砂山や砂丘形成における「べき乗則」の出現

大阪工業大学 情報科学部 情報メディア学科 花岡信行

2017年 2月9日

目次

1	序論	3
1.1	動機	3
1.2	章構成	3
2	本論文で用いた法則	4
2.1	べき乗則	4
2.2	最小二乗法	5
3	砂山モデル	6
3.1	概要	6
3.2	シミュレーション方法..............................	6
3.3	形状の比較	7
3.4	雪崩の規模と頻度の比較...........................	8
3.5	べき乗則	11
3.6	地震との関係性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
3.7	まとめ	11
4	砂丘形成のシミュレーション	12
4.1	概要	12
4.2	2D CSモデル	12
4.3	シミュレーション方法...............................	13
4.4	形状の推移	14
4.5	100ステップごとの100ステップ前との高さの差の平均値の比較	15
4.6	べき乗則	17
5	結論	18

1 序論

1.1 動機

地球と衝突する隕石の大きさ(x)と頻度(y)や、地震の規模(x)と頻度(y)など、さまざまな 自然現象が「べき乗則」

$$y = bx^a \tag{1}$$

に従うことが知られている。べき乗則が成立すると、一般に、フラクタル構造と呼ばれる スケールによらない特徴が見られたり、背後に現象を説明するような法則が存在している 可能性が考えられる。砂漠や海岸などで見ることができる砂丘は、風によって砂が動かさ れることにより形成される。べき乗則を知り、おなじ自然現象である砂丘にもべき乗則が 見られるのではないかと疑問を持った。本研究では砂山の形成や砂丘の形成にもべき乗則 が見られるか検証するため、計算機上で砂丘形成のシミュレーションを行った。

1.2 章構成

第2章では本論文で使用する法則について説明する第3章では砂山モデルについて説明 する。第4章では砂丘形成シミュレーションについて説明する。

2 本論文で用いた法則

2.1 べき乗則

べき乗則とは、自然現象や社会現象にみられる、ある観測量*x*と*y*がべき乗に比例する法則であり、

$$y = bx^a \tag{2}$$

で表すことができる。式(2)の両辺の対数をとると

$$\log y = a \log x + \log b \tag{3}$$

となり、傾きa切片bの直線になるという特徴がある。

例えば、地震の規模と頻度の関係がある。図1は横軸が地震の規模、縦軸はその規模の地 震の頻度である。両対数グラフでこのような直線となる。

図1.地震の規模と頻度の関係 出典:[1]

2.2 最小二乗法

本研究では、得られたデータがどれだけ直線(3)に近いかどうかを検証するが、そこで 用いる最小二乗法について説明する。ある測定などで得られた数値を1次関数など特定の 関数を近似するときに誤差の2乗が最小になる係数を求める方法である。本研究で行った のは1次関数における最小二乗法であり、データ点 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ が与えられた とき

$$y = ax + b \tag{4}$$

の直線に近似するときの係数a、bは、

$$a = \frac{n \sum_{k=1}^{n} x_k y_k - \sum_{k=1}^{n} x_k \sum_{k=1}^{n} y_k}{n \sum_{k=1}^{n} x_k^2 - (\sum_{k=1}^{n} x_k)^2}$$
(5)

$$b = \bar{y} - a\bar{x} \tag{6}$$

で求めることができる。このときの誤差R²は

$$R^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (ax_{i} + b))^{2}$$
(7)

で表される。

3 砂山モデル

3.1 概要

平面上に上から砂を落としていくと砂山ができる。砂山はどこまでも高くなるのではな く、一定の高さになると雪崩を起こす。この時の、雪崩の頻度とその規模についてシミュ レーションを行った。

3.2 シミュレーション方法

平面上の50×50の格子状のセルの中央から上下左右5個のセルの範囲に、10万粒の砂粒 をランダムに落としていく。図2に示しているように、1つの格子点に一定数砂粒が積も った場合、上下左右のセルにそれぞれ一定数砂粒を移動させ、これを雪崩とした。連続し て起きた雪崩の数を雪崩の規模とし、10万粒落とした場合の雪崩の規模とその頻度につ いて調べた。本研究では、次のモデルを考えた。

