公募制推薦入試

数学

□ 【数学①・数学②, どちらも解答】

ア	80	イ	27	ウ	1+/21	工	15
オ	<u>37</u> 2	カ	164	牛	120	2	90

(40点)

Ⅲ 【数学①のみ解答】

ア	1 2	イ	28	ゥ	1023
ı	4 7	オ	<u>3</u>		
カ	4	牛	3		(30点)

□□ 【数学①のみ解答】(解答においては、答えだけでなく計算過程も書きなさい)

- $$\begin{split} (1) \;\; f(\tfrac{\pi}{4}) &= 3\sin(\tfrac{\pi}{2} + a) + 8\sin^3\tfrac{\pi}{4} = 3\cos a + 2\sqrt{2} = 2\sqrt{2} \,\, \&\,\, \mathfrak{h}\,, \\ \cos a &= 0 \,\, \text{To} \,\, \&\,\, \Im_\circ \,\, 0 \leqq a \leqq \pi \,\, \&\,\, \Im_\circ \,\,, \quad a = \tfrac{\pi}{2} \,\,\, \text{To} \,\,\&\,\, \Im_\circ \,\,. \end{split}$$
- (2) $f(x) = 3\sin(2x + \frac{\pi}{2}) + 8\sin^3 x = 3\cos 2x + 8\sin^3 x = 8\sin^3 x 6\sin^2 x + 3$ である。 $f'(x) = 24\sin^2 x \cos x 12\sin x \cos x = 12\sin x \cos x (2\sin x 1)$ より, 増減表は次のようになる。

x	0		$\frac{\pi}{6}$		$\frac{\pi}{2}$
f'(x)	0	-	0	+	0
f(x)	3	7	5 2	7	5

増減表より、 $x=\frac{\pi}{2}$ のとき最大値 5 をとり、 $x=\frac{\pi}{6}$ のとき最小値 $\frac{5}{2}$ をとる。

(3) (2) より, $3 < k \le 5$ または $k = \frac{5}{2}$ である。

(30点)

Ⅳ 【数学②のみ解答】

ア	2	イ	3	ウ	2	
エ	<u> </u>					
オ	3	カ				
牛	<u>-3-√5</u> 2	ク	<u>−3+√5</u> 2			

▼ 【数学②のみ解答】(解答においては、答えだけでなく計算過程も書きなさい)

- (1) $x \ge -3$
- (2) $x \le 4$ において、f(x) = -(x+3)(x-4) より、f'(x) = -2x+1 である。 f'(1) = -1 より、求める方程式は y = -x+13 である。
- (3) $x \ge 4$ の範囲で、曲線 f(x) と接線との交点を考える。 (x+3)(x-4) = -x+13 より、交点のx 座標は5である。求める面積は $\int_1^4 \left\{ (-x+13) + (x+3)(x-4) \right\} \, dx + \int_4^5 \left\{ (-x+13) (x+3)(x-4) \right\} \, dx \\ = \int_1^4 \left(x^2 2x + 1 \right) \, dx + \int_4^5 \left(-x^2 + 25 \right) \, dx \\ = 9 + \frac{14}{3} \\ = \frac{41}{3}$

(30点)