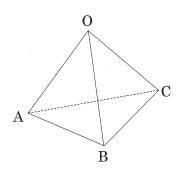
数学〔数学①(工学部)、数学②(工学部・情報科学部・知的財産学部)〕


Ⅰ 【数学 ①・数学 ②,どちらも解答】

次の空所を埋めよ。(配点 40)

- (1) 整式 P(x) を x+3 で割ると余りが 1, P(x) を x-2 で割ると余りが 11 となるとき, $P(-3) = \boxed{ \textit{r} }$ であり,P(x) を x^2+x-6 で割ると余りは $\boxed{ \text{ } }$ となる。
- (2) $i^2=-1$ とする。 $\alpha=1+2i,\ \beta=-1+i,\ \gamma=-10-11i$ のとき, $\frac{\gamma-\alpha}{\beta-\alpha}\ \emph{δ}\ a+bi\ (a,b\ \emph{t}$ は実数) の形で表すと a= $\ \dot{\ \ \ }$ $\ \dot{\ \ \ }$ $\ \dot{\ \ \ }$ である。
- (3) $\sqrt{3}\sin x + \cos x = 2\sin\left(x + \boxed{x}\right)$ である。ただし, $0 \le \boxed{x} < 2\pi$ とする。また, $0 \le x < \pi$ のとき, $\sqrt{3}\sin x + \cos x \ge 1$ となる x の値の範囲は $0 \le x \le \boxed{\pi}$ である。
- (4) 5 枚の硬貨を同時に投げたとき、「表が4 枚で、裏が1 枚」となる確率は キ であり、「表が3 枚で、裏が2 枚」または「表が2 枚で、裏が3 枚」となる確率は 0 である。

┃ ┃ ┃ ┃ 【数学 ①・数学 ②,どちらも解答】

1辺の長さが 1 の正四面体 OABC について $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ とする。 また,辺 OA を 1:1 に内分する点を D,辺 OB を 2:1 に内分する点を E,辺 OC を s:(1-s) に内分する点を F とする。ただし,0 < s < 1 である。 次の空所を埋めよ。 (配点 35)

- (1) $\overrightarrow{OE} = \boxed{r} \overrightarrow{b}$ である。さらに、 $\triangle DEF$ の重心を G とするとき、 $\overrightarrow{OG} = \boxed{ } \overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF})$ と表すことができる。
- (2) 直線 AG 上にある点を P とする。

 $\overrightarrow{AP} = t \overrightarrow{AG} (t \text{ は実数}) \text{ とするとき,}$

$$\overrightarrow{AP} = \overrightarrow{D} t \overrightarrow{a} + \overrightarrow{L} t \overrightarrow{b} + \frac{1}{3} st \overrightarrow{c}$$

と表すことができる。

さらに、点 P が平面 OBC と直線 AG との交点のとき、

(3) 辺 BC の中点を M とする。点 P が線分 OM 上にあるとき,s= カ であり, そのときの \overrightarrow{OP} の長さは キ である。

┃Ⅲ┃ 【数学 ① のみ解答】

関数 $f(x) = \cos x - \sin x \cos x$ について、次の問いに答えよ。 ただし、 $0 \le x \le \pi$ とする。(配点 35)

- (1) 曲線 y = f(x) と x 軸との共有点の座標を求めよ。
- (2) f'(x) = 0 となる x の値を求めよ。
- (3) f(x) の増減を調べ、y = f(x) のグラフをかけ。ただし、凹凸は調べなくてよい。
- (4) 定積分 $\int_0^\pi |f(x)| dx$ の値を求めよ。

Ⅳ 【数学 ① のみ解答】

kを定数とし、曲線 $C: y = \log(x+k)$ と直線 y = 1 との交点の座標を (a,1) とする。 次の問いに答えよ。(配点 40)

- (1) aをkで表せ。
- (2) 曲線 C が原点 O を通るとき、定数 k の値を求めよ。
- (3) k を (2) で求めた値とするとき、曲線 C、x 軸および直線 x=a で囲まれた図形の面積を求めよ。
- (4) k を (2) で求めた値とするとき、曲線 C、y 軸および直線 y=1 で囲まれた図形を y 軸のまわりに 1 回転してできる回転体の体積を求めよ。

$oxed{V}$ 【数学 ② のみ解答】

 $a_{10}=32$, $a_{15}=1024$ である等比数列 $\{a_n\}$ について、次の空所を埋めよ。(配点 35)

- (1) 数列 $\{a_n\}$ の初項は ア であり、公比は イ である。

|Ⅵ| 【数学 ② のみ解答】

 $f(x)=x^2+kx+2k-3$ について、方程式 f(x)=0 が異なる 2 つの実数解 α 、 β をもつとする。次の問いに答えよ。ただし、 $\alpha<\beta$ であり、k は定数とする。(配点 40)

- (1) kの値の範囲を求めよ。
- (2) $(\beta \alpha)^2$ を k で表せ。
- (3) $F(x)=\int_{\alpha}^{x}f(t)\,dt$ とする。 $F(x)=A(x-\alpha)^3+B(x-\alpha)^2$ の形で表すとき,k を含まない式で A,B を表せ。
- (4) 曲線 y=F(x) 上に点 P, Q をとる。ただし,F(x) は P の x 座標で極大となり,Q の x 座標で極小となる。このとき,直線 PQ の傾きが $-\frac{5}{6}$ になるような k の値をすべて求めよ。