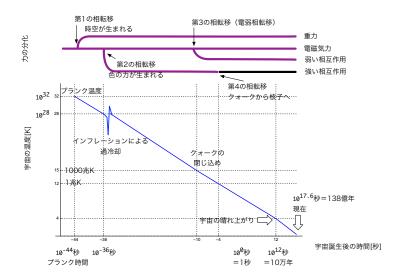

「現代物理学が描く宇宙論」(共立出版,2018)の訂正


2023.1.19 真貝寿明

初版1刷 (2018/9) について,たいへん申し訳ありませんが,次の訂正 (correction) と修正 (update) があります.このお知らせは,http://www.oit.ac.jp/is/shinkai/book/ にて更新しています.

	場所	誤	正	
カラー図	図 A.23	レプトンの上段の電荷 +2/3	-1	
p16	中ほど	『はやぶさ』は小惑星イトカワを往復して	『はやぶさ』は地球近傍小惑星のイトカワを往復	
			して	
p36	表 2.2	Ia型 ケイ素Sの吸収線がある	Ia 型 ケイ素 Si の吸収線がある	
		Ic 型 Sの吸収線も He の吸収線もない	Ic 型 Si の吸収線も He の吸収線もない	
p115	傍注	シュテファン・ボルツマン定数		
		$\sigma = 6.67053 \times 10^{-8} [\text{W m}^{-2} \text{K}^{-4}]$	$\sigma = 5.67037 \times 10^{-8} [\text{W m}^{-2} \text{K}^{-4}]$	
p155	図 5.3	(a) $\alpha + \beta + \gamma < 2\pi$	(a) $\alpha + \beta + \gamma < \pi$	
		(b) $\alpha + \beta + \gamma = 2\pi$	(b) $\alpha + \beta + \gamma = \pi$	
		(c) $\alpha + \beta + \gamma > 2\pi$	(c) $\alpha + \beta + \gamma > \pi$	
p167	図 5.17	ブランク温度,ブランク時間	プランク温度,プランク時間	
p180	13 行目	いくつもの楕円銀河の観測を行い	いくつもの渦巻銀河の観測を行い	
p180	図 5.33	〔左〕楕円銀河 Messier 101	〔左〕渦巻銀河 Messier 101	
p184	図 5.37	ビッグチリ	ビッグチル	
	図の横の本文			
p219	図 A.23	レプトンの上段の電荷 +2/3	-1	
p219	図 A.24	ブランク温度,ブランク時間	プランク温度,プランク時間	

図 A.23

以下は 修正です

以下は,	修正です.		
	場所	誤	正
p48	コラム 13	超巨大ブラックホール (super-massive black-hole)	超大質量ブラックホール (super-massive black-
		が存在していることがわかってきた. ブラックホー	hole) が存在していることがわかってきた. この観
		ルそのものは小さくて,現在の望遠鏡では「黒い	測を行ったゲンツェル (Reinhard Genzel, 1952–
		穴」を見ることまではできないが, 周囲の星やガス) とゲズ (Andrea Ghez, 1965–) は, 2020 年の
		の振る舞いから、その存在が確信されるのである.	ノーベル物理学賞を受賞した. ブラックホールそ
			のものは小さくて,直接見ることは難しい. 2019
			年4月、ブラックホールの直接撮像に初めて成功
			したという報告がなされた.世界の電波望遠鏡を
			一斉に向けて,M87 銀河の中心にある太陽の 65
			億倍の質量をもつブラックホールの姿であった.
p48	図 2.28		(キャプション追加)中心部分に超大質量ブラッ
			クホールが存在していることがわかる.
p97	図 3.53		(キャプション追加)2020 年ノーベル物理学賞受
			賞.
p157	節タイトル	ハッブルの法則	ハッブル・ルメートルの法則
p157	公式タイトル	ハッブルの宇宙膨張の法則	ハッブル・ルメートルの法則 (1927/1929 年)
p158	コラム 30		(最後に一文追加)
			2018 年 10 月,国際天文学連合 (IAU) は,投票
			の結果, ハッブル・ルメートルの法則と法則名を
			替える結論を下した.
p162	傍注追加	P.J.E. Peebles (1935–)	P.J.E. Peebles (1935–)
			ピーブルズは、宇宙論の基本となる理論を構築し
			た業績で 2019 年のノーベル物理学賞を受賞した.
p190	傍注追加		系外惑星を初めて発見したマイヨール (Michel G.
			Mayor, 1942-) とケロー (Didier Queloz, 1966-)
			は,2019年のノーベル物理学賞を受賞した.
p199	表 A.1	プランク定数 $h = 6.62606957 \times 10^{-34}$ [Js]	プランク定数は,2018 年 11 月に国際度量衡学
		$\pm 0.00000029 \times 10^{-34}$	会によって、定義となり、次の値になりました.
			$6.62607004 \times 10^{-34} \text{ [Js]}$
p221	表 A.5 追加		2019 年 ピーブルズ
			物理的宇宙モデルにおける理論的な発見
			2019年 マイヨール,ケロー
			太陽系外惑星の発見
			2020 年 ペンローズ
			ブラックホール形成の一般性についての理論
			2020年ゲンツェル、ゲズ
			天の川銀河中心に超大質量ブラックホールを発見

	場所	誤	正
p225	索引追加		ゲズ (Ghez) 48
			ケロー (Queloz) 190
			ゲンツェル (Genzel) 48
			マイヨール (Mayor) 190
p229	人名索引追加		Genzel, R. (1952–) 48
			Ghez, A. (1965–) 48
			Mayor, M. G. (1942–) 190
			Queloz, D. (1966–) 190

5.6 第2の地球はあるのか

この項は,毎年観測の進展が著しく,太陽系外惑星の発見数は年々増加しています. p190 の表 5.4 を 2023 年 1 月 現在のものとして更新すると,次のようになります.

表 1: これまでに発見された太陽系外惑星の数. Kepler 衛星 (2009–2013) のミッションは,一旦終了したものの,同衛星を用いて K2 ミッション (2014–2018) が引き続き行われた.その後 TESS(Transiting Exoplanet Survey Satellite, 2018–) に観測が引き継がれている.(2023 年 1 月 12 日現在). [http://exoplanetarchive.ipac.caltech.edu/]

	全観測	Kepler	K2	TESS
確認された太陽系外惑星	5241	2710	543	285
(confirmed planets)				
候補天体 (candidates)		2054	978	6137

	全観測合計
複数の惑星からなる系	2205
(multi-planet systems)	
ハビタブルゾーンにある星 (確定)	488
=表面温度が 180–310K のもの	

発見数
2
62
1023
3941
24
18
152
7
2
9
1