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With a purpose of constructing a robust evolution system against numerical instability for integrating

the Einstein equations, we propose a new formulation by adjusting the ADM evolution equations with

constraints. We apply an adjusting method proposed by Fiske (2004) which uses the norm of the

constraints, C2. One of the advantages of this method is that the effective signature of adjusted terms

(Lagrange multipliers) for constraint-damping evolution is predetermined. We demonstrate this fact by

showing the eigenvalues of constraint propagation equations. We also perform numerical tests of this

adjusted evolution system using polarized Gowdy-wave propagation, which show robust evolutions

against the violation of the constraints than that of the standard ADM formulation.
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I. INTRODUCTION

The standard way for integrating the Einstein equations
is to split spacetime into space and time. The Arnowitt-
Deser-Misner (ADM) formulation [1,2] provides the fun-
damental spacetime decompositions. However, it is known
that the set of the ADM evolution equations is not appro-
priate for numerical simulations such as the coalescences
of the binary neutron-stars and/or black holes, which are
the main targets of gravitational wave sources, and which
requires quite long-term time integration.

In order to perform an accurate and stable long-term
numerical simulation in the strong gravitational field, we
need to modify the ADM evolution equations. This is
called the ‘‘formulation problem in numerical relativity’’
[3–5].

The origin of the formulation problem is the violation of
constraints, which triggers the blowup of simulations. The
discretization of equations raises truncation errors inevita-
bly, so that we have to adjust the evolution system which is
robust for error-growing modes. Several formulations are
suggested and applied; among them, the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulation [6,7], the
generalized-harmonic (GH) formulation [8,9], and the
Kidder-Scheel-Teukolsky (KST) formulation [10] are ap-
plied widely for the inspiral black-hole binary mergers.
(Many numerical simulations are reported, but we here cite
the works [11,12] for applications of the BSSN formula-
tion, [13] for the GH formulation, and [14] for the KST
formulation). There are also many other formulations
which are waiting to be tested [15–19].

The current succeeded large-scale numerical simula-
tions are applying such modern reformulations, but also
using the ‘‘constraint-damping’’ technique, which is ob-
tained by adding the constraint terms to evolution equa-
tions. The additional constraint-damping terms are
reported to be the key implementation in BSSN and GH
systems (e.g. [20,21]). We [16,22,23] systematically inves-
tigated how the additional constraint terms change the
original evolution systems, under the name ‘‘adjusted sys-
tems.’’ As we will review in Sec. II, monitoring the stabil-
ity of the evolution is equivalent to check the constraint
propagation equations (dynamical equations of con-
straints). Therefore, we proposed to analyze the eigenval-
ues of the constraint propagation equations, which can
predict the violation of constraints before we try actual
simulations.
Based on the same motivation with this ‘‘adjusted sys-

tem,’’ Fiske [24] proposed an adjustment which uses the
norm of constraints, C2, which we call the ‘‘C2-adjusted
formulation.’’ He applied this method to the Maxwell
equations, and reported that this method reduces the con-
straint violations for a certain range of the coefficient. An
advantage of this C2-adjusted formulation is that the effec-
tive signature of the coefficients is predetermined. In this
article, we apply the C2-adjusted formulation to the ADM
evolution equations, since the ADM formulation is one of
the most basic evolution systems in general relativity. We
show the eigenvalue analysis of the constraint propagation
of this set, and also demonstrate numerical evolutions.
Before the numerical relativity groups faced the formu-

lation problem, Detweiler [25] suggested another adjust-
ment based on the ADM evolution equations. He proposed
a particular combination of adjustments which make the*tsuchiya@akane.waseda.jp
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norm of constraints damp down. The story is quite similar
to this work. However, Detweiler’s method is restricted
with the maximal slicing condition, K ¼ 0, and also the
behavior except the flat space is unknown. We also show
numerical demonstrations of Detweiler’s evolution equa-
tion for a comparison.

