

"Ringdown part" is quite short (3.7 ms for 60 Msun, a=0.75) AR analysis enables to find out waveform without template

http://www.oit.ac.jp/is/shinkai/

2022/1/23 A01 Boot Camp

Status of GW observation

Observation 1/2/3a/3b & 4

01 (2015/9/12 - 2016/1/19)

3 BHBH

GW150914: the first ever detection of gravitational waves from the merger of two black holes more than a billion light years away

https://media.ligo.northwestern.edu/gallery/mass-plot

重力波観測の現状

02 (2016/11/30 - 2017/8/25)

- GW170814: the first GW signal measured by the three-detector network, also from a binary black hole (BBH) merger;
- GW170817: the first GW signal measured from a binary neutron star (BNS) merger and also the first event observed in light, by dozens of telescopes across the entire electromagnetic spectrum.

10 BHBH 1 NSNS

https://media.ligo.northwestern.edu/gallery/mass-plot

重力波観測の現状

O3a (2019/4/1 - 2019/9/30)

After O3a: GWTC2 (2020/10/28 released)

重力波観測の現状

O3b (2019/11/1 - 2020/3/27)

GWTC-1 (01/02)

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	$\chi_{ m eff}$	M_f/M_{\odot}	a_f	$E_{\rm rad}/(M_{\odot}c^2)$	$\ell_{\rm peak}/({\rm erg}{\rm s}^{-1})$	d_L/Mpc	Z.	$\Delta\Omega/deg^2$
GW150914	$35.6_{-3.1}^{+4.7}$	$30.6\substack{+3.0\\-4.4}$	$28.6^{+1.7}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1_{-3.0}^{+3.4}$	$0.69^{+0.05}_{-0.04}$	$3.1_{-0.4}^{+0.4}$	$3.6^{+0.4}_{-0.4}\times10^{56}$	440^{+150}_{-170}	$0.09\substack{+0.03 \\ -0.03}$	182
GW151012	$23.2^{+14.9}_{-5.5}$	$13.6\substack{+4.1\\-4.8}$	$15.2^{+2.1}_{-1.2}$	$0.05\substack{+0.31 \\ -0.20}$	$35.6^{+10.8}_{-3.8}$	$0.67\substack{+0.13\\-0.11}$	$1.6^{+0.6}_{-0.5}$	$3.2^{+0.8}_{-1.7}\times10^{56}$	$1080\substack{+550 \\ -490}$	$0.21\substack{+0.09 \\ -0.09}$	1523
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.5}$	$8.9_{-0.3}^{+0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74\substack{+0.07\\-0.05}$	$1.0\substack{+0.1\\-0.2}$	$3.4^{+0.7}_{-1.7}\times10^{56}$	450^{+180}_{-190}	$0.09\substack{+0.04 \\ -0.04}$	1033
GW170104	$30.8\substack{+7.3\\-5.6}$	$20.0\substack{+4.9\\-4.6}$	$21.4_{-1.8}^{+2.2}$	$-0.04^{+0.1}_{-0.21}$	$48.9^{+5.1}_{-4.0}$	$0.66\substack{+0.08\\-0.11}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-1.0}\times10^{56}$	990^{+440}_{-430}	$0.20\substack{+0.08 \\ -0.08}$	921
GW170608	$11.0^{+5.5}_{-1.7}$	$7.6^{+1.4}_{-2.2}$	$7.9_{-0.2}^{+0.2}$	$0.03\substack{+0.19 \\ -0.07}$	$17.8^{+3.4}_{-0.7}$	$0.69\substack{+0.04\\-0.04}$	$0.9^{+0.0}_{-0.1}$	$3.5^{+0.4}_{-1.3}\times10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	392
GW170729	$50.2\substack{+16.2 \\ -10.2}$	$34.0\substack{+9.1\\-10.1}$	$35.4_{-4.8}^{+6.5}$	$0.37\substack{+0.21 \\ -0.25}$	$79.5^{+14.7}_{-10.2}$	$0.81\substack{+0.07\\-0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2840^{+1400}_{-1360}	$0.49\substack{+0.19 \\ -0.21}$	1041
GW170809	$35.0\substack{+8.3\\-5.9}$	$23.8\substack{+5.1\\-5.2}$	$24.9^{+2.1}_{-1.7}$	$0.08\substack{+0.17\\-0.17}$	$56.3^{+5.2}_{-3.8}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9}\times10^{56}$	$1030\substack{+320 \\ -390}$	$0.20\substack{+0.05 \\ -0.07}$	308
GW170814	$30.6\substack{+5.6\\-3.0}$	$25.2\substack{+2.8\\-4.0}$	$24.1^{+1.4}_{-1.1}$	$0.07\substack{+0.12 \\ -0.12}$	$53.2^{+3.2}_{-2.4}$	$0.72\substack{+0.07\\-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5}\times10^{56}$	600^{+150}_{-220}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46\substack{+0.12 \\ -0.10}$	$1.27\substack{+0.09 \\ -0.09}$	$1.186\substack{+0.001\\-0.001}$	$0.00\substack{+0.02 \\ -0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+7}_{-15}	$0.01\substack{+0.00 \\ -0.00}$	16
GW170818	$35.4\substack{+7.5\\-4.7}$	$26.7\substack{+4.3\\-5.2}$	$26.5^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.4^{+4.9}_{-3.8}$	$0.67\substack{+0.07 \\ -0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7}\times10^{56}$	1060^{+420}_{-380}	$0.21\substack{+0.07 \\ -0.07}$	スク
GW170823	$39.5^{+11.2}_{-6.7}$	$29.0\substack{+6.7\\-7.8}$	$29.2_{-3.6}^{+4.6}$	$0.09\substack{+0.22\\-0.26}$	$65.4^{+10.1}_{-7.4}$	$0.72^{+0.09}_{-0.12}$	$3.3^{+1.0}_{-0.9}$	$3.6^{+0.7}_{-1.1} imes 10^{56}$	1940^{+970}_{-900}	$0.35\substack{+0.15 \\ -0.15}$	1666

TABLE V. KL divergences (in bits) between the prior and posterior for the effective aligned spin χ_{eff} and the effective precession spin χ_p . For the computation of the KL divergence for χ_p , we quote the KL divergence with the prior conditioned on the χ_{eff} posterior, $D_{KL}^{\chi_p}(\chi_{eff})$, and without conditioning, $D_{KL}^{\chi_p}$. For GW170817, $D_{KL}^{\chi_p}$ is given for the high spin prior. The median and 90% interval for the KL divergences is estimated by computing the statistic for repeated draws of a subset of the posterior and prior PDFs. Single-detector optimal SNRs from parameter-estimation analyses for Hanford (H), Livingston (L), and Virgo (V).

Event	GW150914	GW151012	GW151226	GW170104	GW170608	GW170729	GW170809	GW170814	GW170817	GW170818	GW170823
$D_{ m KL}^{\chi_{ m eff}}$	$0.71\substack{+0.04 \\ -0.03}$	$0.23\substack{+0.03 \\ -0.02}$	$1.32\substack{+0.11\\-0.06}$	$0.54_{-0.03}^{+0.03}$	$0.97^{+0.03}_{-0.05}$	$1.83\substack{+0.07\\-0.09}$	$0.71\substack{+0.03\\-0.03}$	$0.99\substack{+0.05\\-0.07}$	$2.32\substack{+0.08\\-0.10}$	$0.50\substack{+0.04\\-0.03}$	$0.32\substack{+0.04\\-0.03}$
$D_{ ext{KL}}^{\chi_p}$	$0.16\substack{+0.03 \\ -0.02}$	$0.09\substack{+0.03\\-0.02}$	$0.17\substack{+0.03 \\ -0.04}$	$0.05\substack{+0.01 \\ -0.01}$	$0.07\substack{+0.01 \\ -0.02}$	$0.09\substack{+0.02\\-0.02}$	$0.05\substack{+0.01\\-0.01}$	$0.02\substack{+0.01\\-0.01}$	$0.19\substack{+0.04 \\ -0.03}$	$0.06\substack{+0.02\\-0.01}$	$0.03\substack{+0.01\\-0.01}$
$D_{VI}^{\chi_p}(\gamma_{eff})$	$0.09^{+0.02}$	$0.08^{+0.02}_{-0.01}$	$0.12^{+0.05}_{-0.02}$	$0.07^{+0.02}_{-0.01}$	$0.08^{+0.02}_{-0.02}$	$0.03^{+0.01}$	$0.06^{+0.01}$	$0.13^{+0.03}_{-0.02}$	$0.07^{+0.01}$	$0.09^{+0.02}$	$0.03^{+0.01}$
H SNR	$20.6^{+1.6}_{-1.6}$	$6.4^{+1.3}_{-1.3}$	$9.8^{+1.5}_{-1.4}$	$9.5^{+1.3}_{-1.6}$	$12.1^{+1.6}_{-1.6}$	$5.9^{+1.1}_{-1.1}$	$5.9^{+1.4}_{-1.4}$	$9.3^{+1.0}_{-1.2}$	$18.9^{+1.0}_{-1.0}$	$4.6\substack{+0.9 \\ -0.8}$	$6.8^{+1.4}_{-1.2}$
L SNR	$14.2^{+1.6}_{-1.4}$	$5.8^{+1.2}_{-1.2}$	$6.9^{+1.2}_{-1.1}$	$9.9^{+1.5}_{-1.3}$	$9.2^{+1.5}_{-1.2}$	$8.3^{+1.4}_{-1.4}$	$10.7^{+1.6}_{-1.8}$	$14.3^{+1.5}_{-1.4}$	$26.3^{+1.4}_{-1.3}$	$9.7^{+1.5}_{-1.5}$	$9.2^{+1.7}_{-1.5}$
V SNR						$1.7^{+1.0}_{-1.1}$	$1.1^{+1.2}_{-0.8}$	$4.1^{+1.1}_{-1.1}$	$3.0^{+0.2}_{-0.2}$	$4.2\substack{+0.8 \\ -0.7}$	

GWTC-2 (O3a)

