# 化学(工学部・情報科学部)

## 化 学

必要ならば、原子量、アボガドロ定数  $N_A$  および気体定数 R として次の値を使え。

H:1.0, C:12, O:16, Na:23, CI:35, Fe:56

 $N_{\rm A} = 6.0 \times 10^{23} / {\rm mol}$ 

 $R = 8.3 \times 10^3 \, \text{Pa} \cdot \text{L/(K} \cdot \text{mol)}$ 

I (配点 50)

次の文を読み、 $(1) \sim (8)$  の問いに答えよ。数値での解答は、**有効数字 2 桁**で示せ。

沸騰水に、質量パーセント濃度 32.2%の塩化鉄( $\square$ )水溶液 1.00 g を加えて混ぜると、水酸化 鉄( $\square$ )のコロイド粒子を含む溶液が得られた。この溶液をセロハン袋に入れ水中に浸しておくと、 $\frac{1}{2}$  コロイド粒子はセロハン袋の中にとどまり、小さい分子やイオンはセロハン袋の外に移る。この現象を利用して、水酸化鉄( $\square$ )のコロイド溶液を精製した。 $\frac{1}{1}$  精製した水酸化鉄( $\square$ )のコロイド溶液に水を加えて  $\frac{1}{2}$  Paであった。

水酸化鉄(皿)のコロイド溶液は、次のような性質を示した。 $_{iii}$ ) コロイド溶液に電極を浸して直流電圧をかけると、コロイド粒子は陰極のほうへ移動した。 $_{iv}$ ) コロイド溶液に少量の電解質を加えると沈殿が生じた。 $_{v}$ ) コロイド溶液に横から強い光線を当てると、光の進路が明るく輝いて見えた。また、 $_{vi}$ ) 限外(暗視野)顕微鏡を用いると、コロイド粒子が不規則に運動する様子を観察できた。

- (1) 沸騰水中で塩化鉄(Ⅲ)から水酸化鉄(Ⅲ)が生成する反応の化学反応式を記せ。
- (2) 水酸化鉄(Ⅲ)コロイドの精製過程で、セロハン袋の外の水に硝酸銀水溶液を加えると白色 の沈殿が生じた。この反応の化学反応式を記せ。
- (3) 下線部 i), iii) および iv) の現象を表す最も適切な語句を**解答群 1** からそれぞれ選び, 番号で記せ。

#### 解答群1

- 塩析
- ② 透析
- ③ 凝析

- ④ 再結晶
- ⑤ 電解精錬
- ⑥ 電気泳動

- (4) 下線部ii) のコロイド溶液について、 $1) \sim 3$ ) の問いに答えよ。ただし、すべての 塩化鉄(Ⅲ)は水酸化鉄(Ⅲ)コロイド粒子に変化したものとし、浸透圧はファントホッフの法則 に従うものとせよ。
  - 1) コロイド溶液に含まれる水酸化鉄(Ⅲ)の質量は、計算上何gか。
  - 2) コロイド粒子のモル質量は、計算上何 g/mol か。
  - 3) コロイド粒子1個の中に平均何個の鉄(Ⅲ)イオンが含まれるか。
- (5) 下線部 v) および vi) で観察された性質をそれぞれ何というか。
- (6) 水酸化鉄(Ⅲ)のコロイド粒子を最も効果的に沈殿させる電解質を解答群2から1つ選び. 化学式で示せ。

## 解答群 2

塩化カルシウム 塩化ナトリウム 硝酸アルミニウム 硫酸マグネシウム リン酸ナトリウム

(7) コロイドでない物質を解答群3から1つ選び、番号で記せ。

### 解答群3

- ① 牛乳
- ② 墨汁
- ③ マヨネーズ ④ 飽和食塩水
- (8) コロイドに関する記述として、誤っているものを解答群4から1つ選び、番号で記せ。

## 解答群 4

- ① コロイド粒子の直径は、約  $10^{-5} \sim 10^{-3}$  m である。
- ② デンプンやタンパク質は分子量が大きいため、1分子でも コロイド粒子としてはたらく。
- ③ 雲は、エーロゾルとよばれるコロイドの一種である。
- ④ コロイド粒子を含む溶液をゾルという。

| $\prod$ | (配点 | 50) |
|---------|-----|-----|
|         |     |     |

次の文を読み、 $(1) \sim (4)$  の問いに答えよ。

| 原子,  | 分子,  | イオンな | よどの構成 | た粒子が規 | 則正し   | く配列し | _た構 | 造をも  | つ                   | 固体を | 結晶とい | うう。 | 構成 |
|------|------|------|-------|-------|-------|------|-----|------|---------------------|-----|------|-----|----|
| 粒子間の | り結合の | しかたに | こよって, | 次に示す  | 14種類0 | の結晶に | こ分類 | iされる | ,<br>5 <sub>0</sub> |     |      |     |    |
| 金属約  | 吉晶は. | 金属原子 | こが結合し | てできた  | に結晶でる | あり.  |     | i    | 0                   | 金属結 | 晶では、 | 価電  | 子は |

