「徹底攻略 常微分方程式」(共立出版,2013)の訂正

2023/11/26 真貝寿明

初版 4 刷(2013/9/15)について,たいへん申し訳ありませんが,次の訂正があります. このお知らせは,https://www.oit.ac.jp/is/shinkai/book/ にて更新しています.(http ではなく,https になりました.ご注意ください.)

-	場所	誤	正
p45	傍注	(3) $y=1$ は特異解.	(3) $y=1$ は変数分離法では別扱いになるが、特
_		(4) $y = 0,1$ は特異解.	殊解となる.
			(4) $y=0,1$ は別扱いになるが, $y=0$ は特異解,
			y=1 は特殊解である.
p57	例 題 2.13	(傍注)例題 2.15(7) で未定係数法を用いても解	削除
	(3)	く、さらに、	Materia
p57	例題 2.13	(傍注) 例題 2.15(8) で未定係数法を用いても解	削除
	(4)	く. さらに,	
p78	(2.8.47) 式	$\frac{dm}{dv} = -\frac{m}{u+v}$	$\frac{dm}{dt} = \frac{m}{t}$
p81	例題 2.35 解		
poi	所		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
p81	図中の式	$y = r^{1/4}$	$y = (\pi/S_0)^2 r^4$
p81	研究課題 2.4	$\beta = \gamma$ (答え 2 行目) $\beta = 0.3$	$\beta = (8/50)$ 7 (答え 2 行目) $\beta = 0.4$
por	17 LINN 2 2. 1	(答え最後) $z(t)$ が感染者数の推移である.	(答え最後) $y(t)$ が感染者数の推移である.
		(答え図)	(答え図) $y(t)$ と $z(t)$ の線指示入れ替え.
p124	下から6行目	$rac{2\pi}{\omega} = 2\pi \sqrt{rac{k}{m}}$ であることを示す.	$\left rac{2\pi}{\omega} = 2\pi \sqrt{rac{m}{k}} ight.$ であることを示す.
p127	図中の文字	psg	$\frac{\omega}{\rho sg}$
p198	問題 7.5	解析解 $y = -\cos x$ と比較して	解析解 $y = -\cos x + 2$ と比較して
p207	中央付近	Integrate[関数,微分する変数]	Integrate[関数,積分する変数]
•	下から4行目	NIntegrate[関数,微分する変数]	NIntegrate[関数,積分する変数]
p221	問題 2.2	なお、 $y=0$ も特異解である.	なお、 $y=0$ も解(特殊解)である.
_	(1)		
	問題 2.2	$y = e^{\log x + C} = C_1 x$	$y = \pm e^{\log x + C} = C_1 x$
	(3)		
	問題 2.14	1行目 $e^{\int (1/x)dx} = e^{\log x + C_1} = C_2 x$ より、	$e^{\int (1/x)dx} = e^{\log x +C_1} = C_2 x $
	(1)		
	問題 2.14	2行目 $e^{\int (2/x)dx} = e^{2\log x + C_1} = C_2 x^2$ より、	$e^{\int (2/x)dx} = e^{2\log x + C_1} = C_2 x^2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	(3)		$=e^{y}$ $=e^{-y}$ $=O_{2}x^{2}x^{2}y^{2}$
p222	問題 2.29	$x^4 + y^4 + 4x^2y + 4xy^2 = C$	$x^4 + y^4 + 4x^2y + 4xy = C$
r	(1)		
p225	問題 3.31 解	例題 3.30 の円柱の場合の πr^2 と比較し π を $\sqrt{3}$	例題 3.30 の円柱の場合の πr^2 の断面積を置き換
1	答	に置き換えればよい.	えればよい
		周期 T は, $T=2\sqrt{rac{3m}{ ho\pi r^2q}}$	周期 T は, $T=2\pi\sqrt{\frac{m}{\sqrt{3}r^2\rho g}}$
p226	問題 4.5(1)	e ^{2t} (4 箇所)	e^{-2t} (4 箇所)

§7.2 の Mathematica に関するコマンド・出力は、初版 12 刷 (2021/3) より Mathematica 12.1 に対応させました。ほとんど変更はありませんが、 p211 のベクトル図の表示方法が変わっています.

• Mathematica 8以降では、PlotVectorFieldではなく、VectorPlotを使うようになっています。たとえば、次のようにすると、同様の図が描けます.

VectorPlot[{1, y/2}, {t, -2, 2}, {y, -10, 10},
 VectorPoints -> 20, AspectRatio -> 0.7,
 VectorScale -> {0.04, 0.2, Automatic}, Frame -> True]

● Mathematica 12.1 以降では、以下のようにすると、同様の図が描けます. VectorPlot[{1, y/2}, {t, -2, 2}, {y, -10, 10}, VectorPoints -> 20, AspectRatio -> 0.7, Frame -> True]