Event	$M~(M_\odot)$	$\mathcal{M}\left(M_{\odot}\right)$	$m_1 (M_{\odot})$	$m_2~(M_{\odot})$	$\chi_{ m eff}$	D_L (Gpc)	z	$M_f~(M_{\odot})$	χ_f	$\Omega ~(deg^2)$	SNR
GW190408_181802	$43.0_{-3.0}^{+4.2}$	$18.3^{+1.9}_{-1.2}$	$24.6^{+5.1}_{-3.4}$	$18.4_{-3.6}^{+3.3}$	$-0.03^{+0.14}_{-0.19}$	$1.55\substack{+0.40\\-0.60}$	$0.29\substack{+0.06\\-0.10}$	$41.1_{-2.8}^{+3.9}$	$0.67\substack{+0.06\\-0.07}$	150	$15.3^{+0.2}_{-0.3}$
GW190412	$38.4^{+3.8}_{-3.7}$	$13.3\substack{+0.4\\-0.3}$	$30.1^{+4.7}_{-5.1}$	$8.3^{+1.6}_{-0.9}$	$0.25\substack{+0.08\\-0.11}$	$0.74\substack{+0.14 \\ -0.17}$	$0.15\substack{+0.03\\-0.03}$	$37.3^{+3.9}_{-3.8}$	$0.67\substack{+0.05 \\ -0.06}$	21	$18.9\substack{+0.2\\-0.3}$
GW190413_052954	$58.6^{+13.3}_{-9.7}$	$24.6^{+5.5}_{-4.1}$	$34.7^{+12.6}_{-8.1}$	$23.7^{+7.3}_{-6.7}$	$-0.01^{+0.29}_{-0.34}$	$3.55^{+2.27}_{-1.66}$	$0.59^{+0.29}_{-0.24}$	$56.0^{+12.5}_{-9.2}$	$0.68\substack{+0.12\\-0.13}$	1500	$8.9^{+0.4}_{-0.7}$
GW190413_134308	$78.8^{+17.4}_{-11.9}$	$33.0^{+8.2}_{-5.4}$	$47.5^{+13.5}_{-10.7}$	$3.18^{+11.7}_{-10.8}$	$-0.03^{+0.25}_{-0.29}$	$4.45^{+2.48}_{-2.12}$	$0.71^{+0.31}_{-0.30}$	$75.5^{+16.4}_{-11.4}$	$0.68\substack{+0.10\\-0.12}$	730	$10.0\substack{+0.4\\-0.5}$
GW190421_213856	$72.9^{+13.4}_{-9.2}$	$31.2^{+5.9}_{-4.2}$	$41.3^{+10.4}_{-6.9}$	$31.9^{+8.0}_{-8.8}$	$-0.06^{+0.22}_{-0.27}$	$2.88^{+1.37}_{-1.38}$	$0.49\substack{+0.19\\-0.21}$	$69.7^{+12.5}_{-8.7}$	$0.67\substack{+0.10\\-0.11}$	1200	$10.7\substack{+0.2\\-0.4}$
GW190424_180648	$72.6^{+13.3}_{-10.7}$	$31.0^{+5.8}_{-4.6}$	$40.5^{+11.1}_{-7.3}$	$31.8^{+7.6}_{-7.7}$	$0.13\substack{+0.22\\-0.22}$	$2.20^{+1.58}_{-1.16}$	$0.39\substack{+0.23\\-0.19}$	$68.9^{+12.4}_{-10.1}$	$0.74\substack{+0.09\\-0.09}$	2800	$10.4\substack{+0.2\\-0.4}$
GW190425	$3.4_{-0.1}^{+0.3}$	$1.44^{+0.02}_{-0.02}$	$2.0^{+0.6}_{-0.3}$	$1.4^{+0.02}_{-0.02}$	$0.06\substack{+0.11\\-0.05}$	$0.16\substack{+0.07\\-0.07}$	$0.03\substack{+0.01\\-0.02}$			1000	$12.4_{-0.4}^{+0.3}$
GW190426_152155	$7.2^{+3.5}_{-1.5}$	$2.41\substack{+0.08\\-0.08}$	$5.7^{+3.9}_{-2.3}$	$1.5\substack{+0.8\\-0.5}$	$-0.03^{+0.32}_{-0.30}$	$0.37\substack{+0.32 \\ -0.30}$	$0.08\substack{+0.04\\-0.03}$			1300	$8.7\substack{+0.5\\-0.6}$
GW190503_185404	$71.7_{-8.3}^{+9.4}$	$30.2^{+4.2}_{-4.2}$	$43.3^{+9.2}_{-8.1}$	$28.4_{-8.0}^{+7.7}$	$-0.03^{+0.20}_{-0.26}$	$1.45\substack{+0.69\\-0.63}$	$0.27\substack{+0.11\\-0.11}$	$68.6^{+8.8}_{-7.7}$	$0.66\substack{+0.09\\-0.12}$	94	$12.4_{-0.3}^{+0.2}$
GW190512_180714	$35.9^{+3.8}_{-3.5}$	$14.6^{+1.3}_{-1.0}$	$23.3^{+5.3}_{-5.8}$	$12.6^{+3.6}_{-2.5}$	$0.03\substack{+0.12\\-0.13}$	$1.43^{+0.55}_{-0.55}$	$0.27\substack{+0.09\\-0.10}$	$34.5^{+3.8}_{-3.5}$	$0.65\substack{+0.07\\-0.07}$	220	$12.2_{-0.4}^{+0.2}$
GW190513_205428	$53.9^{+8.6}_{-5.9}$	$21.6^{+3.8}_{-1.9}$	$35.7^{+9.5}_{-9.2}$	$18.0^{+7.7}_{-4.1}$	$0.11\substack{+0.28\\-0.17}$	$2.06\substack{+0.88\\-0.80}$	$0.37\substack{+0.13\\-0.13}$	$51.6^{+8.2}_{-5.8}$	$0.68\substack{+0.14\\-0.12}$	520	$12.9_{-0.4}^{+0.3}$
GW190514_065416	$67.2^{+18.7}_{-10.8}$	$28.5^{+7.9}_{-4.8}$	$39.0^{+14.7}_{-8.2}$	$28.4^{+9.3}_{-8.8}$	$-0.19^{+0.29}_{-0.32}$	$4.13^{+2.65}_{-2.17}$	$0.67^{+0.33}_{-0.31}$	$64.5^{+17.9}_{-10.4}$	$0.63^{+0.11}_{-0.15}$	3000	$8.2^{+0.3}_{-0.6}$
GW190517_055101	$63.5^{+9.6}_{-9.6}$	$26.6^{+4.0}_{-4.0}$	$37.4^{+11.7}_{-7.6}$	$25.3^{+7.0}_{-7.3}$	$0.52\substack{+0.19\\-0.19}$	$1.86^{+1.62}_{-0.84}$	$0.34\substack{+0.24\\-0.14}$	$59.3^{+9.1}_{-8.9}$	$0.87\substack{+0.05 \\ -0.07}$	470	$10.7\substack{+0.4\\-0.6}$
GW190519_153544	$106.6^{+13.5}_{-14.8}$	$44.5_{-7.1}^{+6.4}$	$66.0^{+10.7}_{-12.0}$	$40.5^{+11.0}_{-11.1}$	$0.31\substack{+0.20 \\ -0.22}$	$2.53^{+1.83}_{-0.92}$	$0.44\substack{+0.25\\-0.14}$	$101.0^{+12.4}_{-13.8}$	$0.79\substack{+0.07\\-0.13}$	860	$15.6\substack{+0.2\\-0.3}$
GW190521	$163.9^{+39.2}_{-23.5}$	$69.2^{+17.0}_{-10.6}$	$95.3^{+28.7}_{-18.9}$	$69.0^{+22.7}_{-23.1}$	$0.03\substack{+0.32\\-0.39}$	$3.92^{+2.19}_{-1.95}$	$0.64^{+0.28}_{-0.28}$	$156.3^{+36.8}_{-22.4}$	$0.71\substack{+0.12\\-0.16}$	1000	$14.2_{-0.3}^{+0.3}$
GW190521_074359	$74.7^{+7.0}_{-4.8}$	$32.1_{-2.5}^{+3.2}$	$42.2_{-4.8}^{+5.9}$	$32.8^{+5.4}_{-6.4}$	$0.09\substack{+0.10\\-0.13}$	$1.24\substack{+0.40\\-0.57}$	$0.24\substack{+0.07\\-0.10}$	$71.0_{-4.4}^{+6.5}$	$0.72\substack{+0.05\\-0.07}$	550	$25.8^{+0.1}_{-0.2}$
GW190527_092055	$59.1^{21.3}_{-9.8}$	$24.3^{+9.1}_{-4.2}$	$36.5^{+16.4}_{-9.0}$	$22.6^{+10.5}_{-8.1}$	$0.11\substack{+0.28\\-0.28}$	$2.49^{+2.48}_{-1.24}$	$0.44_{-0.20}^{+0.34}$	$56.4^{+20.2}_{-9.3}$	$0.71\substack{+0.12\\-0.16}$	3700	$8.1\substack{+0.3\\-0.9}$
GW190602_175927	$116.3^{+19.0}_{-15.6}$	$49.1_{-8.5}^{+9.1}$	$69.1^{+15.7}_{-13.0}$	$47.8^{+14.3}_{-17.4}$	$0.07\substack{+14.3\\-0.24}$	$2.69^{+1.79}_{-1.12}$	$0.47\substack{+0.25\\-0.17}$	$11.0^{+17.7}_{-14.9}$	$0.70\substack{+0.10 \\ -0.14}$	690	$12.8\substack{+0.2\\-0.3}$
GW190620_030421	$92.1^{18.5}_{-13.1}$	$38.3^{+8.3}_{-6.5}$	$57.1^{+16.0}_{-12.7}$	$35.5^{+12.2}_{-12.3}$	$0.33\substack{+0.22\\-0.25}$	$2.81^{+1.68}_{-1.31}$	$0.49\substack{+0.23\\-0.20}$	$87.2^{+16.8}_{-12.1}$	$0.79\substack{+0.08\\-0.15}$	7200	$12.1\substack{+0.3\\-0.4}$
GW190630_185205	$59.1_{-4.8}^{+4.6}$	$24.9^{+2.1}_{-2.1}$	$35.1^{+6.9}_{-5.6}$	$23.7^{+5.2}_{-5.1}$	$0.10\substack{+0.12\\-0.13}$	$0.89\substack{+0.56\\-0.37}$	$0.18\substack{+0.10\\-0.07}$	$56.4^{+4.4}_{-4.6}$	$0.70\substack{+0.05\\-0.07}$	1200	$15.6^{+0.2}_{-0.3}$
GW190701_203306	$94.3^{+12.1}_{-9.5}$	$40.3\substack{+5.4\\-4.9}$	$53.9^{+11.8}_{-8.0}$	$40.8\substack{+8.7\\-12.0}$	$-0.07\substack{+0.23\\-0.29}$	$2.06\substack{+0.76 \\ -0.73}$	$0.37\substack{+0.11 \\ -0.12}$	$90.2\substack{+11.3 \\ -8.9}$	$0.66\substack{+0.09\\-0.13}$	46	$11.3\substack{+0.2\\-0.3}$

