radj = (’@p) Ry, KK1, KK2, KA1, KA2, Ry K/f‘Q)'

e Constraint propagation equations at the first order in the flat spacetime:

at(l)i_(BSSN

= ("37 - (2/3)"%1 -
;= (_(2/3)'%[(1 + (1/2)/@41 —

+(1/2)k 110,02 G + ((2/3)k k2 — (1/2)) O,
= 2y M+ (—(2/3)kp, —

— _2,%(12/47

= (KA1 — KA2)

(91).

(1/3)r5)(012A),

(4/3)kp +2) ;0 A + 2(k5y — 1)(01M;),

(1/3)ka2 + (1/2))
(1jBSSN

0,0{1G7

A~~~
—_ = =
=~ W N =

 — —

Ot

(16)



Effect of adjustments

No. Constraints (number of components) Amplification Factors (AFs)
H(1) M;(3) G (3 A(l) S (1) | in Minkowskii background

0. standard ADM use use - - - (0,0,3, )

1.  BSSN no adjustment | use use use use use (0,0,0,0,0,0,0,, )

2. the BSSN uset+adj usetadj use+adj usetadj usetadj| (0,0,0,5, 3,83, S, S)

3.  no S adjustment use+adj use+adj use+ad] use+ad] use no difference in flat background

4.  no A adjustment use+adj use+adj use+ad] use  usetadj | (0,0,0,9,5,3, 9, S, Q)

5.  no G’ adjustment use+adj use+ad] use usetadj use+adj || (0,0,0,0, 0 0 O )

6. no M, adjustment | use+ad] use usetadj use+adj use+adj | (0,0,0,0,0,0,0, 3%) Growing modes!

7.  no H adjustment use  usetadj use+adj usetadj use+adj| (0,0,0,9,5,3, 9,9, Q)

8. ignoreG’, A, S use+adj use+tad] - - - (0,0,0,0)

9. ignore G', A use+adj usetadj use+ad; - - 0,%,9,9,9,9,9)

10. ignore G’ use+adj use+ad] - usetadj use+adj || (0,0,0,0,0,0)

11. ignore A use+adj use+adj use+ad] - use+adj | (0,0,3,S, 3,9, S, Q)

12. ignore S uset+adj use+adj use+adj use+ad] - 0,0,3,95,3, 9, S, 9)




New Proposals :: Improved (adjusted) BSSN systems

TRS breaking adjustments

In order to break time reversal symmetry (TRS) of the evolution egs, to adjust (9tgz5,(9fyij,8tf‘i using S, G', or to adjust

(9tK, &gAij using .A

oo = (9tBS¢ + li(/)HOéHBS + H/(/)gOéDkgk + li(/)SlOéS + li(/)SQOéDijS
OFi; = 0P + ko HP® + ksg1adi; DiGF + kagoadniDyGr + kss1095S + ksseaDiD;S
0K = 0P K + ket (DjMy) + kg gy A + iy ,aD? DA

OAij = O Aij+ ko (D" M) + manea(DaMy) + ki 11055A + i ya DDA
oIt = oPST + /{fH&DiHBS + /{fglagi + /if@oz[?j[?jgi + /{f%abif)jgj + /{fsozDiHBs

or in the flat background

0PI = 4 rgHPS 4 kg OGR4 ks NS - Fiys20;0,1S

OAPTIE, —= 4 rag0i IHPY 4 k5610508168 + (1/2)ka60(9YG + 011G + 151018 + kx520:0,1S
OPME = gm0 M+ e A kg ,0,0{0A