特定の原子にとどまらず、結晶中のすべての原子に共有されながら、金属結晶中を移動する。 このような価電子をアという。

共有結合の結晶は、多数の原子が共有結合で結びつくことで形成され、

分子結晶は、分子が規則正しく配列した構造をもち、 iii 。 l。例えば、ヨウ素の結晶で は、ヨウ素分子が イ によって引き合い、規則正しく配列している。また、氷の結晶は、 1個の水分子に対して4個の水分子が □ □ □ によって引き合い, すきまの多い構造をとる。

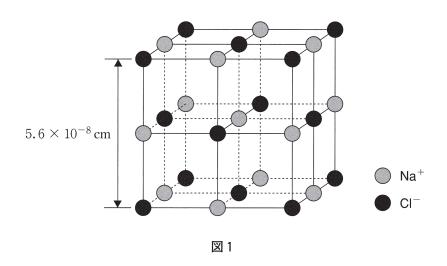
**イ** | や | **ウ** | のような分子間にはたらく力や結合を分子間力という。

イオン結晶では、陽イオンと陰イオンが静電気力で引き合って結びついている。例えば、塩化 ナトリウムの結晶では、Na<sup>+</sup>と CI<sup>-</sup>がイオン結合によって規則正しく配列している。イオン結晶 は、 iv 。

(1) i  $| \sim |$  iv | にあてはまる性質を解答群1から選び,番号で記せ。ただし, 重複して選んではいけない。

### 解答群1

- ① 固体では電気を通さないが、液体や水溶液になると電気をよく通す
- ② 硬くて、融点が非常に高い
- ③ 電気や熱をよく通し、展性・延性に富む
- ④ 軟らかくて、融点が低い
- (2) 共有結合の結晶を解答群2からすべて選び、番号で記せ。


### 解答群 2

① フッ化ナトリウム ② 石英 ③ ダイヤモンド

④ 銀

⑤ ドライアイス ⑥ 酸化マグネシウム

- (3) ア  $\sim$  ウ にあてはまる最も適切な語句を記せ。
- (4) **図1**に,塩化ナトリウムの単位格子を示す。1)  $\sim$ 3) の問いに答えよ。ただし,  $5.6^3 = 176$  とせよ。
  - 1)単位格子中に含まれるNa+は何個か。
  - 2) 単位格子の質量は何gか。有効数字2桁で示せ。
  - 3) 塩化ナトリウムの結晶の密度は何  $g/cm^3$  か。**有効数字 2 桁**で示せ。



## Ⅲ (配点 50)

次の〔1〕および〔2〕の文を読み、(1)~(8)の問いに答えよ。構造式はすべて**例1**にならって記せ。

[1] 炭化水素の水素原子をヒドロキシ基で置換した化合物をアルコールという。また、酸素原子に2つの炭化水素基が結合した化合物をエーテルという。同じ分子式をもつアルコールとエーテルは、 ア 異性体であり、異なる性質を示す。

1-ブタノールには、1-ブタノール以外に **イ** 種類の **ア** 異性体がある。 そのうち、 **ウ** 種類はエーテルに分類される。

- (1) ア にあてはまる語句を記せ。
- (2) **イ** および **ウ** にあてはまる**整数**を記せ。
- (3) 同じ分子式のアルコールとエーテルを比べたとき,エーテルの性質として適切なもの を**解答群 1** から 1 つ選び,番号で記せ。

## 解答群1

- ① 水に溶けやすい。
- ② 沸点が低い。
- ③ 過マンガン酸カリウムで酸化される。
- ④ ナトリウムと反応する。
- (4) 1-ブタノールの異性体のうち、第三級アルコールの名称と構造式を記せ。

[2] アルケンをオゾン  $O_3$  により分解(オゾン分解)すると、次のように炭素 - 炭素二重結合が切断され、アルデヒドまたはケトンが生成する。 $R^1 \sim R^4$  は、炭化水素基または水素原子を示す。

アルケンAをオゾン分解したところ,2種類の化合物BとCが生成した。Bは, $_{i}$  <u>空気</u> 中で加熱して表面を酸化した銅線をメタノールの蒸気に触れさせることによっても得られる。一方, $\mathbf{C}$  は, $_{ii}$  <u>酢酸カルシウムの熱分解</u>によっても得られる。

Bは刺激臭のある無色の気体で、水によく溶けた。また、Bにフェーリング液を加えて加熱すると、 $_{iii}$  赤色沈殿が生じた。一方、Cは芳香のある無色の液体で、水にも有機溶媒にもよく溶けた。また、Cにヨウ素と水酸化ナトリウム水溶液を加えて反応させると、特有の臭気をもつ $_{iiv}$  黄色沈殿が生じた。

- (5) **B**および**C**の名称と構造式をそれぞれ記せ。
- (6) BおよびCについて、下線部i)およびii)で起こる反応の化学反応式を記せ。
- (7) 下線部iii) および iv) の化合物の化学式を記せ。
- (8) Aの名称と構造式を記せ。

例 1

$$\begin{array}{c} O \\ CH_3^-C-O^-CH_2 \\ H \\ C=C \\ H \\ CH_3^-CH^-CH_2 \\ CH_2^-C-CH_2^-C-OH \\ CH_2^-C-CH_2^-C-OH \\ O \\ O \\ \end{array}$$