GWTC-2 (O3a)

continued

Event	$M~(M_{\odot})$	$\mathcal{M}\left(M_{\odot}\right)$	$m_1 (M_{\odot})$	$m_2 (M_{\odot})$	$\chi_{ m eff}$	D_L (Gpc)	z	$M_f (M_{\odot})$	χ_f	Ω (deg ²)	SNR
GW190706_222641	$104.1_{-13.9}^{+20.2}$	$42.7^{+10.0}_{-7.0}$	$67.0^{+14.6}_{-16.2}$	$38.2^{+14.6}_{-13.3}$	$0.28\substack{+0.26 \\ -0.29}$	$4.42\substack{+2.59\\-1.93}$	$0.71\substack{+0.32\\-0.27}$	$99.0^{+18.3}_{-13.5}$	$0.78\substack{+0.09 \\ -0.18}$	650	$12.6_{-0.4}^{+0.2}$
GW190707_093326	$20.1^{+1.9}_{-1.3}$	$8.5\substack{+0.6 \\ -0.5}$	$11.6^{+3.3}_{-1.7}$	$8.4^{+1.4}_{-1.7}$	$-0.05\substack{+0.10\\-0.08}$	$0.77\substack{+0.38 \\ -0.37}$	$0.16\substack{+0.07 \\ -0.07}$	$19.2^{+1.9}_{-1.3}$	$0.66\substack{+0.03\\-0.04}$	1300	$13.3\substack{+0.2\\-0.4}$
GW190708_232457	$30.9^{+2.5}_{-1.8}$	$13.2\substack{+0.9\\-0.6}$	$17.6_{-2.3}^{+4.7}$	$13.2\substack{+2.0\\-2.7}$	$0.02\substack{+0.10\\-0.08}$	$0.88\substack{+0.33\\-0.39}$	$0.18\substack{+0.06 \\ -0.07}$	$29.5^{+2.5}_{-1.8}$	$0.69\substack{+0.04\\-0.04}$	14000	$13.1\substack{+0.2\\-0.3}$
GW190719_215514	$57.8\substack{+18.3 \\ -10.7}$	$23.5\substack{+6.5\\-4.0}$	$36.5\substack{+18.0\\-10.3}$	$20.8\substack{+9.0 \\ -7.2}$	$0.32\substack{+0.29\\-0.31}$	$3.94\substack{+2.59\\-2.00}$	$0.64_{-0.29}^{+0.33}$	$54.9\substack{+17.3 \\ -10.2}$	$0.78\substack{+0.11 \\ -0.17}$	2900	$8.3\substack{+0.3\\-0.8}$
GW190720_000836	$21.5_{-2.3}^{+4.3}$	$8.9\substack{+0.5\\-0.8}$	$13.4\substack{+6.7\\-3.0}$	$7.8^{+2.3}_{-2.2}$	$0.18\substack{+0.14 \\ -0.12}$	$0.79\substack{+0.69\\-0.32}$	$0.16\substack{+0.12 \\ -0.06}$	$20.4_{-2.2}^{+4.5}$	$0.72\substack{+0.06 \\ -0.05}$	460	$11.0\substack{+0.3\\-0.7}$
GW190727_060333	$67.1^{+11.7}_{-8.0}$	$28.6^{+5.3}_{-3.7}$	$38.0\substack{+9.5\\-6.2}$	$29.4_{-8.4}^{+7.1}$	$0.11\substack{+0.26 \\ -0.25}$	$3.30^{+1.54}_{-1.50}$	$0.55\substack{+0.21 \\ -0.22}$	$63.8\substack{+10.9\\-7.5}$	$0.73\substack{+0.10 \\ -0.10}$	830	$11.9\substack{+0.3\\-0.5}$
GW190728_064510	$20.6^{+4.5}_{-1.3}$	$8.6\substack{+0.5\\-0.3}$	$12.3\substack{+7.2 \\ -2.2}$	$8.1\substack{+1.7\\-2.6}$	$0.12\substack{+0.20 \\ -0.07}$	$0.87\substack{+0.26 \\ -1.37}$	$0.18\substack{+0.05 \\ -0.07}$	$19.6_{-1.3}^{+4.7}$	$0.71\substack{+0.04 \\ -0.04}$	400	$13.0\substack{+0.2\\-0.4}$
GW190731_140936	$70.1^{+15.8}_{-11.3}$	$29.5\substack{+7.1\\-5.2}$	$41.5\substack{+12.2\\-9.0}$	$28.8\substack{+9.7\\-9.5}$	$0.06\substack{+0.24\\-0.24}$	$3.30\substack{+2.39\\-1.72}$	$0.55\substack{+0.31 \\ -0.26}$	$67.0\substack{+14.6 \\ -10.8}$	$0.70\substack{+0.10 \\ -0.13}$	3400	$8.7\substack{+0.2\\-0.5}$
GW190803_022701	$64.5\substack{+12.6\\-9.0}$	$27.3\substack{+5.7\\-4.1}$	$37.3\substack{+10.6\\-7.0}$	$27.3\substack{+7.8 \\ -8.2}$	$-0.03\substack{+0.24\\-0.27}$	$3.27^{+1.95}_{-1.58}$	$0.55\substack{+0.26 \\ -0.24}$	$61.7^{+11.8}_{-8.5}$	$0.68\substack{+0.10\\-0.11}$	1500	$8.6\substack{+0.3 \\ -0.5}$
GW190814	$25.8^{+1.0}_{-0.9}$	$6.09\substack{+0.06\\-0.06}$	$23.2\substack{+1.1\\-1.0}$	$2.59\substack{+0.08\\-0.09}$	$0.00\substack{+0.08\\-0.06}$	$0.24\substack{+0.04 \\ -0.05}$	$0.05\substack{+0.009\\-0.010}$	$25.6^{+1.1}_{-0.9}$	$0.28\substack{+0.02\\-0.02}$	19	$24.9\substack{+0.1\\-0.2}$
GW190828_063405	$58.0\substack{+7.7\\-4.8}$	$25.0\substack{+3.4\\-2.1}$	$32.1\substack{+5.8\\-4.0}$	$26.2\substack{+4.6\\-4.8}$	$0.19\substack{+0.15 \\ -0.16}$	$2.13\substack{+0.66 \\ -0.93}$	$0.38\substack{+0.10 \\ -0.15}$	$54.9^{+7.2}_{-4.3}$	$0.75\substack{+0.06 \\ -0.07}$	520	$16.2\substack{+0.2\\-0.3}$
GW190828_065509	$34.4\substack{+5.4\\-4.4}$	$13.3\substack{+1.2\\-1.0}$	$24.1\substack{+7.0 \\ -7.2}$	$10.2\substack{+3.6\\-2.1}$	$0.08\substack{+0.16 \\ -0.16}$	$1.60\substack{+0.62\\-0.60}$	$0.30\substack{+0.10 \\ -1.10}$	$33.1_{-4.5}^{+5.5}$	$0.65\substack{+0.08\\-0.08}$	660	$10.0\substack{+0.3\\-0.5}$
GW190909_114149	$75.0^{+55.9}_{-17.6}$	$30.9\substack{+17.2\\-7.5}$	$45.8\substack{+52.7\\-13.3}$	$28.3\substack{+13.4 \\ -12.7}$	$-0.06\substack{+0.37\\-0.36}$	$3.77^{+3.27}_{-2.22}$	$0.62\substack{+0.41 \\ -0.33}$	$72.0^{54.9}_{-16.8}$	$0.66\substack{+0.15\\-0.20}$	4700	$8.1\substack{+0.4\\-0.6}$
GW190910_112807	$79.6^{+9.3}_{-2.1}$	$34.3_{-4.1}^{+4.1}$	$43.9^{+7.6}_{-6.1}$	$35.6^{+7.6}_{-7.2}$	$0.02^{+0.18}_{-0.18}$	$1.46^{+10.3}_{-0.58}$	$0.28^{+0.16}_{-0.10}$	$75.8^{+8.5}_{-8.6}$	$0.70\substack{+0.08\\-0.07}$	11000	$14.1_{-0.3}^{+0.2}$
GW190915_235702	$59.9^{+7.5}_{-6.4}$	$25.3^{+3.2}_{-2.7}$	$35.3^{+9.5}_{-6.4}$	$24.4^{+5.6}_{-6.1}$	$0.02\substack{+0.20\\-0.25}$	$1.62^{+0.71}_{-0.61}$	$0.30\substack{+0.11\\-0.10}$	$57.2^{+7.1}_{-6.0}$	$0.70\substack{+0.09\\-0.11}$	400	$13.6^{+0.2}_{-0.3}$
GW190924_021846	$13.9^{+5.1}_{-1.0}$	$5.8^{+0.2}_{-0.2}$	$8.9^{+7.0}_{-2.0}$	$5.0^{+1.4}_{-1.9}$	$0.03\substack{+0.30\\-0.09}$	$0.57^{+0.22}_{-0.22}$	$0.12\substack{+0.04\\-0.04}$	$13.3^{+5.2}_{-1.0}$	$0.67\substack{+0.05\\-0.05}$	360	$11.5^{+0.3}_{-0.4}$
GW190929_012149	$104.3^{+34.9}_{-25.2}$	$35.8^{+14.9}_{-8.2}$	$80.8^{+33.0}_{-33.2}$	$24.1^{+19.3}_{-10.6}$	$0.01\substack{+0.34\\-0.33}$	$2.13^{+3.25}_{-1.05}$	$0.38\substack{+0.49\\-0.17}$	$101.5^{+33.6}_{-25.3}$	$0.66\substack{+0.20\\-0.31}$	2200	$10.1\substack{+0.6\\-0.8}$
GW190930_133541	$20.3^{+8.9}_{-1.5}$	$8.5^{+0.5}_{-0.5}$	$12.3^{+12.4}_{-2.3}$	$7.8^{+1.7}_{-3.3}$	$0.14_{-0.15}^{+0.31}$	$0.76^{+0.36}_{-0.32}$	$0.15\substack{+0.06\\-0.06}$	$19.4^{+9.2}_{-1.5}$	$0.72\substack{+0.07 \\ -0.06}$	1700	$9.5^{+0.3}_{-0.5}$

GWTC-2 (O3a)