OPPIVA = +rann 00 My + (1/2) ka2 (0:M + ;M) + 5 1,01 A+ iy 1,0i0;.A

0PN = rip O D 4 kg MG+ 005016+ gy 0i0{G + ki sONS



Constraint Amplification Factors with each adjustment

adjustment CAFs diag? effect of the adjustment
o KenaH (0,0, £v/—k2(%3), 8k gpik?) no | rgr < 0 makes 1 Neg.
0o  Keg aDRGF (0,0, v/ —k2(x2), long expressions) yes | kgg < 0 makes 2 Neg. 1 Pos.
Oyi;  Ksp oY H (0,0, £v/—k2(%3), (3/2)kspk?) yes | ksp < 0 makes 1 Neg. Case (B)
Oi;  Ksgr i DiG" (0,0, £+ —k?(%2), long expressions) yes | kg1 > 0 makes 1 Neg.
~ 2, 2(_ 2
Oij  Ksg2 O@k(iDj)gk (0,0, (1/4)k _KJVQ? + \/k (-1+k K7g2/16)(*2)’ yes | kyga < 0 makes 6 Neg. 1 Pos. Case (E1)
long expressions)
&ﬁ,;j K381 Oéﬁ/jjg? (0, 0, +v —]{72(*3), 3I€§31) no Rays1 < 0 makes 1 Neg
&ﬁij K382 OéD,;DjS (0, 0, :|:\/ —]{32(*3), —K§52k2) no K482 > (0 makes 1 Neg
il (0,0,0,iv _kQ(*Q)a

oK (D, < 0 makes 2 Neg.

W R @ DM | e e (1/3)/k2(=9 + k2K p) RO | Bra s TRakes 2 Jeg
@flij KAMI a’yij(ﬁkj\/lk) (0,0, £v/—k2(%3), =k ar1k?) yes | Kanm > 0 makes 1 Neg.

_ . 2 2(_ 2
OAi;  Kamz a(DMy) (0,0, -k KAM2/4 + \/k (=14 K?karmz/16)(x2) , yes | Kanme > 0 makes 7 Neg Case (D)
long expressions)

(‘Z{L;j RKAAl Oé’?ij./fl (0 0 +v —]{32(*3) 3/€AA1) yes Raa < 0 makes 1 Neg
OtAij  KaazaD;D;A (0,0, £ —k2(%3), —k aa2k?) yes | ka4 > 0 makes 1 Neg.
oI Kpy aD'"H (0,0, £V —k2(%3), —k au2k?) no | kg, > 0 makes 1 Neg.
(9th" Kig1 agf ] (0,0, (1/2)’<¢Fg1 +,/—k*+ Iif,gl(*Z) long.) yes | kpg; < 0 makes 6 Neg. 1 Pos. Case (E2)
8{"’ Kfgs a?ﬂ?jgz (0,0, =(1/2)kpgy £ /—k* + “fg2( 2) , long.) yes | Kpgo > 0 makes 2 Neg. 1 Pos.
O KpgsaD'D;G (0,0, =(1/2)kpgg £ /—K? + ngg( 2) , long.) yes | Kpgs > 0 makes 2 Neg. 1 Pos.

Yoneda-HS, PRD66 (2002) 124003



An Evolution of Adjusted BSSN Formulation
by Yo-Baumgarte-Shapiro, PRD 66 (2002) 084026
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Kerr-Schild BH (0.9 J/M), excision with cube, 1+ log-lapse, ['-driver shift.

O = ()4 I, -+ )G x=2/3 for (A4)-(A8)

8{%]' = ( . ) - IiOz’%jH k=0.1~0.2 for (A5), (AG) and (A8)
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Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

e "The essential improvement is in the process of replacing terms by the momentum
constraints’

Alcubierre, et al, [PRD 62 (2000) 124011]

o I is replaced by —9,4" where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

~

e [-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]
Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]



Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

This is because A-violation affects to all other constraint violations.

e "The essential improvement is in the process of replacing terms by the momentum
constraints’
Alcubierre, et al, [PRD 62 (2000) 124011]
This is because M-replacement in ['" equation kills the positive real eigenvalues
of CAFs. eigenvalues

o I is replaced by —9,4" where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]
This is because G-violation affects to H, M -violation constraint violations.

e [-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]
Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]
No doubt about this.



Numerical Experiments of Adjusted BSSN Systems

Kenta Kiuchi  Waseda University
AN X EREiEEHXF BIPE
kiuchi@gravity.phys.waseda.ac. jp

Hisa-aki Shinkai Osaka Institute of Technology
HEEHFHE KRIEXRF BHREAFH

shinkai@is.oit.ac. jp

e BSSN vs adjusted BSSN Numerical tests

e gauge-wave, linear wave, and Gowdy-wave tests, proposed by the Mexico workshop 2002
e 3 adjusted BSSN systems.
e Work as Expected

— When the original BSSN system already shows satisfactory good evolutions (e.g., linear wave test),
the adjusted versions also coincide with those evolutions.

