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Figure 6 k times of 𝜆𝜆 = 0.612003 on the standard normal distribution with circle and square. 

 
 
 In the same way, we can consider that the probability point 𝑥𝑥 = 0.0 gets the proportion 1 ∶ 1 ∶ 2 since all points in the 
left of the top of Figure 5 are converging at one point 𝑥𝑥 = 0.0 such as the point shown in the left of the bottom of Figure 5. 
That is also described as 

𝛷𝛷(−𝑥𝑥) ∶  𝛷𝛷(𝑥𝑥) ∶  𝛷𝛷(−𝑥𝑥) +  𝛷𝛷(𝑥𝑥) = 1/2 ∶ 1/2 ∶ 2/2 = 1 ∶ 1 ∶ 2, ∵ 𝑥𝑥 = 0.0. (4.9) 

 Therefore, we clarify that the tangent lines whose slopes are equal to the probabilities 𝛷𝛷(−𝑥𝑥) and 𝛷𝛷(𝑥𝑥) show the relations 
between a circle and a square based on the probabilities by using Pythagorean theorem in this section if 𝑥𝑥 is given as a real 
number shown in Figure 6. These mathematical formulations satisfy Equations (4.5) and (4.6) based on 𝜙𝜙(𝑥𝑥)  and 
𝜙𝜙(𝑥𝑥)/ 𝛷𝛷(𝑥𝑥) . From above mentioned, we can also explain similar characterizations on 𝑥𝑥 = 𝜂𝜂(= 0.30263084)  and 𝑥𝑥 =
0.506054 shown in Figure 5. We can confirm that the values 𝑥𝑥 = 𝜂𝜂 which brings us the Mills ratio is equal to 1.0 and 𝑥𝑥 =
0.506054 whose meaning shows 𝑥𝑥 = 𝜙𝜙(𝑥𝑥)/𝛷𝛷(𝑥𝑥). These points are also geometrically attractive shown in Figures 5 and 6. 
 Furthermore, we realized that a real number 𝑥𝑥 as probability point of standard normal distribution brings us the symmetric 
relations and geometric characterizations by circle and square about standard normal distribution by using Pythagorean theorem 
for winners, losers, and their banker shown in Figure 6.  
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5. Conclusions 
 In this paper, we dealt with the symmetric relations and the geometric characterizations about a standard normal distribution 
by circle and square from the view point without imaging the height of densities such as Egyptian pictures in the ancient era. 
 First, we can clarify that the general solutions as the integral form of cumulative distribution functions of standard normal 
distribution, Mills ratio, and inverse Mills ratio are shown as a mathematical formulation in section 3. In this case, we can 
confirm the integrals are related to inverse of Mills ratio. Second, from these tendencies, we can also get the modified intercept 
forms geometrically and symmetrically. We can understand these equations for winners, losers, and their banker according to 
the probability points. When the bottom line of the square is located on the height 𝑣𝑣 = 0.0, these probability points are 𝑢𝑢 =
±𝜆𝜆 = ±0.612003 which are illustrated as the special case in our studies. Third, we can confirm that the integral form of a 
cumulative distribution function of standard normal distribution is expressed as Self-adjoint differential equation. 
 As described above, we can reconfirm the geometric characterizations about 𝜆𝜆 = 0.612003 with considering square, circle, 
and normal distribution as the special modeling throughout this study. Furthermore, we can also realize there are many similar 
tendencies from European through Oriental historical cultures close to the relations between circles and squares such as 
Vitruvian man by Da Vinci [6], Squaring the Circle [7], and Mandalas [8]. There might not be related to normal distribution 
directly. However, the ancient Egyptian drawing styles enable us to illustrate symmetric relations and geometric 
characterizations between standard normal distribution and inverse Mills ratio with circle and square by using Pythagorean 
theorem as one of the greatest ancient Greek mathematical tools. We would like to expect that our proposals will be useful and 
contributed in the other fields as well as the statistical areas since our suggested charts and figures should be much simpler and 
more powerful than we thought. 
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