数学

□ 【数学①・数学②, どちらも解答】

ア	4	イ	1	ウ	-2	工	1
オ	<u>5</u> 2	カ	15	丰	<u>-1</u>	ク	<u>√33</u> 8

(40点)

Ⅲ 【数学①・数学②, どちらも解答】

ア	2	イ	1	ウ	<u>π</u> 3
工	11 70				
オ	8	カ	-1		

(30点)

$| \parallel \parallel |$ 【数学①のみ解答】(解答においては、答えだけでなく計算過程も書きなさい)

(1)

(i)
$$\alpha^2 = -2 + 2\sqrt{3}i$$
 $\frac{1}{\alpha} = \frac{1 - \sqrt{3}i}{4} = \frac{1}{4} + \left(-\frac{\sqrt{3}}{4}\right)i$

(ii) $lpha^6=64$ より $z^6=64$ の虚数解を $lpha_1,\ lpha_2,\ lpha_3,\ lpha_4$ とおくと $z^{6} - 64 = (z^{2} - 4)(z^{4} + 4z^{2} + 16) = (z + 2)(z - 2)(z - \alpha_{1})(z - \alpha_{2})(z - \alpha_{3})(z - \alpha_{4})$ $\therefore \alpha_1 \alpha_2 \alpha_3 \alpha_4 = 16$

(2)

(i)
$$f'(x) = -x^{n-1}((n+1)x - n)$$

x	0		$\frac{n}{n+1}$	
f'(x)		+	0	_
f(x)		7	極大	>

$$x = \frac{n}{n+1}$$
 のとき極大

(ii)
$$A_n = \int_0^1 f(x)dx = \int_0^1 (x^n - x^{n+1})dx = \frac{1}{n+1} - \frac{1}{n+2}$$
$$\therefore \sum_{n=1}^\infty A_n = \sum_{n=1}^\infty \left(\frac{1}{n+1} - \frac{1}{n+2}\right) = \lim_{N \to \infty} \left(\frac{1}{2} - \frac{1}{N+2}\right) = \frac{1}{2}$$

(40点)

|V|【数学①のみ解答】(解答においては、答えだけでなく計算過程も書きなさい)

$$(1) \qquad f'(x) = \frac{\sqrt{x} - 2}{2x}$$

$$x=4$$
 で極小 極小値 $2-2\log 2$

(3)
$$g(x) = xe^{\sqrt{x}-\log x} = xe^{\sqrt{x}}e^{\log x^{-1}} = xe^{\sqrt{x}}x^{-1} = e^{\sqrt{x}}$$
 \downarrow 0 $\sqrt{a} = \log 3$ $\therefore a = (\log 3)^2$

(4)
$$\int_{1}^{(\log 3)^2} e^{\sqrt{x}} dx = \int_{1}^{\log 3} e^t \cdot 2t dt = \left[2te^t \right]_{1}^{\log 3} - \int_{1}^{\log 3} 2e^t dt = 6\log 3 - 6$$

▼ 【数学②のみ解答】

ア	6	イ	-2	ゥ	$\chi^2 + 5\chi + 4$
工	14				
オ	3a-5	カ	10a²-50a+65	丰	V 5
þ	2	ケ	6		

(40点)

(1) k = 6

(2)
$$(x^2 - 2x + 3) - (-x^2 + 2x + 3) = 2x^2 - 4x = 2x(x - 2)$$
 $\downarrow 0$ $a = 0, b = 2$

(3)
$$S(t) = -\int_{t/2}^{t} (2x^2 - 4x)dx = -\left[\frac{2}{3}x^3 - 2x^2\right]_{t/2}^{t} = -\frac{7}{12}t^3 + \frac{3}{2}t^2$$

(4)
$$S'(t) = -\frac{7}{4}t^2 + 3t = -\frac{7}{4}t\left(t - \frac{12}{7}\right)$$

t	0		$\frac{12}{7}$		2
S'(t)		+	0	_	
S(t)		7	$\frac{72}{49}$	×	

$$\therefore \ t = \frac{12}{7}$$

物理

I

軍動量	$\frac{m_1 + m_2}{m_1 m_2}$		$E = -\frac{1}{2} G \frac{m_1 m_2}{\ell}$
力積	3	4)	E
ウ作用・反作用	カケファラーの第3		0 0
1) 運動量の有	口は保存する		半 径: 大きくなる・小さくなる
2) 等速直線	運動	5)	角速度: 大きくなる・小さくなる 速くなる・遅くなる
運動方程式 $\mu $		6)	
			m_1