- (A) 1つの格子点に4つ砂粒が積もった場合に上下左右に1つずつ砂粒を移動させた場合
- (B) 8つ砂粒が積もった場合に2つずつ移動させた場合
- (C) 12粒砂粒が積もった場合に3つずつ移動させた場合

モデル(A)のときの砂の動きの例を図2に示す。

図2. モデル(A)での雪崩による砂の動きの例

3.3 形状の比較

図3. モデル(A):4つ砂粒が積もった場合に雪崩を起こす場合の砂山の断面

図3は(A)の場合で、10万粒を落とし終えたときの砂山の断面を表したものである。なだらかな砂山ができた。

図4. モデル(B):8つ砂粒が積もった場合に雪崩を起こす場合の砂山の断面 図3に比べ、高さが高くなり砂山の傾斜が急になっていることがわかる。

図5. モデル(C):12粒砂粒が積もった場合に雪崩を起こす場合の砂山の断面 図4と比べ、砂山の傾斜が急になっていることがわかる。

3.4 雪崩の規模と頻度の比較

図6. モデル(A):4つ砂粒が積もった場合におきる雪崩の規模xとその頻度y

横軸が雪崩の規模、縦軸がその規模の雪崩が起きた頻度である。雪崩の規模とは、砂粒を 1つ落とした場合に雪崩が連鎖的に起きる回数である。雪崩が起きなかった回数は59976回 である。雪崩が起きなかった回数が突出しているため、規模の大きな雪崩の回数が0に見 えるが、実際の値は0ではない。対数で表示すると、図6になる。

8

図7. モデル (A)の砂山の雪崩の規模(連続して起こる雪崩の数)と頻度の関係 (横軸:log₁₀(規模*x*),縦軸:log₁₀(頻度*y*))

途中までの値は直線状に見えるが、途中から直線ではなくなっていくことがわかる。これ は、規模の大きい雪崩ほどその頻度が一定ではないということである。つまり、規模の大 きい雪崩の頻度は予測しにくいということがわかる。図7は、 $x \leq 10^{1.5}$ では、ほぼ直線に なっている。すなわち、精度が大きい(規模が比較的小さい)雪崩は、べき乗則にしたがっ てその数を記述することができることを示唆している。

図8. モデル (B)の砂山の雪崩の規模 (連続して起こる雪崩の数)と頻度の関係 (横軸:log₁₀(規模*x*),縦軸:log₁₀(頻度*y*))

図7と同様のグラフができたが、直線に見える範囲が狭くなっている。

図9. モデル (C)の砂山の雪崩の規模(連続して起こる雪崩の数)と頻度の関係 (横軸:log₁₀(規模*x*),縦軸:log₁₀(頻度*y*))

図7、図8と同様のグラフができたが、直線に見える範囲が狭くなっている。3つのモデル を重ねた図を図10に示す。いずれも左側(小さな規模)の雪崩の頻度は直線状になって いて、右側は広がっている。右側の広がりは頻度が小さいためと考えられる。次章ではこ れらのべき乗則との関連を調べる。

図10. 図7~図9を重ねたグラフ(横軸: $\log_{10}(規模x)$,縦軸: $\log_{10}(頻度y)$)

3.5 べき乗則

まず図 7 ~ 9 図の $x \le 10^2 = 100$ の部分で最小二乗法を用いて関数にフィッティングさせ、直線近似を求めた。 $y = bx^a$ としたときの結果を以下の表1に示す

表1. 近似式を求めた表

	モデル(A)	モデル(B)	モデル(C)
а	-1.0178	-0.9767	-0.9147
b	3.8725	3.2375	2.8223
相関係数	0.9885	0.9577	0.8792