— For some cases (e.g., gauge-wave or Gowdy-wave tests) the simulations using the adjusted systems
last 10 times longer than the standard BSSN.

arXiv:0711.3575, to be published in Phys. Rev. D. (2008)



Adjusted BSSN systems; we tested

from the proposals in Yoneda & HS, Phys. Rev. D66 (2002) 124003
1. A-equation with the momentum constraint:
8tflij = @Bfll-j + &Aaﬁ(i/\/lj), (1)
with k4 > 0 (predicted from the eigenvalue analysis).
2. v-equation with G constraint:
Oy = 0P 3i; + ko DyG", (2)
with k5 < 0.
3. [-equation with G constraint:
O = OPT" + kraG'. (3)

with Kp < 0.



Numerical Testbed Models A: Gauge-wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589
The trivial Minkowski space-time, but time-dependent tilded slice.
ds* = —Hdt* + Hdz? + dy* + d2°,

H_H(x_t)—l—Asin(%‘l_t)),

Parameters:
e Gauge-wave parameters: d = 1 and A = 1072
e Simulation domain: x€[—0.5,0.5, y =2 =10
o Grid: 2’ = —0.5+ (n — )dx with n =1, - 50p, where dz = 1/(50p) with p = 2,4,8
e Time step: dt = 0.25dx
e Periodic boundary condition in  direction
e Gauge conditions: d,a = —a’K, (3 =0.

The 1D simulation is carried out for a T = 1000 crossing-time or until the code crashes, where one
crossing-time is defined by the length of the simulation domain.



Error evaluation methods

It should be emphasized that the adjustment effect has two meanings, improvement of stability and of
accuracy. Even if a simulation is stable, it does not imply that the result is accurate.

e We judge the stability of the evolution by monitoring the L2 norm of each constraint,

[10C] |2t Z (t:2,y, 2)

xyz

where N is the total number of grid points,

e We judge the accuracy by the difference of the metric components g;;(t; z,y, z) from the exact

solution ggjxad) (t; .y, 2),

1 exac 2
ARCE \/NZ (9 — o)’

L,Y,%



A.1 The plain BSSN system
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FIG. 1: The one-dimensional gauge-wave test with the plain BSSN system. The L2 norm of H and M., rescaled by p?/4, are plotted with a function of the crossing-time. The
amplitude of the wave is A = 0.01. The loss of convergence at the early time, near the 20 crossing-time, can be seen, and it will produce the blow-ups of the calculation in the
end.

e The poor performance of the plain BSSN system has been reported.
Jansen, Bruegmann, & Tichy, PRD 74 (2006) 084022.

e The 4th-order finite differencing scheme improves the results.
Zlochower, Baker, Campanelli, & Lousto, PRD 72 (2005) 024021.



A.2 Adjusted BSSN with A-equation

0.1 T T T T T 0.1 g T T T T T
2 F p=2 -
: _2 : p=4 7777777
001 F pog / L p=8 —
'_' E = ] = u - i 1
= F p=8 —— = 0.01 3 e g
R | =
(@] - o
- 9  0.001F -
le-04 .
1e-05 - 1 1 1 1 1 ] 1e-04 1 1 1 1 !
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
T T

FIG. 2: The one-dimensional gauge-wave test with the adjusted BSSN system in the A-equation (1). The L2 norm of H and M., rescaled by p>/4, are plotted with a function
of the crossing-time. The wave parameter is the same as with Fig. 1, and the adjustment parameter x4 is set to k4 = 0.005. We see the higher resolution runs show convergence
longer, i.e., the 300 crossing-time in H and the 200 crossing-time in M, with p = 4 and 8 runs. All runs can stably evolve up to the 1000 crossing-time.

e We found that the simulation continues 10 times longer.
e Convergence behaviors are apparently improved than those of the plain BSSN.

e However, growth of the error in later time at higher resolution.