 \blacksquare

ァ 大きい	$\frac{1}{r^2}$ $\frac{R^3}{r^2}$
1 a	3) 4 た
ゥ クーロン	$N = 4\pi k_0 \times \frac{4}{3}\pi k_0^3 p$ $= E \times 4\pi r^2 t y$
± 4π k ₀ Q	$E = \frac{h}{4\pi r^2}$ $= \frac{4}{3}\pi h_0 \rho \times r$
	5) - 4 Tkop&x
	π koρq
$\frac{16}{3} \pi^2 k_0 R^3 \rho$	6) 41崔

(60点)

7 <u> </u> A T	$\begin{array}{c c} A & & & \\ & &$
* 共鳴	$N = \frac{x_N + x_2 - 2x_1}{x_2 - x_1}$
定常	$ L = x_N + x_1$
$\frac{1}{2}(x_2 - x_1)$	
$\frac{1}{2(x_2-x_1)}$	2(L+2a) 音座は温度とともに増大するで 振動数を一定にするためには しを長くまればで、1
$+ a = \frac{x_2 - 2}{2}$	3×1

(45点)

化学

Ι

(1)	1/-1/"-	· iti	"ッシュ	(2)	3 a	CN	1013
(3)	4 V ² 27 Q ² (L ² /mol ² :	(4)	2aRT V (Pa)	(5)	6aRT V (Pa)	(6)	Kp = Kc R>T > [Pa-2]
(7)	1)	2	3	3)	3	(8)	0.64 倍

(50点)

 \blacksquare

(1) 7	@ 1 ® [†]	0	т 9	^オ []
(2)	8 (1) 2 (1)	(3)	3)	4)
(4)	28°C	(5)	2.7	9
(6)	Ca CO3 + 2 HQ -	⇒ Ca	U2 + C02 +	H ₂ O
(7)	Ca (03 + CO2 + Y	20 -	-> Ca(HCO3))2
(8)	1.5 mol			

(50点)

	^ ヘッスツルデビビ	B安息香酸	c ベンシャレアレコール
(1)	€-H	C-0H	€>- CH2- OH
(2)	CH3 TOH	(4) 構造異性体	
(5)	OH 0 - CH3	e 0-C-CH3	(6) OH O !!-O-Na

生物

問題番号 (配点)		設問	解答 番号	正答	問題番号 (配点)	設	問	解答番号	正答
			1	6				26	2
			2	1				27	4
		1)	3	(1)				28	<u>16</u>
		1)	4	16				29	13
			5	8			1)	30	19
			6	9			1)	31	<u>14</u>)
	(1)	2)	7	3				32	8
		3)	8	1				33	6
		ア	9	*(1) . (E)		(1)		34	15
		4)	10	*1.5				35	11)
		4) イ	11	*(3) • (5)			2)	36	4
I			12		(75点)			37	3
		5)	13	2			3)	38	7
(75点)		6)	14	3				39	1
		1)	15	19			4)	40	1
			16	10			5)	41	3
			17	17)			6)	42	5
		2)	18	3				43	4
		3)	19	3				44	12
	(2)		20	12)			1)	45	2
			21	19		(2)		46	5
		4)	22	(1)		(2)		47	6
			23	<u>(14)</u>			2)	48	1
			24	2			3)	49	2
		5)	25	1			4)	50	1

[※]印の正答は順序を問わない。

英語

問題番号 (配点)	設問	解答番号	正答	
I -	(1)	1	1)	
		2	3	
	(2)	3	2	
(25点)		4	3	
	(3)	5	4	
	(1)	6	4	
I	(2)	7	2	
	(3)	8	1	
(25点)	(4)	9	3	
	(4)	10	4	
	(1)	11	1)	
	(2)	12	4	
	(3)	13	4	
(25点)	(4)	14	2	
	(5)	15	3	
	(1)	16	4	
		17	1)	
		18	3	
	(2)	19	2	
IV -	(3)	20	2	
	(4)	21	1)	
(55点)	(5)	22	4	
	(6)	23	2	
	(7)	24	4	
	(8)	25	** (a) (F)	
		26	*3 • 5	
	(1)	27	3	
V		28	2	
(20点)		29	1)	
	(2)	30	4	

国語

			v	v	
問題番号	配点	設問	解答番号	正答	問題番号
	75点	問 1	1	知見	
			2	有無	
			3	起因	
			4	じょうじゅ	
			5	加担	
		問2	6	5	
I			7	6	
		問3	8	3	
		問4	9	2	
		問5	10	6	
		問6	11	4	
		問7	12	5	
		問8	13	4	
		問 9	14	3	
		問10	15	1	
		問11	16	<u>8</u> 7	
		問12	17		
		問13	18	*1.8	
			19		

問題番号	配点	設問	解答 番号	正答
	75点	問 1	20	隔離
			21	妖術
			22	繁殖
			23	寄稿
			24	留意
			25	析出
		問 2	26	5
			27	1
			28	1
		問3	29	4
		問4	30	2
		問5	31	2
		問6	32	3
		問7	33	3
		問8	34	6
		問 9	35	2
		問10	36	3