We compare the violations of the constraints between
the standard ADM, Detweiler’s ADM, and C2-adjusted
ADM formulations. We use the polarized Gowdy-wave
evolution which is one of the comparison test problems
as is known to the Apples-with-Apples test beds [26]. The
models precisely fixed up to the gauge conditions, bound-
ary conditions, and technical parameters, therefore test
beds are often used for comparison between formulations
[27–29].

The plan of this article is as follows. We review the idea
of adjusted systems and C2-adjusted formulation in Sec. II.
We also describe a recipe for analyzing the constraint
propagation with its eigenvalue analysis which we call
the constraint amplification factors (CAFs). In Sec. III,
we apply the C2-adjusted formulation to the ADM equa-
tions and show its CAFs. We also review Detweiler’s
formulation in Sec. II. We show our numerical evolutions
in Sec. IV, and we summarize this article in Sec. V. In this
article, we only consider the vacuum spacetime, but the
inclusion of matter is straightforward.

II. THE IDEA OFADJUSTED SYSTEMS AND
C2-ADJUSTED SYSTEMS

A. The idea of adjusted systems

We review the general procedure of rewriting the evo-
lution equations which we call adjusted systems
[15,16,22,23]. Suppose we have dynamical variables ui

which evolve along with the evolution equations,

@tu
i ¼ fðui; @jui; . . .Þ; (2.1)

and suppose also that the system has the (first class) con-
straint equations,

Caðua; @jua; . . .Þ � 0: (2.2)

We propose to study the properties of the evolution equa-
tion of Ca (which we call the constraint propagation),

@tC
a ¼ gðCa; @iC

a; . . .Þ; (2.3)

for predicting the violation behavior of constraints, Ca, in
time evolution. Equation (2.3) is theoretically weakly zero,
i.e. @tC

a � 0, since the system is supposed to be the first
class. However, the free numerical evolution with the dis-
cretized grids introduces constraint violation at least the
level of truncation error, which sometimes grows to stop
the simulations. The set of the ADM formulation has such
a disastrous feature even in the Schwarzschild spacetime,
as was shown in [23].

Such features of the constraint propagation equations,
(2.3), will be changed when we modify the original evolu-
tion equations. Suppose we add the constraint terms to the
right-hand side of (2.1) as

@tu
i ¼ fðui; @jui; . . .Þ þ FðCa; @jC

a; . . .Þ; (2.4)

where FðCa; . . .Þ � 0 in principle but not exactly zero in
numerical evolutions, then (2.3) will also be modified as

@tC
a ¼ gðCa; @iC

a; . . .Þ þGðCa; @iC
a; . . .Þ: (2.5)

Therefore we are able to control @tC
a by an appropriate

adjustment FðCa; @jC
a; . . .Þ in (2.4). There exist various

combinations of FðCa; @jC
a; . . .Þ in (2.4), and all the alter-

native formulations are using this technique. Therefore,
our goal is to find out a better way of adjusting the
evolution equations which realizes @tC

a � 0.

B. The idea of C2-adjusted formulations

Fiske [24] proposed an adjustment of the evolution
equations in the way of

@tu
i ¼ fðui; @jui; . . .Þ � �ij

�
�C2

�uj

�
; (2.6)

where �ij is positive-definite constant coefficient, and C2 is
the norm of constraints which is defined as C2 �R
CaC

ad3x. The term ð�C2=�ujÞ is the functional deriva-

tive of C2 with uj. We call the set of (2.6) with (2.2) as
‘‘C2-adjusted formulation.’’ The associated constraint
propagation equation becomes

@tC
2 ¼ hðCa; @iC

a; . . .Þ �
Z

d3x

�
�C2

�ui

�
�ij

�
�C2

�uj

�
: (2.7)

If we set �ij so the second term in the right-hand side of
(2.7) becomes more dominant than the first term, then @tC

2

becomes negative, which indicates that constraint viola-
tions are expected to decay to zero. Fiske presented some
numerical examples in the Maxwell system, and concluded
that this method actually reduces the constraint violations.
He also reported that the coefficient �ij has a practical
upper limit in order not to crash simulations.