3 o 3 _ 9 3 3 By
8tAij = —¢ 4 [DiDjOt + O{Rij]TF + OtKAij — QOéAikAkj + @ﬂkAkj + 8jﬁkz4ki — g@kﬁkAij + ﬁkﬁkAij—i—F&AOzD(iMj)



A.4 Evaluation of Accuracy

e L2 norm of the error in 7,,, (4), with the function of time.

e The error is induced by distortion of the wave; the both phase and amplitude errors.
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FIG. 4: Evaluation of the accuracy of the one-dimensional gauge-wave testbed. Lines show the plain BSSN, the adjusted BSSN with A-equation, and with [-equation. (a) The
L2 norm of the error in 7.5, using (4). (b) A snapshot of the exact and numerical solution at 7' = 100.



Numerical Testbed Models B: Linear wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589

Check the ability of handling a travelling gravitational wave.
ds®* = —dt* +dx® + (1 + b)dy* + (1 — b)d=?,

Parameters:
e Linear wave parameters: d =1 and A = 1078
e Simulation domain: z€[—0.5,0.5], y =0, z=0
o Grid: 2’ = —0.5+ (n — §)dz with n =1, ---50p, where dz = 1/(50p) with p = 2,4,8
e Time step: dt = 0.25dx
e Periodic boundary condition in  direction
e Gauge conditions: o = 1 and 3' =0

The 1D simulation is carried out for a I" = 1000 crossing-time or until the code crashes.



Numerical Results B: Linear Wave Test
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Snapshot of errors with the exact solution for the Linear Wave testbed with the plain
Snapshots of the one-dimensional linear wave at different resolutions with the plain ~ BSSN system and the adjusted BSSN system with the A equation at 7" = 500. The
BSSN system at the simulation time 500 crossing-time. We see there exists phase  highest resolution p = 8 is used in both runs. The difference between the plain and
error, but they are convergent away at higher resolution runs. the adjusted BSSN system with the A equation is indistinguishable. Note that the
maximum amplitude is set to be 1078 in this problem.

e The linear wave testbed does not produce a significant constraint violation.

e The plain BSSN and adjusted BSSN results are indistinguishable.
This is because the adjusted terms of the equations are small due to the small violations of constraints.



Numerical Testbed Models C: Collapsing polarized Gowdy-wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589
Check the formulation in a strong field context using the polarized Gowdy metric.
ds? = t V2N (—di? + d2?) + t(eFdx? + e Tdy?).
P = Jy(2mt) cos(2mz),
A = —2mtJy(2mt)J(27t) cos*(2mz) + 27t [ J; (2mt) + JE(27t)]
1
—5[(27)2[J3(27r) + J2(2m)] — 27 Jo(2m) Jy(27)],

where J,, is the Bessel function.
Parameters:

e Perform the evolution in the collapsing (i.e. backward in time) direction.

e Simulation domain: z € [—0.5,0.5], v =y =0

o Grid: 2 =—0.5+ (n — £)dz with n = 1,---50p, where dz = 1/(50p) with p = 2,4,8
e Time step: dt = 0.25dz

e Periodic boundary condition in z-direction

e Gauge conditions: the harmonic slicing O,a = —a?K, [('=0.and 3 =0

e Set the initial lapse function is 1, using coordinate transformation.

The 1D simulation is carried out for a I" = 1000 crossing-time or until the code crashes.



C.1 The plain BSSN
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FIG. 5: Collapsing polarized Gowdy-wave test with the plain BSSN system. The L2 norm of H and M., rescaled by p? /4, are plotted with a function of the crossing-time.
(Simulation proceeds backwards from ¢t = 0.) We see almost perfect overlap for the initial 100 crossing-time, and the higher resolution runs crash earlier. This result is quite
similar to those achieved with the Cactus BSSN code, reported by [? ].

e Our result shows similar crashing time with that of Cactus BSSN code.

Alcubierre et al. CQG 21, 589 (2004)

e Higher order differencing scheme with Kreiss-Oliger dissipation term improves the results.