Name	Instrument	cWB		GstLAL			Рус	CBC		русвс ВВН		
		FAR (yr ⁻¹)	SNR ^a	FAR (yr ⁻¹)	SNR	$p_{\rm astro}$	FAR (yr ⁻¹)	SNR ^a	$p_{\rm astro}$	FAR (yr ⁻¹)	SNR ^a	$p_{\rm astro}$
GW190408_181802	HLV	$< 9.5 \times 10^{-4}$	14.8	$< 1.0 \times 10^{-5}$	14.7	1.00	$<2.5 \times 10^{-5}$	13.5	1.00	$<7.9 \times 10^{-5}$	13.6	1.00
GW190412	HLV	$< 9.5 \times 10^{-4}$	19.7	$< 1.0 \times 10^{-5}$	18.9	1.00	3.1×10^{-5}	17.9	1.00	$< 7.9 \times 10^{-5}$	17.8	1.00
GW190413_052954	HLV									7.2×10^{-2}	8.6	0.98
GW190413_134308	HLV			3.8×10^{-1}	10.0	0.95				4.4×10^{-2}	9.0	0.98
GW190421_213856	HL	3.0×10^{-1}	9.3	7.7×10^{-4}	10.6	1.00	1.9×10^{9}	10.2	0.89	6.6×10^{-3}	10.2	1.00
GW190424_180648	L			$7.8 imes 10^{-1\dagger}$	10.0	0.91						
GW190425	LV			$7.5 imes 10^{-4^{\dagger}}$	13.0							
GW190426_152155	HLV			1.4×10^{0}	10.1							
GW190503_185404	HLV	1.8×10^{-3}	11.5	$< 1.0 \times 10^{-5}$	12.1	1.00	3.7×10^{-2}	12.2	1.00	$< 7.9 \times 10^{-5}$	12.2	1.00
GW190512_180714	HLV	8.8×10^{-1}	10.7	$< 1.0 \times 10^{-5}$	12.3	1.00	3.8×10^{-5}	12.2	1.00	$< 5.7 \times 10^{-5}$	12.2	1.00
GW190513_205428	HLV			$< 1.0 \times 10^{-5}$	12.3	1.00	3.7×10^{-4}	11.8	1.00	$< 5.7 \times 10^{-5}$	11.9	1.00
GW190514_065416	HL									5.3×10^{-1}	8.3	0.96
GW190517_055101	HLV	6.5×10^{-3}	10.7	9.6×10^{-4}	10.6	1.00	1.8×10^{-2}	10.4	1.00	$< 5.7 \times 10^{-5}$	10.2	1.00
GW190519_153544	HLV	3.1×10^{-4}	14.0	$< 1.0 \times 10^{-5}$	12.0	1.00	$< 1.8 \times 10^{-5}$	13.0	1.00	$< 5.7 \times 10^{-5}$	13.0	1.00
GW190521	HLV	2.0×10^{-4}	14.4	1.2×10^{-3}	15.0	1.00	1.1×10^{0}	12.6	0.93			
GW190521_074359	HL	${<}1.0 imes10^{-4}$	24.7	$< 1.0 \times 10^{-5}$	24.4	1.00	$< 1.8 \times 10^{-5}$	24.0	1.00	$< 5.7 \times 10^{-5}$	24.0	1.00
GW190527_092055	HL			6.2×10^{-2}	8.9	0.99						
GW190602_175927	HLV	1.5×10^{-2}	11.1	1.1×10^{-5}	12.1	1.00						
GW190620_030421	LV			$2.9 \times 10^{-3^{+}}$	13.1	1.00						
GW190630_185205	LV			$< 1.0 \times 10^{-5^{\dagger}}$	15.6	1.00						
GW190701_203306	HLV	5.5×10^{-1}	10.2	1.1×10^{-2}	11.6	1.00						
GW190706_222641	HLV	$< 1.0 \times 10^{-3}$	12.7	$< 1.0 \times 10^{-5}$	12.3	1.00	6.7×10^{-5}	11.7	1.00	$<\!\!4.6 \times 10^{-5}$	12.3	1.00
GW190707_093326	HL			$< 1.0 \times 10^{-5}$	13.0	1.00	$< 1.0 \times 10^{-5}$	12.8	1.00	$< 4.6 \times 10^{-5}$	12.8	1.00
GW190708_232457	LV			$2.8 \times 10^{-5^{++}}$	13.1	1.00						
GW190719_215514	HL									1.6×10^{0}	8.0	0.82
GW190720_000836	HLV			$< 1.0 \times 10^{-5}$	11.7	1.00	$<\!\!2.0 \times 10^{-5}$	10.6	1.00	$< 3.7 \times 10^{-5}$	10.5	1.00
GW190727_060333	HLV	$8.8 imes 10^{-2}$	11.4	$< 1.0 \times 10^{-5}$	12.3	1.00	3.5×10^{-3}	11.5	1.00	$< 3.7 \times 10^{-5}$	11.8	1.00
GW190728_064510	HLV			$< 1.0 \times 10^{-5}$	13.6	1.00	$< 1.6 \times 10^{-5}$	13.4	1.00	$< 3.7 \times 10^{-5}$	13.4	1.00
GW190731_140936	HL			$2.1 imes 10^{-1}$	8.5	0.97				$2.8 imes 10^{-1}$	8.2	0.96
GW190803_022701	HLV			3.2×10^{-2}	9.0	0.99				2.7×10^{-2}	8.6	0.99
GW190814	LV			$< 1.0 \times 10^{-5}$	22.2	1.00						
GW190828_063405	HLV	$< 9.6 imes 10^{-4}$	16.6	$< 1.0 \times 10^{-5}$	16.0	1.00	$< 1.5 \times 10^{-5}$	15.3	1.00	$< 3.3 \times 10^{-5}$	15.3	1.00
GW190828_065509	HLV			${<}1.0\times10^{-5}$	11.1	1.00	$5.8 imes 10^{-5}$	10.8	1.00	$<3.3 imes10^{-5}$	10.8	1.00
GW190909_114149	HL			1.1×10^{0}	8.5	0.89						
GW190910_112807	LV			$1.9 imes 10^{-5^{\dagger}}$	13.4	1.00						
GW190915_235702	HLV	$< 1.0 \times 10^{-3}$	12.3	${<}1.0\times10^{-5}$	13.1	1.00	$8.6 imes 10^{-4}$	13.0	1.00	$<3.3 imes10^{-5}$	12.7	1.00
GW190924_021846	HLV			${<}1.0\times10^{-5}$	13.2	1.00	$< 6.3 \times 10^{-5}$	12.5	1.00	$<3.3 imes10^{-5}$	12.4	1.00
GW190929_012149	HLV			$2.0 imes 10^{-2}$	9.9	1.00						

GWTC-2.1 (O3a)

Event	$\stackrel{M}{(M_{\odot})}$	$\stackrel{\mathcal{M}}{(M_{\odot})}$	${m_1 \atop (M_\odot)}$	$m_2 \ (M_\odot)$	$\chi_{ m eff}$	$D_{ m L}$ (Gpc)	z	$egin{array}{c} M_{ m f}\ (M_{\odot}) \end{array}$	$\chi_{ m f}$	$\Delta\Omega \ ({ m deg}^2)$
$GW190403_051519$	$110.5\substack{+30.6\\-24.2}$	$36.3^{+14.4}_{-8.8}$	$88.0\substack{+28.2\\-32.9}$	$22.1\substack{+23.8 \\ -9.0}$	$0.70\substack{+0.15 \\ -0.27}$	$8.00\substack{+5.88\\-3.99}$	$1.14\substack{+0.64 \\ -0.49}$	$105.2\substack{+29.1\\-24.1}$	$0.92\substack{+0.04\\-0.11}$	5600
$GW190426_{-}190642$	$184.4\substack{+41.7\\-36.6}$	$77.1^{+19.4}_{-17.1}$	$106.9\substack{+41.6\\-25.2}$	$76.6\substack{+26.2\\-33.6}$	$0.19\substack{+0.43 \\ -0.40}$	$4.35\substack{+3.35 \\ -2.15}$	$0.70\substack{+0.41 \\ -0.30}$	$175.0\substack{+39.4\\-34.3}$	$0.76\substack{+0.15 \\ -0.15}$	8200
$GW190725_{-}174728$	$18.2\substack{+4.2 \\ -1.8}$	$7.4\substack{+0.6 \\ -0.5}$	$11.5\substack{+6.2 \\ -2.7}$	$6.4^{+2.0}_{-2.0}$	$-0.04\substack{+0.26\\-0.14}$	$1.05\substack{+0.57 \\ -0.46}$	$0.21\substack{+0.10 \\ -0.09}$	$17.4^{+4.4}_{-1.8}$	$0.65\substack{+0.08 \\ -0.07}$	2300
$GW190805_211137$	$80.1\substack{+22.5 \\ -16.1}$	$33.5\substack{+10.1 \\ -7.0}$	$48.2\substack{+17.5 \\ -12.5}$	$32.0\substack{+13.4 \\ -11.4}$	$0.35\substack{+0.30 \\ -0.36}$	$5.31\substack{+4.10 \\ -2.95}$	$0.82\substack{+0.48\\-0.40}$	$75.8\substack{+21.2\\-15.3}$	$0.81\substack{+0.09 \\ -0.15}$	3900
$GW190916_{-200658}$	$68.9\substack{+21.0\\-14.0}$	$27.3^{+9.3}_{-5.5}$	$44.3^{+21.2}_{-13.3}$	$23.9\substack{+12.7 \\ -10.2}$	$0.18\substack{+0.33 \\ -0.29}$	$4.46\substack{+3.79\\-2.52}$	$0.71\substack{+0.46 \\ -0.36}$	$65.7^{+19.8}_{-13.4}$	$0.73\substack{+0.14 \\ -0.23}$	4500
$\rm GW190917_114630$	$11.4\substack{+3.0 \\ -2.9}$	$3.7\substack{+0.2 \\ -0.2}$	$9.3\substack{+3.4\\-4.4}$	$2.1^{+1.5}_{-0.5}$	$-0.11\substack{+0.24\\-0.49}$	$0.72\substack{+0.34 \\ -0.31}$	$0.15\substack{+0.06 \\ -0.06}$	$11.2\substack{+3.0 \\ -2.9}$	$0.42\substack{+0.12\\-0.06}$	2100
$GW190925_{-}232845$	$37.0\substack{+3.8\\-2.6}$	$15.8^{+1.1}_{-1.0}$	$21.2\substack{+6.9 \\ -3.1}$	$15.6\substack{+2.6 \\ -3.6}$	$0.11\substack{+0.17 \\ -0.14}$	$0.93\substack{+0.38 \\ -0.35}$	$0.19\substack{+0.07 \\ -0.07}$	$35.2\substack{+3.8 \\ -2.4}$	$0.72\substack{+0.07 \\ -0.06}$	1200
$GW190926_050336$	$62.9\substack{+22.7\\-11.9}$	$25.6^{+8.8}_{-5.3}$	$39.8\substack{+20.6\\-11.1}$	$23.2\substack{+10.8 \\ -9.7}$	$-0.04\substack{+0.28\\-0.33}$	$3.78\substack{+3.17 \\ -2.00}$	$0.62\substack{+0.40\\-0.29}$	$60.5\substack{+21.8\\-11.6}$	$0.65\substack{+0.14 \\ -0.19}$	2500

TABLE V. Median and 90% symmetric credible intervals for the one-dimensional marginal posterior distributions on selected source parameters for the 8 events that are new to this catalog with $p_{astro} > 0.5$, highlighted in bold in Table I. The columns show source total mass M, chirp mass \mathcal{M} and component masses m_i , dimensionless effective inspiral spin χ_{eff} , luminosity distance D_L , redshift z, final mass M_f , final spin χ_f , and sky localization $\Delta\Omega$. The sky localization is the area of the 90% credible region. A subset of the one-dimensional posterior distributions are visualized in Fig. 3. Two-dimensional projections of the 90% credible regions in the M-q and $\mathcal{M}-\chi_{eff}$ planes are shown in Fig. 4 and Fig. 5.

