一般入試前期 A 日程 1 日目

数学

□ 【数学①・数学②, どちらも解答】

ア	-1+55	イ	-2+√5	ウ	TL 3	エ	-√3
オ	10932	カ	2	牛	12	ク	48

(40点)

Ⅲ 【数学①・数学②, どちらも解答】

ア	1 2	イ	1 2
ゥ	<u>3</u> 4	I	14
オ	-	カ	2
+	3	ク	-2
ケ	2√3	コ	2√7
サ	4√3		

■ 【数学①のみ解答】(解答においては、答えだけでなく計算過程も書きなさい)

(1)
$$f'(x) = -\frac{1}{x^2}(\log x + 1)(\log x - 3)$$

(2) f'(x) = 0 を解くと、 $x = \frac{1}{-}, e^3$ である。増減表はつぎのようになる。

x	0		<u>1</u>		e^3	
f'(x)		-	- 0	+	0	-
f(x)		1	-2e	7	6	1

これより、極小値 $f\left(\frac{1}{e}\right)=-2e$ 、極大値 $f(e^3)=\frac{6}{e^3}$ である。

(35点)

(1)
$$f'(x) = -\frac{2x}{\sqrt{1-x^2}}$$

(2)
$$y = -\frac{2a}{\sqrt{1-a^2}}(x-a) + 2\sqrt{1-a^2} \pm 0$$
, $y = -\frac{2a}{\sqrt{1-a^2}}x + \frac{2}{\sqrt{1-a^2}}$

(3) $Q(\frac{1}{a}, 0)$, $R(0, \frac{2}{\sqrt{1-a^2}})$ であるから,

$$d^2 = \left(\frac{1}{a}\right)^2 + \left(\frac{2}{\sqrt{1-a^2}}\right)^2 = \frac{1}{a^2} + \frac{4}{1-a^2}$$

 $(4) \ a^2 = t, \quad g(t) = d^2 = \frac{1}{t} + \frac{4}{1-t} \quad \hbox{ とおく。このとき、} 0 < t < 1 であり,$

 $g'(t) = \frac{(3t-1)(t+1)}{t^2(1-t)^2}$ なので、増減表は

t	0		1/3		1	
g'(t)		-	0	+		となる
g(t)		V	9	7		240
			ANIAN			

よって、 $t = \frac{1}{3}$ のとき、g(t) は最小値 9 をとる。

このとき d も最小となるので、 $a = \frac{1}{\sqrt{3}}$ のとき、最小値 d = 3 である。

(40点)

V 【数学②のみ解答】

ア	2	イ	3
ゥ	<u> </u>		
エ	2k-5 k-1	オ	<u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u>
カ	k (2k-5)	牛	5 2

(35点)

- (1) f(x) = 0 の判別式を D とする。
 - $rac{D}{4} = a^2 2a^2 + a + 2 = -(a+1)(a-2) \geqq 0$ を解くと,
 - 求める a の値の範囲は $-1 \le a \le 2$ である。
- (2) $I = \int_{0}^{a} (-x^{2} + 2ax 2a^{2} + a + 2) dx = -\frac{4}{3}a^{3} + a^{2} + 2a$
- (3) $g(a)=-\frac{4}{3}a^3+a^2+2a$ とおくと、 $g'(a)=-4a^2+2a+2=-2(2a+1)(a-1)$ より 増減表は

a	-1		$-\frac{1}{2}$		1		2	
g'(a)		-	0	+	0	-		となる。
g(a)	1/3	\searrow	$-\frac{7}{12}$	7	5 33	7	$-\frac{8}{3}$	C 4 0 .
			極小		極大			

これより, g(a) は a=2 において最小値 $-\frac{8}{3}$ をとる。よって、I を最小にするような a の値は a=2 である。

(40点)