Zlochower, Baker, Campanelli & Lousto, PRD 72, 024021 (2005)



C.2 Adjusted BSSN with A-equation
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FIG. 6: Collapsing polarized Gowdy-wave test with the adjusted BSSN system in the fi-equation (1), with k4 = —0.001. The style is the same as in Fig. 5 and note that both
constraints are normalized by p?/4. We see almost perfect overlap for the initial 1000 crossing-time in both constraint equations, H and M, even for the highest resolution run.

e Adjustment extends the life-time of the simulation 10 times longer.

e Almost perfect convergence upto ¢t = 1000t for both 'H and M, while we find oscillations in M.,
later time.

N L N N 9 N N 5
8tAij = —¢ 4 [DiDjOt + O{Rij]TF + OtKAij — QOzAikAkj + @ﬂkAkj + 8jﬁkAki — gé?kﬁ’“Aij + ﬁkakAij+/€AaD(iMj)



C.3 Adjusted BSSN with 4-equation
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FIG. 7: Collapsing polarized Gowdy-wave test with the adjusted BSSN system in the 4-equation (2), with k5 = 0.000025. The figure style is the same as Figure 5. Note the
almost perfect overlap for 200 crossing-time in the both the Hamiltonian and Momentum constraint and the p = 2 run can evolve stably for 1000 crossing-time.

e Almost perfect convergence up to t = 200t.,,ss in both H and M.
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C.4 Adjustment works for Accuracy

Error of 7., to the exact solution normalized by ~...

e Accurate Evolution < Error < 1 %.
(Zlochower, et al., PRD72 (2005) 024021 )

the Plain BSSN = ¢t = 200,455
adjusted BSSN A-eq ~ t = 1000¢ 055
adjusted BSSN 7-eq ~ t = 400t 05
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Comparisons of systems in the collapsing polarized Gowdy-wave test.
The L2 norm of the error in .., rescaled by the L2 norm of .., for the
plain BSSN, adjusted BSSN with A-equation, and with 4-equation are
shown. The highest resolution run, p = 8, is depicted for the plots. We
can conclude that the adjustments make longer accurate runs available.
Note that the evolution is backwards in time.
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A Full

aBS

set of BSSN constraint propagation eqs.
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Which constraint should be monitored?

Yoneda & HS, PRD 66 (2002) 124003 Kiuchi & HS, arXiv:0711.3575, PRD (2008)
1e+08 | SI( /s |0) T |
o 1et07 A(t)/A(t=0) E
s 1e+06 glx_l(tt)/ X§E=8§ ffffffff .
Order of constraint violation? g 100000 F MX(tS M, (t=0 E
) ] o 10000 [ ;. -
e A and S constraints propagate independently of E 1000 £ E
the other constraints. 'c_é 100 f . .
e (-constraint is triggered by the violation of the g 10 _ _
momentum constraint. 1 L E
01 ] ] ] ] ]
e H{ and M constraints are affected by all the other O 20 40 60 80 100 120
constraints. T

The violation of all constraints normalized with their initial values, ||0C||2(t)/]|6C||2(0),
are plotted with a function of time. The evolutions of the gauge-wave testbeds with

the plain BSSN system are shown.

By observing which constraint triggers the other constraint’s violation from the constraint propagation
equations, we may guess the mechanism by which the entire system is violating accuracy and stability.



[Keyword 1]

[Keyword 2]

(Step 1)
(Step 2)
(Step 3)

[Keyword 3]

[Keyword 3]

Summary up to here (2nd half)

Adjusted Systems

Adjusting the EoM with constraints is common to all previous approaches.
Just add constraints to evolution eqs, while lambda-system requires
symmetric hyperbolicity.

Constraint Propagation Analysis -> Constraint Damping System

By evaluating the propagation egs of constraints, we can predict the suitable
adjustments to the EoM in advance.

Fourier mode expression of all terms of constraint propagation eqs.
Eigenvalues and Diagonalizability of constraint propagation matrix.
Eigenvalues = Constraint Amplification Factors

If CAF=negatives -> Constraint surface becomes the attractor.

Adjusted ADM systems

We show the standard ADM has constraint violating mode.
We predict several adjustments, which give better stability.
Adjusted BSSN systems

We show the advantage of BSSN is the adjustment using M.
We predict several adjustments, which give better stability.