C. The idea of CAFs

There are many efforts of reformulation of the Einstein
equations which make the evolution equations in an ex-
plicit first-order hyperbolic form (e.g. [10,17,30,31]). This
is motivated by the expectations that the symmetric hyper-
bolic system has well-posed properties in its Cauchy treat-
ment in many systems and that the boundary treatment can
be improved if we know the characteristic speed of the
system. The advantage of the standard ADM system [2]
(compared with the original ADM system [1]) is reported
by Frittelli [32] from the point of the hyperbolicity of the
constraint propagation equations. However, the classifica-
tion of hyperbolicity (weakly, strongly, or symmetric
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hyperbolic) only uses the characteristic part of evolution
equations and ignores the rest. Several numerical experi-
ments [3,33] reported that such a classification is not
enough to predict the stability of the evolution system,
especially for a highly nonlinear system like the Einstein
equations.

In order to investigate the stability structure of (2.5), the
authors [22] proposed the constraint amplification factors
(CAFs). The CAFs are the eigenvalues of the coefficient
matrix, Ma

b (below), which is the Fourier-transformed

components of the constraint propagation equations,

@tĈ
a. That is,

@tĈ
a ¼ gðĈaÞ ¼ Ma

bĈ
b;

where Caðx; tÞ ¼
Z

Ĉðk; tÞa expðik � xÞd3k: (2.8)

CAFs include all the contributions of the terms, and enable
us to check the eigenvalues. If CAFs have a negative real
part, the constraints are forced to be diminished. Therefore,
we expect a more stable evolution than a system which has
CAFs with a positive real part. If CAFs have a nonzero
imaginary part, the constraints are supposed to propagate
away. Therefore, we expect a more stable evolution than a
system which has CAFs with a zero imaginary part. The
discussion and examples are shown in [3,15], where
several adjusted-ADM systems [3] and adjusted-BSSN
systems [16] are proposed.

III. APPLICATION TO THE ADM FORMULATION

A. The standard ADM formulation and C2-adjusted
ADM formulation

We start by presenting the standard ADM formulation
[2] of the Einstein equations. The standard ADM evolution
equations are written as

@t�ij ¼ �2�Kij þDi�j þDj�i; (3.1)

@tKij ¼ �ðð3ÞRij þ KKij � 2Ki‘K
‘
jÞ �DiDj�

þ K‘iDj�
‘ þ K‘jDi�

‘ þ �‘D‘Kij; (3.2)

where ð�ij; KijÞ are the induced three-metric and the ex-

trinsic curvature, ð�;�iÞ are the lapse function and the shift
vector, Di is the covariant derivative associated with �ij,

and ð3ÞRij is the three Ricci tensor. The constraint equations

are

H � ð3ÞRþ K2 � KijK
ij � 0; (3.3)

M i � DjK
j
i �DiK � 0; (3.4)

where ð3ÞR is the three-scalar curvature, ð3ÞR ¼ �ijð3ÞRij,

and K is the trace-part of the extrinsic curvature,
K ¼ �ijKij.

The constraint propagation equations of the Hamiltonian
constraint, (3.3), and the momentum constraints, (3.4), can
be written as

@tH ¼ �iDiH � 2�DiMi þ 2�KH � 4ðDi�ÞMi;

(3.5)

@tMi ¼ �ð1=2Þ�DiH þ �‘D‘Mi � ðDi�ÞH
þ ðDi�

‘ÞM‘ þ �KMi; (3.6)

respectively.
Now we apply C2 adjustment to the ADM formulation,

which can be written as

@t�ij ¼ ð3:1Þ � ��ijmn

�
�C2

��mn

�
; (3.7)

@tKij ¼ ð3:2Þ � �Kijmn

�
�C2

�Kmn

�
; (3.8)

where C2 is the norm of the constraints, which we set

C2 �
Z
ðH 2 þ �ijMiMjÞd3x; (3.9)

and both coefficients of ��ijmn, �Kijmn are supposed to be

positive definite. We write ð�C2=��mnÞ and ð�C2=�KmnÞ
explicitly as (A1) and (A2) in Appendix A.