GWTC-3 (O3b)

Event	$\stackrel{M}{(M_{\odot})}$	$\stackrel{\mathcal{M}}{(M_{\odot})}$	$m_1 \ (M_\odot)$	$m_2 \ (M_\odot)$	$\chi_{ m eff}$	$D_{ m L}$ (Gpc)	z	$M_{ m f} \ (M_{\odot})$	$\chi_{ m f}$	$\Delta\Omega \ { m deg}^2)$	SNR
GW191103_012549	$20.0\substack{+3.7 \\ -1.8}$	$8.34\substack{+0.66\\-0.57}$	$11.8\substack{+6.2\\-2.2}$	$7.9^{+1.7}_{-2.4}$	$0.21\substack{+0.16 \\ -0.10}$	$0.99\substack{+0.50\\-0.47}$	$0.20\substack{+0.09 \\ -0.09}$	$19.0\substack{+3.8 \\ -1.7}$	$0.75\substack{+0.06 \\ -0.05}$	2500	$8.9\substack{+0.3 \\ -0.5}$
$GW191105_{-}143521$	$18.5^{+2.1}_{-1.3}$	$7.82\substack{+0.61 \\ -0.45}$	$10.7\substack{+3.7 \\ -1.6}$	$7.7^{+1.4}_{-1.9}$	$-0.02\substack{+0.13\\-0.09}$	$1.15\substack{+0.43 \\ -0.48}$	$0.23\substack{+0.07 \\ -0.09}$	$17.6^{+2.1}_{-1.2}$	$0.67\substack{+0.04 \\ -0.05}$	640	$9.7\substack{+0.3 \\ -0.5}$
$GW191109_{-}010717$	112^{+20}_{-16}	$47.5\substack{+9.6 \\ -7.5}$	65^{+11}_{-11}	47^{+15}_{-13}	$-0.29\substack{+0.42\\-0.31}$	$1.29\substack{+1.13 \\ -0.65}$	$0.25\substack{+0.18 \\ -0.12}$	107^{+18}_{-15}	$0.61\substack{+0.18 \\ -0.19}$	1600	$17.3\substack{+0.5 \\ -0.5}$
GW191113_071753	$34.5^{+10.5}_{-9.8}$	$10.7^{+1.1}_{-1.0}$	29^{+12}_{-14}	$5.9^{+4.4}_{-1.3}$	$0.00\substack{+0.37 \\ -0.29}$	$1.37^{+1.15}_{-0.62}$	$0.26\substack{+0.18 \\ -0.11}$	34^{+11}_{-10}	$0.45\substack{+0.33 \\ -0.11}$	3600	$7.9^{+0.5}_{-1.1}$
$GW191126_{-}115259$	$20.7^{+3.4}_{-2.0}$	$8.65\substack{+0.95 \\ -0.71}$	$12.1^{+5.5}_{-2.2}$	$8.3^{+1.9}_{-2.4}$	$0.21\substack{+0.15 \\ -0.11}$	$1.62\substack{+0.74 \\ -0.74}$	$0.30\substack{+0.12 \\ -0.13}$	$19.6\substack{+3.5 \\ -2.0}$	$0.75\substack{+0.06 \\ -0.05}$	1400	$8.3\substack{+0.2 \\ -0.5}$
$GW191127_{-}050227$	80^{+39}_{-22}	$29.9^{+11.7}_{-9.1}$	53^{+47}_{-20}	24^{+17}_{-14}	$0.18\substack{+0.34 \\ -0.36}$	$3.4^{+3.1}_{-1.9}$	$0.57\substack{+0.40 \\ -0.29}$	76^{+39}_{-21}	$0.75\substack{+0.13 \\ -0.29}$	980	$9.2\substack{+0.7 \\ -0.6}$
$GW191129_{-}134029$	$17.5^{+2.4}_{-1.2}$	$7.31\substack{+0.43 \\ -0.28}$	$10.7^{+4.1}_{-2.1}$	$6.7^{+1.5}_{-1.7}$	$0.06\substack{+0.16 \\ -0.08}$	$0.79\substack{+0.26 \\ -0.33}$	$0.16\substack{+0.05 \\ -0.06}$	$16.8^{+2.5}_{-1.2}$	$0.69\substack{+0.03 \\ -0.05}$	850	$13.1^{+0.2}_{-0.3}$
$GW191204_{-}110529$	$47.2^{+9.2}_{-8.0}$	$19.8\substack{+3.6 \\ -3.3}$	$27.3^{+11.0}_{-6.0}$	$19.3\substack{+5.6 \\ -6.0}$	$0.05\substack{+0.26 \\ -0.27}$	$1.8^{+1.7}_{-1.1}$	$0.34\substack{+0.25 \\ -0.18}$	$45.0^{+8.6}_{-7.6}$	$0.71\substack{+0.12 \\ -0.11}$	3700	$8.8\substack{+0.4 \\ -0.6}$
$GW191204_{-}171526$	$20.21\substack{+1.70 \\ -0.96}$	$8.55\substack{+0.38 \\ -0.27}$	$11.9\substack{+3.3 \\ -1.8}$	$8.2^{+1.4}_{-1.6}$	$0.16\substack{+0.08 \\ -0.05}$	$0.65\substack{+0.19 \\ -0.25}$	$0.13\substack{+0.04 \\ -0.05}$	$19.21\substack{+1.79 \\ -0.95}$	$0.73\substack{+0.03 \\ -0.03}$	350	$17.5^{+0.2}_{-0.2}$
$GW191215_223052$	$43.3^{+5.3}_{-4.3}$	$18.4^{+2.2}_{-1.7}$	$24.9^{+7.1}_{-4.1}$	$18.1^{+3.8}_{-4.1}$	$-0.04\substack{+0.17\\-0.21}$	$1.93\substack{+0.89 \\ -0.86}$	$0.35\substack{+0.13 \\ -0.14}$	$41.4_{-4.1}^{+5.1}$	$0.68\substack{+0.07 \\ -0.07}$	530	$11.2^{+0.3}_{-0.4}$
GW191216_213338	$19.81\substack{+2.69\\-0.94}$	$8.33\substack{+0.22\\-0.19}$	$12.1\substack{+4.6 \\ -2.3}$	$7.7^{+1.6}_{-1.9}$	$0.11\substack{+0.13 \\ -0.06}$	$0.34\substack{+0.12\\-0.13}$	$0.07\substack{+0.02 \\ -0.03}$	$18.87\substack{+2.80 \\ -0.94}$	$0.70\substack{+0.03 \\ -0.04}$	490	$18.6\substack{+0.2 \\ -0.2}$
$GW191219_{-}163120$	$32.3^{+2.2}_{-2.7}$	$4.32\substack{+0.12 \\ -0.17}$	$31.1^{+2.2}_{-2.8}$	$1.17\substack{+0.07 \\ -0.06}$	$0.00\substack{+0.07\\-0.09}$	$0.55\substack{+0.25 \\ -0.16}$	$0.11\substack{+0.05 \\ -0.03}$	$32.2^{+2.2}_{-2.7}$	$0.14\substack{+0.06 \\ -0.06}$	1500	$9.1^{+0.5}_{-0.8}$
$GW191222_{-}033537$	79^{+16}_{-11}	$33.8^{+7.1}_{-5.0}$	$45.1\substack{+10.9 \\ -8.0}$	$34.7\substack{+9.3 \\ -10.5}$	$-0.04\substack{+0.20\\-0.25}$	$3.0^{+1.7}_{-1.7}$	$0.51\substack{+0.23 \\ -0.26}$	$75.5^{+15.3}_{-9.9}$	$0.67\substack{+0.08 \\ -0.11}$	2000	$12.5\substack{+0.2\\-0.3}$
$GW191230_{-}180458$	86^{+19}_{-12}	$36.5^{+8.2}_{-5.6}$	$49.4^{+14.0}_{-9.6}$	37^{+11}_{-12}	$-0.05\substack{+0.26\\-0.31}$	$4.3^{+2.1}_{-1.9}$	$0.69\substack{+0.26 \\ -0.27}$	82^{+17}_{-11}	$0.68\substack{+0.11 \\ -0.13}$	1100	$10.4^{+0.3}_{-0.4}$
$GW200105_{-}162426$	$11.0^{+1.5}_{-1.4}$	$3.42\substack{+0.08 \\ -0.08}$	$9.0^{+1.7}_{-1.7}$	$1.91\substack{+0.33 \\ -0.24}$	$0.00\substack{+0.13 \\ -0.18}$	$0.27\substack{+0.12 \\ -0.11}$	$0.06\substack{+0.02\\-0.02}$	$10.7^{+1.5}_{-1.4}$	$0.43\substack{+0.05 \\ -0.02}$	7900	$13.7^{+0.2}_{-0.4}$
$GW200112_{-}155838$	$63.9\substack{+5.7 \\ -4.6}$	$27.4^{+2.6}_{-2.1}$	$35.6\substack{+6.7 \\ -4.5}$	$28.3\substack{+4.4 \\ -5.9}$	$0.06\substack{+0.15 \\ -0.15}$	$1.25\substack{+0.43 \\ -0.46}$	$0.24\substack{+0.07 \\ -0.08}$	$60.8\substack{+5.3 \\ -4.3}$	$0.71\substack{+0.06 \\ -0.06}$	4300	$19.8\substack{+0.1\\-0.2}$