Discussion
Application 1 : Constraint Propagation in N + 1 dim. space-time

HS-Yoneda, GRG 36 (2004) 1931
Dynamical equation has N-dependency

Only the matter term in J,K;; has N-dependency.

0~ Cy = (G — ST, )n'n" = %((N)R + K? — KYKyj) — 8tpy — A,
0~ Cyi = (G — 81T, )" LY = D;K] — D;K — 8r.J;,

Oyij = —2aK;+ Dl + Dif;,

0K;; = a"WR;+aKK;; —2aK' Ky — D;Dja

+8%(DLK;) + (D; 85 K + (D8 Ky, — 8mar (s ! 20

N—lij ) N—lfyj

Constraint Propagations remain the same

From the Bianchi identity, VS, = 0 with §,,, = Xn,n, +Y,n, +Y,n,+ 2Z,,, we get

0=n"V"S, = —Z,(V'n")—-V"Y,+Y,n'V,n" =2Yn,(V'n') — X(V'n,) —n,(V"X),
0= hi'V"S,, = VI'Zi, + Yi(V',) + Ya(V') + X (V') + n,(V'Y)).

o (S, XY, Zij) = (T, pu, Ji, Sij) with VFT,, = 0 = matter eq.
¢ (SMWX? Yi, Zij) — (Guv - SWTuuacHacMiy Kv%'jCH) with VM(G,W — 87TT/W) =0 = CP eq.



Discussion
Future : Construct a robust adjusted system
HS-Yoneda, in preparation

(1) dynamic & automatic determination of x under a suitable principle.

e.g.) Efforts in Multi-body Constrained Dynamics simulations

9 o o
apl = E + )\a %, with C (ﬂfl,t) ~ ()

e J. Baumgarte (1972, Comp. Methods in Appl. Mech. Eng.)
Replace a holonomic constraint 97C' = 0 as 97C' + ad,C + $*C = 0.

e Park-Chiou (1988, J. Guidance), “penalty method"
Derive “stabilization eq.” for Lagrange multiplier A(%).

e Nagata (2002, Multibody Dyn.)
Introduce a scaled norm, J = C*SC, apply 0;J +w?J = 0, and adjust \(¢).

e.g.) Efforts in Molecular Dynamics simulations
e Constant pressure ~ ------ potential piston!

e Constant temperature ------ potential thermostat!! (Nosé, 1991, PTP)




(2) target to control each constraint violation by | Momentum constr.

adjusting multipliers. grow

CP-eigenvectors indicate directions of con-

straint grow/decay, if CP-matrix is diagonal-
grow

dec >
. —///// Hamiltonian constr.

decay

izable.

(3) clarify the reasons of non-linear violation in the

last stage of current test evolutions.

(4) Alternative new ideas?

— control theories, optimization methods (convex functional theories), mathematical pro-
gramming methods, or ....

(5) Numerical comparisons of formulations, links to other systems, ...

— “Comparisons of Formulations” (e.g. Mexico NR workshop, 2002-2003); more formula-
tions to be tested, ...

Find a RECIPE for all. Avoid un-essential techniques.
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Goals of the Lecture

What is the guiding principle for
selecting evolution equations for
simulations in GR?

--- Constraint Propagation eqs.
Why many groups use the BSSN
equations?

--- Just rush, not to be late.

Are there an alternative LTk 1 D S e, XL
formulation better than the BSSN?

- Yes, there are. But we do not the best one.




Discussion
Application 2 : Constraint Propagation of Maxwell field in Curved space
HS-Yoneda, in preparation
Towards a robust GR-MHD system:

e Maxwell egs in curved space-time

OE = €*Di(aBy) —4nat + aKE' + £3E

OB = —€'"Di(aFE})+aKB' + £3B'
Cp = D,E' —4rp,
Cp = D;B'

e CP of Maxwell system in curved space-time

0,Cp = aKCg —|—5ij03

0,Cp = OJKCB-J-ﬁijCB
o CP of ADM+Maxwell
CE x x 0 0 CE
5 Cg| |* * 0 0|]|Cg
“| H 00 = || H
MZ' 0 0 x = MZ

e CP of ADM+Maxwell+Hydro

in progress.