B. Constraint propagation with C2-adjusted
ADM formulation

In this subsection, we discuss the constraint propagation
of the C2-adjusted ADM formulation, by giving the CAFs
on the flat background metric. We show CAFs are negative
real numbers or complex numbers with a negative real part.
The constraint propagation equations, (3.5) and (3.6), are

changed due to C2-adjusted terms. The full expressions of
the constraint propagation equations are shown as (B1) and
(B11) in Appendix B.
If we fix the background in flat spacetime (� ¼ 1,

�i ¼ 0, �ij ¼ �ij, Kij ¼ 0), then CAFs are easily derived.

For simplicity, we also set ��ijmn ¼ �Kijmn ¼ ��im�jn,

where � is positive. The Fourier-transformed equations
of the constraint propagation equations are

@t
Ĥ
M̂i

 !
¼ �4�j ~kj4 �2ikj

�ð1=2Þiki �ð�j ~kj2�ij � 3kikjÞ

 !
Ĥ
M̂j

 !
:

(3.10)

The eigenvalues � of the coefficient matrix of (3.10) are
given by solving

ð�þ �jkj2Þ2ð�2 þ A�þ BÞ ¼ 0;

where A � 4�jkj2ðjkj2 þ 1Þ and B � jkj2 þ 16�2jkj6.
Therefore, the four eigenvalues are

ð��jkj2;��jkj2; �þ; ��Þ; (3.11)
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where

�� ¼ �2�jkj2ðjkj2 þ 1Þ � jkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ 4�2jkj2ðjkj2 � 1Þ2

q
:

(3.12)

From the relation of the coefficients with solutions,

�þ þ�� ¼�A< 0; and �þ�� ¼ B> 0; (3.13)

we find both the real parts of �þ and �� are negative.
Therefore, we see all four eigenvalues are complex num-
bers with a negative real part or negative real numbers.

On the other hand, the CAFs of the standard ADM
formulation on the flat background [� ¼ 0 in (3.11)] are
reduced to

ð0; 0;�ij ~kjÞ; (3.14)

where the real part of all of the CAFs are zero. Therefore
the introduction of the C2-adjusted terms to the evolution
equations changes the constraint propagation equations to
a self-decay system.

More precisely, CAFs depend on jkj2 if � � 0. This
indicates that adjusted terms affect to reduce high fre-
quency error-growing modes. Since we intend not to
change the original evolution equations drastically by add-
ing adjusted terms, we consider only small �. This limits
the robustness of the system to the low frequency error-
growing modes. Therefore the system may stop due to the
low frequency modes, but the longer evolutions are ex-
pected to be obtained.

C. Detweiler’s ADM formulation

We review Detweiler’s ADM formulation [25] for a
comparison with the C2-adjusted ADM formulation and
the standard ADM formulation. Detweiler proposed an
evolution system in order to ensure the decay of the
norm of constraints, @tC

2 < 0. His system can be treated
as one of the adjusted ADM systems and the set of evolu-
tion equations can be written as

@t�ij ¼ ð3:1Þ þ LD�ij; (3.15)

@tKij ¼ ð3:2Þ þ LDKij; (3.16)

where

D�ij � ��3�ijH ; (3.17)