GWTC-3 (O3b) continued

Event	$\stackrel{M}{(M_{\odot})}$	${{\cal M} \atop (M_{\odot})}$	$m_1 \ (M_\odot)$	$m_2 \ (M_\odot)$	$\chi_{ m eff}$	$D_{ m L}$ (Gpc)	z	$egin{array}{c} M_{ m f}\ (M_{\odot}) \end{array}$	$\chi_{ m f}$	$\Delta\Omega \ { m deg}^2)$	SNR
$GW200115_042309$	$7.4^{+1.8}_{-1.7}$	$2.43\substack{+0.05 \\ -0.07}$	$5.9\substack{+2.0 \\ -2.5}$	$1.44\substack{+0.85\\-0.29}$	$-0.15\substack{+0.24\\-0.42}$	$0.29\substack{+0.15 \\ -0.10}$	$0.06\substack{+0.03\\-0.02}$	$7.2^{+1.8}_{-1.7}$	$0.42\substack{+0.09 \\ -0.05}$	370	$11.3^{+0.3}_{-0.5}$
$GW200128_022011$	75^{+17}_{-12}	$32.0\substack{+7.5 \\ -5.5}$	$42.2\substack{+11.6 \\ -8.1}$	$32.6\substack{+9.5 \\ -9.2}$	$0.12\substack{+0.24 \\ -0.25}$	$3.4^{+2.1}_{-1.8}$	$0.56\substack{+0.28\\-0.28}$	71^{+16}_{-11}	$0.74\substack{+0.10 \\ -0.10}$	2600	$10.6^{+0.3}_{-0.4}$
$GW200129_065458$	$63.4_{-3.6}^{+4.3}$	$27.2^{+2.1}_{-2.3}$	$34.5\substack{+9.9 \\ -3.2}$	$28.9\substack{+3.4 \\ -9.3}$	$0.11\substack{+0.11 \\ -0.16}$	$0.90\substack{+0.29 \\ -0.38}$	$0.18\substack{+0.05\\-0.07}$	$60.3^{+4.0}_{-3.3}$	$0.73\substack{+0.06 \\ -0.05}$	130	$26.8^{+0.2}_{-0.2}$
$GW200202_{-}154313$	$17.58^{+1.78}_{-0.67}$	$7.49\substack{+0.24 \\ -0.20}$	$10.1\substack{+3.5 \\ -1.4}$	$7.3^{+1.1}_{-1.7}$	$0.04\substack{+0.13\\-0.06}$	$0.41\substack{+0.15 \\ -0.16}$	$0.09\substack{+0.03\\-0.03}$	$16.76\substack{+1.87 \\ -0.66}$	$0.69\substack{+0.03 \\ -0.04}$	170	$10.8^{+0.2}_{-0.4}$
$GW200208_130117$	$65.4\substack{+7.8 \\ -6.8}$	$27.7^{+3.6}_{-3.1}$	$37.8^{+9.2}_{-6.2}$	$27.4^{+6.1}_{-7.4}$	$-0.07\substack{+0.22\\-0.27}$	$2.23\substack{+1.00 \\ -0.85}$	$0.40\substack{+0.15\\-0.14}$	$62.5\substack{+7.3 \\ -6.4}$	$0.66\substack{+0.09\\-0.13}$	30	$10.8\substack{+0.3 \\ -0.4}$
$GW200208_{-}222617$	63^{+100}_{-25}	$19.6^{+10.7}_{-5.1}$	51^{+104}_{-30}	$12.3\substack{+9.0 \\ -5.7}$	$0.45\substack{+0.43 \\ -0.44}$	$4.1_{-1.9}^{+4.4}$	$0.66\substack{+0.54\\-0.28}$	61^{+100}_{-25}	$0.83\substack{+0.14 \\ -0.27}$	2000	$7.4^{+1.4}_{-1.2}$
$GW200209_085452$	$62.6\substack{+13.9 \\ -9.4}$	$26.7^{+6.0}_{-4.2}$	$35.6\substack{+10.5 \\ -6.8}$	$27.1\substack{+7.8 \\ -7.8}$	$-0.12\substack{+0.24\\-0.30}$	$3.4^{+1.9}_{-1.8}$	$0.57\substack{+0.25\\-0.26}$	$59.9\substack{+13.1 \\ -8.9}$	$0.66\substack{+0.10\\-0.12}$	730	$9.6\substack{+0.4 \\ -0.5}$
$GW200210_{-}092254$	$27.0^{+7.1}_{-4.3}$	$6.56\substack{+0.38 \\ -0.40}$	$24.1_{-4.6}^{+7.5}$	$2.83\substack{+0.47 \\ -0.42}$	$0.02\substack{+0.22\\-0.21}$	$0.94\substack{+0.43 \\ -0.34}$	$0.19\substack{+0.08\\-0.06}$	$26.7^{+7.2}_{-4.3}$	$0.34\substack{+0.13 \\ -0.08}$	1800	$8.4^{+0.5}_{-0.7}$
$GW200216_220804$	81^{+20}_{-14}	$32.9\substack{+9.3 \\ -8.5}$	51^{+22}_{-13}	30^{+14}_{-16}	$0.10\substack{+0.34 \\ -0.36}$	$3.8^{+3.0}_{-2.0}$	$0.63\substack{+0.37\\-0.29}$	78^{+19}_{-13}	$0.70\substack{+0.14 \\ -0.24}$	2900	$8.1\substack{+0.4 \\ -0.5}$
$GW200219_{-}094415$	$65.0^{+12.6}_{-8.2}$	$27.6^{+5.6}_{-3.8}$	$37.5^{+10.1}_{-6.9}$	$27.9^{+7.4}_{-8.4}$	$-0.08\substack{+0.23\\-0.29}$	$3.4^{+1.7}_{-1.5}$	$0.57^{+0.22}_{-0.22}$	$62.2\substack{+11.7\\-7.8}$	$0.66\substack{+0.10\\-0.13}$	700	$10.7^{+0.3}_{-0.5}$
$GW200220_061928$	148^{+55}_{-33}	62^{+23}_{-15}	87^{+40}_{-23}	61^{+26}_{-25}	$0.06\substack{+0.40 \\ -0.38}$	$6.0\substack{+4.8\\-3.1}$	$0.90\substack{+0.55\\-0.40}$	141^{+51}_{-31}	$0.71\substack{+0.15 \\ -0.17}$	3000	$7.2\substack{+0.4 \\ -0.7}$
$GW200220_{-}124850$	67^{+17}_{-12}	$28.2\substack{+7.3 \\ -5.1}$	$38.9^{+14.1}_{-8.6}$	$27.9^{+9.2}_{-9.0}$	$-0.07\substack{+0.27\\-0.33}$	$4.0^{+2.8}_{-2.2}$	$0.66\substack{+0.36\\-0.31}$	64^{+16}_{-11}	$0.67\substack{+0.11 \\ -0.14}$	3200	$8.5\substack{+0.3 \\ -0.5}$
$GW200224_222234$	$72.2\substack{+7.2 \\ -5.1}$	$31.1^{+3.2}_{-2.6}$	$40.0\substack{+6.9 \\ -4.5}$	$32.5\substack{+5.0 \\ -7.2}$	$0.10\substack{+0.15 \\ -0.15}$	$1.71\substack{+0.49 \\ -0.64}$	$0.32\substack{+0.08\\-0.11}$	$68.6\substack{+6.6 \\ -4.7}$	$0.73\substack{+0.07 \\ -0.07}$	50	$20.0\substack{+0.2 \\ -0.2}$
$GW200225_{-}060421$	$33.5^{+3.6}_{-3.0}$	$14.2^{+1.5}_{-1.4}$	$19.3\substack{+5.0 \\ -3.0}$	$14.0\substack{+2.8 \\ -3.5}$	$-0.12\substack{+0.17\\-0.28}$	$1.15\substack{+0.51 \\ -0.53}$	$0.22\substack{+0.09\\-0.10}$	$32.1^{+3.5}_{-2.8}$	$0.66\substack{+0.07\\-0.13}$	370	$12.5_{-0.4}^{+0.3}$
$GW200302_015811$	$57.8\substack{+9.6\\-6.9}$	$23.4\substack{+4.7 \\ -3.0}$	$37.8\substack{+8.7 \\ -8.5}$	$20.0\substack{+8.1 \\ -5.7}$	$0.01\substack{+0.25 \\ -0.26}$	$1.48\substack{+1.02 \\ -0.70}$	$0.28\substack{+0.16\\-0.12}$	$55.5\substack{+8.9 \\ -6.6}$	$0.66\substack{+0.13\\-0.15}$	6000	$10.8\substack{+0.3\\-0.4}$
$GW200306_{-}093714$	$43.9^{+11.8}_{-7.5}$	$17.5^{+3.5}_{-3.0}$	$28.3\substack{+17.1 \\ -7.7}$	$14.8^{+6.5}_{-6.4}$	$0.32\substack{+0.28 \\ -0.46}$	$2.1^{+1.7}_{-1.1}$	$0.38\substack{+0.24\\-0.18}$	$41.7^{+12.3}_{-6.9}$	$0.78\substack{+0.11 \\ -0.26}$	4600	$7.8\substack{+0.4 \\ -0.6}$
$GW200308_{-}173609^{*}$	$50.6^{+10.9}_{-8.5}$	$19.0\substack{+4.8 \\ -2.8}$	$36.4^{+11.2}_{-9.6}$	$13.8\substack{+7.2 \\ -3.3}$	$0.65\substack{+0.17\\-0.21}$	$5.4^{+2.7}_{-2.6}$	$0.83\substack{+0.32\\-0.35}$	$47.4^{+11.1}_{-7.7}$	$0.91\substack{+0.03 \\ -0.08}$	2000	$7.1\substack{+0.5 \\ -0.5}$
$GW200311_{-}115853$	$61.9\substack{+5.3 \\ -4.2}$	$26.6\substack{+2.4 \\ -2.0}$	$34.2^{+6.4}_{-3.8}$	$27.7^{+4.1}_{-5.9}$	$-0.02\substack{+0.16\\-0.20}$	$1.17\substack{+0.28 \\ -0.40}$	$0.23\substack{+0.05\\-0.07}$	$59.0\substack{+4.8 \\ -3.9}$	$0.69\substack{+0.07 \\ -0.08}$	35	$17.8^{+0.2}_{-0.2}$
$GW200316_{-}215756$	$21.2\substack{+7.2 \\ -2.0}$	$8.75\substack{+0.62 \\ -0.55}$	$13.1\substack{+10.2 \\ -2.9}$	$7.8^{+1.9}_{-2.9}$	$0.13\substack{+0.27 \\ -0.10}$	$1.12\substack{+0.47\\-0.44}$	$0.22\substack{+0.08\\-0.08}$	$20.2^{+7.4}_{-1.9}$	$0.70\substack{+0.04 \\ -0.04}$	190	$10.3^{+0.4}_{-0.7}$
$GW200322_{-}091133^{*}$	55^{+37}_{-27}	$15.5^{+15.7}_{-3.7}$	34_{-18}^{+48}	$14.0\substack{+16.8 \\ -8.7}$	$0.24\substack{+0.45\\-0.51}$	$3.6\substack{+7.0 \\ -2.0}$	$0.60\substack{+0.84\\-0.30}$	53^{+38}_{-26}	$0.78\substack{+0.16 \\ -0.17}$	6500	$6.0^{+1.7}_{-1.2}$

GWTC-3 (O3b)