表1より、雪崩を起こす砂粒の数が少ないほど直線に近似しているとわかる。

3.6 地震との関係性

地震の規模と頻度の関係はべき乗則が見られることが知られており、地震の規模と頻度の 関係を表すグーテンベルグ・リヒター則では、べき指数a値は-0.9~-1.0程度であり[2]、a値 が低いほど傾きが急なため、大きな地震に対して小さい地震が多くなる。砂山モデルでも べき指数は-0.9~-1.02であり、べき指数が小さいほど規模の小さな雪崩の割合が多いため、 地震との関係性が見られることがわかる。

3.7 まとめ

雪崩を起こす砂粒の数が少ないほど直線に近似しており、4つで雪崩が起きる場合の相関係数は0.9885と直線ときわめて近似しているため、砂山の雪崩の規模とその頻度はべき乗 則に従っているといえる。

4 砂丘形成のシミュレーション

4.1 概要

本章では、もう1つの現象として砂丘形成を試みた結果を報告する。砂丘は、乾燥し た砂が十分にあり、風が強いところにできやすい。砂丘上の風と風上から運ばれてくる 砂の供給により、砂丘が形成される。本研究では、H.Niiyaらによるthe dynamics of twodimensional cross sections(以下「2D CSモデル」)[2]を用いて砂丘を形成した。このモ デルについての説明は後述する。形成した砂丘の堆積の仕方にべき乗則がみられるかを調 べた。

図11. 2D CSモデル 出典:[3]

4.2 2D CSモデル

このモデルは、3次元の砂丘の2次元断面を大まかに三角形ととらえたモデルである。風 向きに対して一定の間隔で垂直に横方向に並べ、平坦で硬い平面上に一定方向の風が吹い ていると仮定する。このモデル内での砂の動きと隣接するモデル間の砂の動きを計算する ことにより、砂丘を形成する。このモデルの頂点座標を(*x_i*, *h_i*)とおき、

$$\frac{dx_i}{dt} = \frac{1}{h_i} [q(BT_E(h_i) + C) + \sum_{j=i\pm 1} (BJ_{d(j\to i)} + CJ_{u(i\to j)}) - Cf_i^{in}]$$
(8)

$$\frac{dh_i}{dt} = \frac{A}{h_i} [q(T_E(h_i) - 1) + \sum_{j=i\pm 1} (J_{d(j\to i)} - J_{u(i\to j)}) + f_i^{in}]$$
(9)

にしたがうものする。ここで、 J_u, J_d は隣接する砂の動きを表す項で

$$J_{u(i \to j)} = \begin{cases} \frac{D_u B}{2A\Delta w^2} \{h_i^2 - [h_j - \frac{A}{B}(x_j - x_i)]^2\} x_j - x_i > 0\\ \frac{D_u B}{2A\Delta w^2} \{[h_i + \frac{A}{B}(x_j - x_i)]^2 - h_j^2\} x_j - x_i \le 0 \end{cases}$$
(10)

$$J_{d(j\to i)} = \begin{cases} \frac{D_d C}{2A\Delta w^2} \{h_i^2 - [h_j - \frac{A}{C}(x_j - x_i)]^2\} x_j - x_i > 0\\ \frac{D_d C}{2A\Delta w^2} \{[h_i + \frac{A}{C}(x_j - x_i)]^2 - h_j^2\} x_j - x_i \le 0 \end{cases}$$
(11)

として、パラメータA,B,Cはそれぞれ1/10, 4/5, 1/5に、 Δw は1と設定した。 また

$$T_E(h) = \frac{h}{1.0+h} \tag{12}$$

である。x,hが頂点座標、qは風力、 f_i^{in} は風上からの砂の供給量、 D_u, D_d はそれぞれ風上 と風下の拡散係数である。Niiyaらは、このモデルを用いて、砂丘に吹く風が蛇行するよう な形を作り出すことを示している。

図11にあるように、左から風が当たると斜辺上の砂が風下側に移動すると共に、右辺の 側へ堆積していく。また、*J_d*,*J_u*の項により、三角形の高さの差に応じて、砂が移動してゆ く形になっている。