DKij � �3ðKij � ð1=3ÞK�ijÞH
þ �2½3ð@ði�Þ�k

jÞ � ð@‘�Þ�ij�
k‘�Mk

þ �3½�k
ði�

‘
jÞ � ð1=3Þ�ij�

k‘�DkM‘; (3.18)

where L is a constant. He found that with this particular
combination of adjustments, the evolution of the norm
constraints, C2, can be negative definite when we apply
the maximal slicing condition, K ¼ 0, for fixing the lapse

function, �. Note that the effectiveness with other gauge
conditions remains unknown. The numerical demonstra-
tions with Detweiler’s ADM formulation are presented in
[5,22], and there we can see the drastic improvements for
stability.
The CAFs of Detweiler’s ADM formulation on flat

background metric are derived as [22]�
�ðL=2Þj ~kj2;�ðL=2Þj ~kj2;

� ð4L=3Þj ~kj2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~kj2f�1þ ð4=9ÞL2j ~kj2g

q �
; (3.19)

which indicates the constraints will damp down if L > 0,
apparently a better feature than the standard ADM
formulation.

IV. NUMERICAL EXAMPLES

We demonstrate the damping of constraint violations in
numerical evolutions using the polarized Gowdy-wave
spacetime, which is one of the standard tests for compari-
sons of formulations in numerical relativity as is known as
the Apples-with-Apples test beds [26]. The tests have been
used by several groups and were reported in the same
manner (e.g. [27–29]).
The test beds provide three tests of the solutions of the

Einstein equations: gauge-wave, linear-wave, and Gowdy-
wave tests. Among these tests, we report only on the
Gowdy-wave test. This is because the other two are based
on the flat backgrounds and the violations of constraints are
already small, so that the differences of evolutions between
the ADM, C2-adjusted ADM, and Detweiler-ADM are
indistinguishable.

A. Gowdy-wave test bed

The metric of the polarized Gowdy wave is given by

ds2 ¼ t�1=2e�=2ð�dt2 þ dx2Þ þ tðePdy2 þ e�Pdz2Þ;
(4.1)

where P and � are functions of x and t. The time coordinate
t is chosen such that time increases as the universe ex-
pands, this metric is singular at t ¼ 0which corresponds to
the cosmological singularity.
For simple forms of the solutions, P and � are given by

P ¼ J0ð2�tÞ cosð2�xÞ; (4.2)

� ¼ �2�tJ0ð2�tÞJ1ð2�tÞcos2ð2�xÞ þ 2�2t2½J20ð2�tÞ
þ J21ð2�tÞ� � ð1=2Þfð2�Þ2½J20ð2�Þ þ J21ð2�Þ�
� 2�J0ð2�ÞJ1ð2�Þg; (4.3)

where Jn is the Bessel function.
Following [26], the new time coordinate �, which sat-

isfies the harmonic slicing, is obtained by coordinate trans-
formation as
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tð�Þ ¼ kec�; (4.4)

where k and c are arbitrary constants. We also follow [26]
for choosing these constants k, c, and initial time t0 as

k� 9:670 769 812 764 05; c� 0:002 119 511 921 460;

(4.5)

t0 ¼ 9:875 320 582 909 82 (4.6)

in such a way that the lapse function in the new time
coordinate is unity and t ¼ � at initial time.

We also use the following parameters specified in [26]:
(i) Simulation domain: x 2 ½�0:5; 0:5�, y ¼ z ¼ 0.
(ii) Grid: xn ¼ �0:5þ ðn� ð1=2ÞÞdx, n ¼ 1; . . . ; 100,

where dx ¼ 1=100.
(iii) Time step: dt ¼ 0:25dx.
(iv) Boundary conditions: Periodic boundary condition

in the x direction and planar symmetry in y and
z directions.

(v) Gauge conditions: the harmonic slicing and �i ¼ 0.
(vi) Scheme: second-order iterative Crank-Nicholson.

Our code passed convergence tests with the second-order
accuracy.