Name 1	Inst.	FAR (ur ⁻¹)	VB SNR	Pastro	GstL FAR (ur-1)	AL SNR	Pastro	FAR (ur = 1)	TA SNR	Pastro	PyCBC FAR (vrr ⁻¹)	-broa SNR	d Pastro	PyCBC FAR (vr ⁻¹)	-BBH SNR	Pastro
GW191103_012549	HL	-	-	_	-	-	-	27	9.0	0.13	4.8	9.3	0.77	0.46	9.3	0.94
GW191105_143521	HLV	-	_	_	24	10.0	0.07	0.14	10.7	> 0.99	0.012	9.8	> 0.99	0.036	9.8	> 0.99
GW191109_010717	HL	< 0.0011	15.6	> 0.99	0.0010	15.8	> 0.99	1.8×10^{-4}	15.2	> 0.99	0.096	13.2	> 0.99	0.047	14.4	> 0.99
GW191113_071753	HLV	-	_	_	-	_	-	26	9.2	0.68	1.1×10^{4}	8.3	< 0.01	1.2×10^{3}	8.5	< 0.01
GW191126_115259	HL	-	_	_	80	8.7	0.02	59	8.5	0.30	22	8.5	0.39	3.2	8.5	0.70
GW191127_050227	HLV	-	_	_	0.25	10.3	0.49	1.2	9.8	0.73	20	9.5	0.47	4.1	8.7	0.74
GW191129_134029	HL	-	-	_	$<1.0\times10^{-5}$	13.3	> 0.99	0.013	12.7	> 0.99	$<2.6\times10^{-5}$	12.9	> 0.99	$<2.4\times10^{-5}$	12.9	> 0.99
GW191204_110529	нL	-	-	-	21	9.0	0.07	1.3×10^{4}	8.1	< 0.01	980	8.9	< 0.01	3.3	8.9	0.74
GW191204-171526	HL ·	8.7×10^{-4}	17.1	> 0.99	$<1.0\times10^{-5}$	15.6	> 0.99	$<1.0\times10^{-5}$	17.1	> 0.99	$<1.4\times10^{-5}$	16.9	> 0.99	$<1.2\times10^{-5}$	16.9	> 0.99
GW191215-223052	HLV	0.12	9.8	0.95	$<1.0\times10^{-5}$	10.9	> 0.99	0.22	10.8	> 0.99	0.0016	10.3	> 0.99	0.28	10.2	> 0.99
GW191216-213338	нv	-	-	-	$<1.0\times10^{-5}$	18.6	> 0.99	9.3×10^{-4}	17.9	> 0.99	0.0019	18.3	> 0.99	7.6×10^{-4}	18.3	> 0.99
GW191219-163120	HLV	-	-	-	-	-	-	-	-	-	4.0	8.9	0.82	-	-	-
GW191222_033537	HL ·	8.9×10^{-4}	11.1	> 0.99	$<1.0\times10^{-5}$	12.0	> 0.99	0.0099	10.8	> 0.99	0.0021	11.5	> 0.99	9.8×10^{-5}	11.5	> 0.99
GW191230-180458	HLV	0.050	10.3	0.95	0.13	10.3	0.87	8.1	9.8	0.40	52	9.6	0.29	0.42	9.9	0.96
GW200112-155838	LV	-	-	-	$<1.0\times10^{-5\dagger}$	17.6	> 0.99	-	-	-	-	-	-	-	-	-
GW200115_042309	HLV	-	-	-	$<1.0\times10^{-5}$	11.5	> 0.99	0.0055	11.2	> 0.99	$<1.2\times10^{-4}$	10.8	> 0.99	-	-	-
GW200128-022011	HL	1.3	8.8	0.63	0.022	10.1	0.97	3.3	9.4	0.98	0.63	9.8	0.95	0.0043	9.9	> 0.99
GW200129_065458	HLV	-	-	-	$<1.0\times10^{-5}$	26.5	> 0.99	-	-	-	$<2.3\times10^{-5}$	16.3	> 0.99	$<1.7\times10^{-5}$	16.2	> 0.99
GW200202-154313	HLV	-	-	-	$<1.0\times10^{-5}$	11.3	> 0.99	-	-	-	-	-	-	0.025	10.8	> 0.99
GW200208_130117	HLV	-	-	-	0.0096	10.7	0.99	0.46	10.4	> 0.99	0.18	9.6	0.98	3.1×10^{-4}	10.8	> 0.99
GW200208_222617	HLV	-	-	-	160	8.2	< 0.01	420	8.9	0.02	-	-	-	4.8	7.9	0.70
GW200209_085452	HLV	-	-	-	0.046	10.0	0.95	12	9.7	0.97	550	9.2	0.04	1.2	9.2	0.89
GW200210_092254	HLV	-	-	-	1.2	9.5	0.42	-	-	-	17	8.9	0.53	7.7	8.9	0.54
GW200216_220804	HLV	-	-	-	0.35	9.4	0.77	2.4 × 10 ³	8.8	0.02	970	9.0	< 0.01	7.8	8.7	0.54
GW200219_094415	HLV	0.77	9.7	0.85	9.9×10^{-4}	10.7	> 0.99	0.18	10.6	> 0.99	1.7	9.9	0.89	0.016	10.0	> 0.99
GW200220_061928	HLV	-	-	-	-	-	-	-	-	-	-	-	-	6.8	7.5	0.62
GW200220_124850	HL	-	-	-	150	8.2	< 0.01	1.8×10^3	8.2	0.83	-	-	-	30	7.8	0.20
GW200224_222234	HLV ·	8.8×10^{-4}	18.8	> 0.99	$< 1.0 \times 10^{-5}$	18.9	> 0.99	$< 1.0 \times 10^{-5}$	19.0	> 0.99	$< 8.2 \times 10^{-5}$	19.2	> 0.99	$< 7.7 \times 10^{-5}$	18.6	> 0.99
GW200225_060421	HL ·	8.8×10^{-4}	13.1	> 0.99	0.079	12.9	0.93	0.0049	12.5	> 0.99	$<1.1\times10^{-5}$	12.3	> 0.99	4.1×10^{-5}	12.3	> 0.99
GW200302_015811	нv	-	-	-	0.11 [†]	10.6	0.91	-	-	-	-	-	-	-	-	-
GW200306_093714	HL	-	-	-	-	-	-	410	8.5	0.81	3.4×10^{3}	7.8	< 0.01	24	8.0	0.24
GW200308_173609	HLV	-	-	-	680	8.1	< 0.01	6.9×10^{4}	8.3	0.24	770	7.9	< 0.01	2.4	8.0	0.86
GW200311_115853	HLV -	8.2×10^{-4}	16.2	> 0.99	$<1.0\times10^{-5}$	17.7	> 0.99	$<1.0\times10^{-5}$	16.5	> 0.99	$< 6.9 \times 10^{-5}$	17.0	> 0.99	$<7.7\times10^{-5}$	17.4	> 0.99
GW200316_215756	HLV	-	-	-	$< 1.0 \times 10^{-5}$	10.1	> 0.99	12	9.5	0.30	0.20	9.3	0.98	0.58	9.3	0.98
GW200322_091133	HLV	-	-	-	-	-	-	450	9.0	0.62	1.4 × 10 ³	8.0	< 0.01	140	7.7	0.08

Independent Ring-down Search (Mockdata challenge)

PHYSICAL REVIEW D 99, 124032 (2019)

Comparison of various methods to extract ringdown frequency from gravitational wave data

Hiroyuki Nakano,^{1,*} Tatsuya Narikawa,^{2,3,†} Ken-ichi Oohara,^{4,‡} Kazuki Sakai,^{5,§} Hisa-aki Shinkai,^{6,||} Hirotaka Takahashi,^{7,8,¶} Takahiro Tanaka,^{3,9,**} Nami Uchikata,^{2,4,††} Shun Yamamoto,⁶ and Takahiro S. Yamamoto^{3,‡‡}

ringdown search 60 mockdata

TABLE III. We show the values of $\overline{\delta \log f_R}$, $\sigma(f_R)$, $\overline{\delta \log f_I}$, and $\sigma(f_I)$ for various methods. The results limited to set A are given on the first law of each method, while those limited to set B are on the second.

			$\overline{\delta \log f_{\mathrm{R}}}(\%)$	$\sigma(f_{\rm R})(\%)$	$\overline{\delta \log f_{\mathrm{I}}}(\%)$	$\sigma(f_{\rm I})(\%)$
matched filtering	MF-R	A B	-12.88 -0.82	28.36 27.53	-71.51 -46.11	97.79 75.48
Lilbort Lluon Tropoformation	MF-MR	A B	6.25 2.47	17.27 10.41	-12.62	37.9 27.61
Hildert-Huan Transformation	ННТ	A B	$-13.38 \\ -8.08$	21.91 19.81	-44.11 -28.78	61.58 49.61
Auto-Regression Method	AR	A B	0.2 USA Exce 1.91	9.93 get llent 8.57	ccellent 2 6.2	38.75 Good ellent 2 34.64
Neural Network method	NN	A B	-6.64 -6.65	16.48 11.97	-15.23 { 9.96	33.96 Excellent

Auto-Regressive model (Method, general) I

Fitting data with linear func.

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_M x_{n-M} + \varepsilon$$
$$= \sum_{j=1}^M a_j x_{n-j} + \varepsilon$$

e.g.
$$x_n = Ae^{-rn\Delta t} \cos(\omega n\Delta t)$$

 $Z_1 = e^{-(r-j\omega)\Delta t}$
 $Z_2 = e^{-(r+j\omega)\Delta t}$ \longrightarrow $x_n = \frac{A}{2}(Z_1^n + Z_2^n) = (Z_1 + Z_2)x_{n-1} - Z_1Z_2x_{n-2}$

can be applied also to noisy data by adjusting M

Auto-Regressive model (Method, general) II

- find a_j (Burg method)
- find *M* (FPE final prediction error method)
- re-construct wave signal from fitted function
- apply FFT with arbitrary precision.

Auto-Regressive model vs Short FFT

The order *M* can be fixed at $2 \sim 8$.

Even for short segment, AR model shows precise powerspectrum.

freq. [mock data, SNR=40, inspiral part]

Hisaaki Shinkai (OIT) 2022/01/23 A01 Boot Camp

Auto-Regressive model (Method, general) III

$$= \sum_{j=1}^{M} a_j x_{n-j} + \varepsilon$$

- find a_j (Burg method)
- find *M* (FPE final prediction error method)
- re-construct wave signal from fitted function
- apply FFT with arbitrary precision.

characteristic eq.

$$f(z) = 1 - \sum_{j=1}^{M} a_j z^j = 0$$

$$|z_k| \text{ says amplitude,}$$

$$\arg(z_k) \text{ says frequency.}$$

Procedures

Data —> Ringdown part

Specify (freq., damping rate) by AR method

for each segment, a couple of combinations are available.

would be possible to find multi-modes

Look for the segments with constant frequencies.

Convert (freq., damping rate) to (M_final, a_final) using GR formula.