4.3 シミュレーション方法

本研究では、2D CSモデルの三角形を100用意し、砂丘の形成過程を1000ステップ 進め、100ステップごとに100ステップ前の砂丘の高さの平均値の差を調べた。以下に示す 図はすべて縦軸がステップ数*x*、横軸が高さの差*y*を常用対数化したグラフである。 初期状態は

$$h_i = 0.1, x_i = 10 \sin \frac{6.28i}{100} \tag{13}$$

とした。

本研究では、パラメータを変えた次の4つのモデルを考え、比較した。 モデル(A): D_u =0.06 D_d =0.1 q=1 モデル(B): D_u =0.1 D_d =0.1 q=1 モデル(C): D_u =0.06 D_d =0.1 q=0.5 モデル(D): D_u =0.1 D_d =0.1 q=0.5

4.4 形状の推移

図12.モデル(A)の砂丘の初期状態の形状

"sakyuke5.txt" ——

図13.モデル(A)の砂丘の500ステップ後の形状

時間の経過により、高さが高くなっている。

図14.モデル(A)の砂丘の1000ステップ後の形状

高さは高くなっているが、初期状態から500ステップまでの高さの差より、500ステップから1000ステップまでの高さの差が少ないことがわかる。

4.5 100ステップごとの100ステップ前との高さの差の平均値の比較

シミュレーション結果を以下に示す。

図15.モデル(A): D_u =0.06 D_d =0.1 q=1の場合のステップ数と高さの差 (横軸: $\log_{10}(ステップ数x)$,縦軸:高さの差の平均値y)

 $x = 10^{2.3}$ の部分で大きくグラフが変わることがわかる、直線の近似を求めたのは $x \ge 10^{2.3}$ である

図16. モデル(B):D_u=0.1 D_d=0.1 q=1の場合のステップ数と高さの差 (横軸:log₁₀(ステップ数x),縦軸:高さの差の平均値y)

図15と同様のグラフができた

図17. モデル(C): D_u =0.06 D_d =0.1 q=0.5の場合のステップ数と高さの差 (横軸: $\log_{10}($ ステップ数x),縦軸:高さの差の平均値y)

図15、図16と同様のグラフができた

図18.モデル(D): D_u =0.1 D_d =0.1 q=0.5の場合のステップ数と高さの差 (横軸: $\log_{10}($ ステップ数x),縦軸:高さの差の平均値y)

図15、図16、図17と同様のグラフができた

4.6 べき乗則

まず図15~図18の $x \ge 10^{2.3}$ の部分で最小二乗法を用いて関数にフィッティングさせ、直線近似を求めた。 $y = bx^a$ としたときの結果を以下の表2に示す

	Du=0.06 Dd=0.1 q=1	Du=0.1 Dd=0.1 q=1	Du=0.06 Dd=0.1 q=0.5	Du=0.1 Dd=0.1 q=0.5
а	-1.7881	-1.8047	-1.7543	-1.7696
b	2.0992	2.0988	2.1201	2.1199
相関係数	0.999	0.9989	0.9988	0.9987

表2. 近似式を求めた表

表2より、パラメータを変えても傾きがほぼ変わらないことがわかる。つまり、パラメ ータによらずべき指数はほぼ同様であることがわかる。

5 結論

砂山モデル、砂丘形成モデルのどちらにもべき乗則が見られ、砂山モデルでは地震の頻 度と規模の関係を表すグラフのべき指数が一致し、地震との関連性があることがわかった。 砂丘形成モデルでは、パラメータを変えても同様のべき指数が見られ、風の強さなどによ らずべき指数は変わらないことがわかった。

参考文献

- $[1] \ http://blog.livedoor.jp/toshi_tomie/archives/52034154.html$
- [2] https://ja.wikipedia.org/wiki/グーテンベルグ・リヒター則
- [3] H Niiya, A Awazu, H Nishimori. Physical Review Letters. 108,158001(2012)