B. Constraint violations and the damping
of the violations

Figure 1 shows the L2 norm of the Hamiltonian con-
straint and momentum constraints with a function of back-
ward time ð�tÞ in the case of the standard ADM
formulation (3.1) and (3.2). We see the violations of the
momentum constraints are larger than that of the
Hamiltonian constraint at the initial stage, and both grow

larger with time. The behavior is well known, and the
starting point of the formulation problem.
We then compare the evolutions with three formulations:

(a) the standard ADM formulation (3.1) and (3.2),
(b) Detweiler’s formulation (3.15) and (3.16), and (c) the
C2-adjusted ADM formulation (3.7) and (3.8). We tuned
the parameters L in (a), and ��ijmn and �Kijmn in (c) within

the expected ranges from the eigenvalue analyses. In the
formulation (c), we set ��ijmn ¼ ���im�jn and �Kijmn ¼
�K�im�jn for simplicity, and optimized �� and �K in their

positive ranges. We use L ¼ �10þ1:9 and ð��; �kÞ ¼
ð�10�9:0;�10�3:5Þ for the plots, since the violation of
constraints are minimized at t ¼ �1000 for those evolu-
tions. Note that the signatures of ð��; �KÞ and L are re-

versed from the expected one in Secs. II and III,
respectively, since we integrate time backward.
We plot the L2 norms of C2 of these three formulations

in Fig. 2. We see the constraint violations of (a) (the
standard ADM formulation) and (b) (Detweiler’s formula-
tion) grow larger with time, while that of (c) (C2-adjusted
ADM formulation) almost coincide with (a) until
t ¼ �500, then the violation of (c) begins smaller than
(a). The L2 violation level of (c) then keeps its magnitude
at most Oð10�3Þ, while those of (a) and (b) monotoni-
cally grow larger with oscillations. Figure 2 shows up to
t ¼ �1000, but we confirmed this behavior up to
t ¼ �1700.
Figure 2 tells us that the effects of Detweiler’s adjust-

ment appear at the initial stage, while C2 adjustment
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FIG. 1. The L2 norm of the Hamiltonian and momentum
constraints of the Gowdy-wave evolution using the standard
ADM formulation. We see that the violation of the momentum
constraints is larger initially, and both violations are growing
with time.
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FIG. 2. The L2 norm of the constraints, C2, of the polarized
Gowdy-wave tests with ADM and two types of adjusted for-
mulations. The vertical axis is the logarithm of the C2 and the
horizontal axis is backward time. The solid line (a) is of
the standard ADM formulation. The dot-dashed line (b) is the
evolution with Detweiler’s ADM with L ¼ �10þ1:9. The dotted
line (c) is the C2-adjusted ADM with �� ¼ �10�9:0 and

�K ¼ �10�3:5. We see lines (a) and (c) almost overlap until
t ¼ �500, then case (c) keeps the L2 norm at the level � 10�3,
while lines (a) and (b) monotonically grow larger with oscilla-
tions. We confirmed this behavior up to t ’ �1700.
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contributes at the later stage. The time difference can be
seen also from the magnitudes of adjustment terms in each
evolution equations, which we show in Fig. 3. The lines
(b1), (b2), (c1), and (c2) are the norms of D�ij in (3.17),

DKij in (3.18), �C2=��ij in (A1), and �C2=�Kij in (A2),

respectively.
We see that the L2 norms of the adjusted terms of

Detweiler’s ADM formulation, D�ij and DKij, decrease,

while those of the C2-adjusted ADM formulation increase.
If the magnitudes of the adjusted terms are smaller, the
effects of the constraint damping become small. Therefore,
the L2 norm of C2 of Detweiler’s ADM formulation are not
damped down in the later stage in Fig. 2.

One possible explanation for the weak effect of
Detweiler’s adjustment in the later stage is the existence
of the lapse function, � (and �2, �3), in the adjusted terms
in (3.17) and (3.18). The Gowdy-wave test bed is the
evolution to the initial singularity of the spacetime, and
the lapse function becomes smaller with evolution. Note
that in previous works [5,22], we see that the constraint
violations are damped down in the simulation with
Detweiler’s ADM formulation, where the lapse function
� is adopted by the geodesic condition.