(Berti-Cardoso-Will). (Uses the redshift z by LVK catalog.)

check if three data (Hanford, Livingston, Virgo)

converges

Compare with the value (M_final, a_final) by LVK catalog.

check if the analysis is consistent with GR or having a shift

GW150914

GW150914

Hanford (SNR=20.6)

Livingston (SNR=14.2)

GW150914

Hanford (SNR=20.6)

Livingston (SNR=14.2) L100_SpectrogramAR

LV paper 🕨

f_{QNM}►

 $f_{220} = 271.8 \text{ Hz}, f_{221} = 266.0 \text{ Hz}, f_{222} = 254.7 \text{ Hz}$ $f_{210} = 380.7 \text{ Hz}, f_{211} = 225.7 \text{ Hz}, f_{200} = 252.8 \text{ Hz}$ $f_{330} = 430.9 \text{ Hz}, f_{331} = 427.4 \text{ Hz}, f_{332} = 421.1 \text{ Hz}$ $f_{320} = 387.9 \text{ Hz}, f_{310} = 351.1 \text{ Hz}, f_{300} = 320.3 \text{ Hz}$

 $(M, a) = (63.1^{+3.4}_{-3.0}, 0.69^{+0.05}_{-0.04})$

GW150914 Kerr parameter a 1.0 Kerr 0.8 param 0.6 0.4 LV paper (AR) Hanford (AR) Livingston 0.2 Mass Mass 20 40 60 80 100

GW150914

Event List ordered by SNR

GW170817GWTC-1-confident33.0 $^{+7}_{40}$ GW200129_065458GWTC-3-confident $^{+0.2}_{26.8}$ $^{+0.2}_{-0.2}$ $^{+290}_{900}$ $^{+4.3}_{-3.6}$ GW190814O3 Discovery Papers $^{+0.1}_{-1.1}$ $^{+0.1}_{-1.1}$ $^{+1.0}_{-1.1}$
GW 200129_065458 GWTC-3-confident $+0.2$ $+0.2$ $+290$ $+4.3$ GW 190814 O3 Discovery Papers -3.6 -0.1 -0.1 -0.1 -0.1
GW190814 O3 Discovery Papers $+0.1$ $+41$ $+1.0$
25.0 _{-0.2} 241 ₋₄₅ 25.8 _{-0.9}
GW150914 GWTC-1-confident 24.4 440 +150
GW190521_074359 GWTC-2 24.4 1240 +400 +7.0 1240 -570 74.7 -4.8
GW190814 GWTC-2 22.2 240 +40 +1.0 25.8 +1.0 25.8 -0.9
GW190521_074359 GWTC-2.1-confident 22.2
GW190814 GWTC-2.1-confident 20.4
GW200224_22234 GWTC-3-confident $20.0_{-0.2}^{+0.2}$ 1710_{-640}^{+490} $72.2_{-5.1}^{+7.2}$
GW200112_155838 GWTC-3-confident 19.8 +0.1 +430 +5.7 19.8 +0.2 1250 +430 -460 63.9 +5.7 1250 +460 63.9 +5.7 +430 +5.7 +430 +5.7 +5.7 +430 +5.7 +5.7 +5.7 +5.7 +5.7 +5.7 +5.7 +5.7
GW190412 O3_Discovery_Papers 19.0 +0.2 +130 +130 +3.8 +3.8 -3.9
GW190412 GWTC-2 18.9 740 +140 +3.8 740 -170 38.4 -3.7
GW191216_213338 GWTC-3-confident $18.6_{-0.2}^{+0.2}$ 340_{-130}^{+120} $19.81_{-0.94}^{+2.69}$ A
GW190412 GWTC-2.1-confident 18.2
191225_215715 O3_IMBH_marginal 17.9
GW200311_115853 GWTC-3-confident $17.8^{+0.2}_{-0.2}$ 1170^{+280}_{-400} $61.9^{+5.3}_{-4.2}$
GW191204_171526 GWTC-3-confident 17.5 +0.2 +190 20.21 +1.70 20.21 -0.96
GW191109_010717 GWTC-3-confident $17.3_{-0.5}^{+0.5}$ 1290_{-650}^{+1130} 112_{-16}^{+20}

https://www.gw-openscience.org/eventapi/html/allevents/

Event List ordered by SNR (continued)

Name	Release	Network SNR \downarrow	Distance (Mpc)	Total Mass (M $_{\circ}$)
GW190828_063405	GWTC-2	16.0	+660 2130 ₋₉₃₀	+7.7 58.0 _{-4.8}
GW170814	GWTC-1-confident	15.9	+150 600 -220	
GW190630_185205	GWTC-2	15.6	+560 890 ₋₃₇₀	+4.6 59.1 _{-4.8}
GW190630_185205	GWTC-2.1-confident	15.2		
GW190828_063405	GWTC-2.1-confident	15.2		
GW170608	GWTC-1-confident	14.9	+120 320 -110	
GW190408_181802	GWTC-2	14.7	+400 1550 ₋₆₀₀	+4.2 43.0 _{-3.0}
GW190521	O3_Discovery_Papers	+0.4 14.6 _{-0.4}	+2400 5300 ₋₂₆₀₀	+29 150 ₋₁₇
200114_020818	O3_IMBH_marginal	14.5		
GW190521	GWTC-2	14.4	+2190 3920 ₋₁₉₅₀	+39.2 163.9 _{-23.5}
GW190408_181802	GWTC-2.1-confident	14.4		
191223_014159	O3_IMBH_marginal	14.2		
GW200105_162426	O3_Discovery_Papers	13.9	+110 280 ₋₁₁₀	10.9 ^{+1.1} _{-1.2} A
GW190519_153544	GWTC-2.1-confident	13.7		
GW200105_162426	GWTC-3-marginal	+0.2 13.7 _{-0.4}	+120 270 ₋₁₁₀	11.0 +1.5 -1.4 A
GW190728_064510	GWTC-2	13.6	+260 870 ₋₃₇₀	20.6 _{-1.3} A
GW190521	GWTC-2.1-confident	13.6		
200219_201407	GWTC-3-marginal	13.6		
		11.3 -0.5	1290 -650	112 -16

AR filtering N/A (due to small *M*)

GW200129_065458

Hanford

Livingston

Virgo

LVK paper $(M, a, z) = (60.3^{+4.}_{-3.3}, 0.73^{+0.06}_{-0.06}, 0.18^{+0.05}_{-0.07})$

Network SNR=26.8

Expected form (detector frame)

- $f_{220} = 293.8 \text{ Hz}, f_{221} = 288.4 \text{ Hz}, f_{222} = 277.8 \text{ Hz}$ $f_{210} = 394.1 \text{ Hz}, f_{211} = 240.9 \text{ Hz}, f_{200} = 263.3 \text{ Hz}$ $f_{330} = 464.9 \text{ Hz}, f_{331} = 461.7 \text{ Hz}, f_{332} = 455.8 \text{ Hz}$
- $f_{320} = 414.4 \text{ Hz}, f_{310} = 371.8 \text{ Hz}, f_{300} = 336.8 \text{ Hz}$

GW200129_065458

GW200129_065458

GW200129_065458

LVK paper $(M, a, z) = (60.3^{+4.}_{-3.3}, 0.73^{+0.06}_{-0.06}, 0.18^{+0.05}_{-0.07})$

Network SNR=26.8

GW190828_063405

379Hz 366Hz 355Hz 214Hz 207Hz 201Hz

31

GW190828_063405

LV paper $(M, a, z) = (54.9^{+7.2}_{-4.3}, 0.61^{+0.18}_{-0.19}, 0.38^{+0.1}_{-0.15})$ Network SNR=15.182

 $f_{220} = 213.6 \text{ Hz}, f_{221} = 207.8 \text{ Hz}, f_{222} = 196.8 \text{ Hz}$

Spin a

Spin a

GW200311_115853

LVK paper

 $(M, a, z) = (59.0^{+4.8}_{-3.9}, 0.69^{+0.07}_{-0.07}, 0.23^{+0.05}_{-0.07})$

GW200311_115853

Network SNR=17.8

0.2 0.25 0.3 0.35 0.4 0.45 ds] from 2020-03-11 11:58:53 UTC (1267963151.0)

Spin a

LVK paper $(M, a, z) = (59.0^{+4.8}_{-3.9}, 0.69^{+0.07}_{-0.07}, 0.23^{+0.05}_{-0.07})$

0.8

0.6

0.4

0.2

15.98

15.96

Virgo

Livingston

500

450

400

350

300

250

200

150

100

50

15.7

15.8

V1_SpectrogramAR

16

16.1

16.2

16.3

15.9

L1 SpectrogramAR

16

16.02

16.04

filter

50

15.7

15.8

15.9

16

16.1

16.2

50

15.95

16

16.05

16.1

16.15

16.2

0

16.3

36

GW190910_112807

Hanford

H1_SpectrogramAR

Network SNR=13.4

LV paper $(M, a, z) = (75.8^{+8.5}_{-8.6}, 0.70^{+0.08}_{-0.07}, 0.28^{+0.16}_{-0.1})$

GW190408_181802

H1_SpectrogramAR

"GW190408_181802_H1_spectrumAR_top1.dat" using 1:2:3:4 ⊢─── "GW190408_181802_H1_spectrumAR_top2.dat" using 1:2:3:4 ⊢─── "GW190408_181802_H1_spectrumAR_top3.dat" using 1:2:3:4 ⊢───

16.1

16.1

"GW190408_181802_L1_spectrumAR_top1.dat" using 1:2:3:4 "GW190408_181802_L1_spectrumAR_top2.dat" using 1:2:3:4 "GW190408_181802_L1_spectrumAR_top3.dat" using 1:2:3:4

16.15

16.15

16.2

16.2

500

450

400

350

300

250

200

150

100

50

500

450

400

350

300

250

200

150

100

50

15.95

15.95

16

16

16.05

16.05

Virgo

L1 SpectrogramAR

358 Hz **347 Hz** 337 Hz

Network SNR=14.7

367Hz

337Hz

349Hz

388 Hz

334 Hz

356 Hz

GW190408_181802

Hanford

Livingston

Virgo

Network SNR=14.7

$$\begin{split} f_{220} &= 410.9 \text{ Hz}, f_{221} = 401.6 \text{ Hz}, f_{222} = 383.5 \text{ Hz} \\ f_{210} &= 587.5 \text{ Hz}, f_{211} = 343.3 \text{ Hz}, f_{200} = 388.9 \text{ Hz} \\ f_{330} &= 652.1 \text{ Hz}, f_{331} = 646.4 \text{ Hz}, f_{332} = 636.1 \text{ Hz} \\ f_{320} &= 589.7 \text{ Hz}, f_{310} = 536.0 \text{ Hz}, f_{300} = 490.8 \text{ Hz} \end{split}$$

Summary & Outlook

AR model x(t)

$$x_n = a_1 x_{n-1} + a_2 x_{n-2} + \dots + a_M x_{n-M} + \varepsilon$$
$$= \sum_{j=1}^M a_j x_{n-j} + \varepsilon$$

Effective for finding frequencies and damping rates of short-time data (\sim 60 pts). Data-base finding method, no templates are required.

Applied to LIGO/Virgo O1/O2/O3a & LVK O3b: Try to extract ring-down parts

Would be available for S/N >= 15, but some parameter tunings are necessary. (Time width [merger time + X ms], Band Filterings [150-450Hz])

Analysis of GWTC-3 events are ongoing. AR results of (M_final, a_final) are around the values of LV (LVK), i.e GR.