In Fig. 4, we plotted the magnitude of the original terms
and the adjusted terms of C2-adjusted ADM formulation;
the first and second terms in (3.7) and (3.8). We find that
there is Oð102Þ–Oð105Þ of differences between them.
Therefore, we conclude that the adjustments do not disturb
the original ADM formulation, but control the violation of
the constraints. We may understand that higher derivative
terms in (A1) and (A2) work as artificial viscosity terms in
numerics.

C. Parameter dependence of the C2-adjusted
ADM formulation

There are two parameters, �� and �K, in the C
2-adjusted

ADM formulation and we next study the sensitivity of
these two on the damping effect to the constraint violation.
Figure 5 shows the dependences on �� and �K. In

Fig. 5(a), we fix �K ¼ 0 and change ��. In Fig. 5(b), we fix

�� ¼ 0 and change �K. In Fig. 5(a), we see that all the

simulations stop soon after the damping effect appears. On
the other hand, in Fig. 5(b), we see that the simulations
continue with constraint-damping effects. These results
suggest �K � 0 or �� ¼ 0 is essential to keep the

constraint-damping effects.
We think the trigger for stopping evolutions in the cases

of Fig. 5(a) (when �K ¼ 0) is the termHabcd
5 ð@a@b@c@dH Þ

which appears in the constraint propagation equation of the
Hamiltonian constraint, (B1). We evaluated and checked
each terms and found that Habcd

5 exponentially grows in

time and dominates the other terms in (B1) before the
simulation stops. Since Habcd

5 consists of �ij�mn [see

(A5) and (B6)], the time backward integration of Gowdy
spacetime makes this term disastrous. So that, in this
Gowdy test bed, the cases �� ¼ 0 reduce this trouble and

keep the evolution with constraint-damping effects.
The sudden stops of evolutions in Fig. 5(a) can be

interpreted due to a nonlinear growth of ‘‘constraint
shocks,’’ since the adjusted terms are highly nonlinear.
The robustness against a constraint shock is hard to be
proved, but the continuous evolution cases in Fig. 5(b) may
show that a remedial example is available by tuning
parameters.
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V. SUMMARY

In order to construct a robust and stable formulation, we
proposed a new set of evolution equations, which we call
the C2-adjusted ADM formulation. We applied the adjust-
ing method suggested by Fiske [24] to the ADM formula-
tion. We obtained the evolution equations as (A1) and (A2)
and the constraint propagation equations (B1) and (B11),
and also discussed the constraint propagation of this sys-
tem. We analyzed the constraint amplification factors
(CAFs) on the flat background, and confirmed that all of
the CAFs have a negative real part which indicates the
damping of the constraint violations. We then performed
numerical tests with the polarized Gowdywave and showed
the damping of the constraint violations as expected.

There are two advantages of the C2-adjusted system.
One is that we can uniquely determine the form of the
adjustments. The other is that we can specify the effective
signature of the coefficiencies (Lagrange multipliers) in-
dependent on the background. (The term ‘‘effective’’
means that the system has the property of the damping
constraint violations.) In our previous study [22], we sys-
tematically examined several combinations of adjustments
to the ADM evolution equations, and discuss the effective
signature of those Lagrange multipliers using CAFs as the
guiding principle. However, the C2-adjusted idea (2.6)
automatically includes this guiding principle. We confirm
this fact using CAF analysis on the flat background.

The C2-adjusted idea is one of the useful ideas to decide
the adjustments with theoretical logic. We are now apply-
ing this idea also to the BSSN formulation which will be
presented elsewhere in the near future.

We performed the simulation with the C2-adjusted
ADM formulation on the Gowdy-wave spacetime and
confirmed the effect of the constraint dumping. We inves-
tigated the parameter dependencies and found that the

constraint-damping effect does not continue due to one
of the adjusted terms. We also found that Detweiler’s
adjustment [25] is not so effective against constraint vio-
lations on this spacetime. Up to this moment, we do not yet
know how to choose the ranges of parameters which are
suitable to damp the constraint violations unless the simu-
lations are actually performed.
It would be helpful if there are methods to monitor the

order of constraint violations and to maintain them by
tuning the Lagrange multipliers automatically. Such an
implementation would make numerical relativity more
friendly to the beginners. Applications of the controlling
theories in this direction are in progress.
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APPENDIX A: THE ADDITIONAL
C2-ADJUSTED TERMS

The adjusted terms �C2=��mn and �C2=�Kmn in (3.7)
and (3.8) are written as

�C2

��mn

¼ 2H1
mnH � 2ð@‘H2

mn‘ÞH � 2H2
mn‘ð@‘H Þ

þ 2ð@k@‘H3
mnk‘ÞH þ 4ð@‘H3

mnk‘Þð@kH Þ
þ 2H3

mnk‘ð@k@‘H Þþ 2M1i
mnMi

� 2ð@‘M2i
mn‘ÞMi � 2M2i

mn‘ð@‘MiÞ�MmMn;

(A1)
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FIG. 5. Parameter dependence of the C2-adjusted ADM formulation. The vertical axis is the logarithm of the C2 and the horizontal
axis is backward time. The left panel (A) is the evolutions with �K ¼ 0 and �� ¼ �10�2:0, �10�3:0, �10�4:0, �10�5:0. The right

panel (B) is the cases with �� ¼ 0 and �K ¼ �10�1:6, �10�2:6, �10�3:6, �10�4:6. In (A), we see that the simulations stop soon after

the constraint dumping effect appears. In (B), we see that the simulations continue with constraint-damping effects.
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�C2

�Kmn

¼ 2H4
mnH þ 2M3i

mnMi � 2ð@‘M4i
mn‘ÞMi

� 2M4i
mn‘ð@‘MiÞ; (A2)

where

Hmn
1 ¼ �2Rmn þ ð3Þ�mð3Þ�n � ð3Þ�mebð3Þ�n

eb

� 2KKmn þ 2Km
jK

nj;
(A3)

Himn
2 ¼ ��‘mð3Þ�n � �‘nð3Þ�m þ �mnð3Þ�‘ þð3Þ �nm‘

þð3Þ �mn‘ �ð3Þ �‘nm; (A4)

Hijmn
3 ¼ 1

2�
m‘�nk þ 1

2�
km�n‘ � �k‘�mn; (A5)

Hmn
4 ¼ 2�mnK � 2Kmn; (A6)

Mmn
1 i ¼ �1

2K‘i;j�
jm�‘n � 1

2K‘i;j�
jn�‘m þ 1

2
ð3Þ�nKm

i

þ 1
2
ð3Þ�mKn

i þ ð3Þ�amnKai � 1
2K

mc�nb�bc;i

� 1
2K

nc�mb�bc;i þ Kab;i�
am�bn; (A7)

M‘mn
2 i ¼ �1

2�
n‘Km

i � 1
2�

m‘Kn
i þ 1

2�
mnK‘

i þ 1
2K

nm�‘
i;

(A8)

Mmn
3 i ¼ �1

2
ð3Þ�m�n

i � 1
2�

n�m
i þ 1

2�
na�mb�ab;i; (A9)

M‘mn
4 i ¼ 1

2�
‘m�n

i þ 1
2�

‘n�m
i � �mn�‘

i: (A10)

Hmn
1 ,Himn

2 ,Hijmn
3 ,Hmn

4 ,Mmn
1 i,M

jmn
2 i,M

mn
3 i,M

jmn
4 i are the

same with the appendix of [23] if ðm; nÞ ¼ ðn;mÞ.

APPENDIX B: THE CONSTRAINT PROPAGATION
EQUATIONS OF C2-ADJUSTEDADM

FORMULATION

The propagation equation of the Hamiltonian constraint
with C2-adjusted ADM formulation can be written as

@tH ¼ H1H þH2
að@aH Þ þH3

abð@a@bH Þ
þH4

abcð@a@b@cH Þ þH5
abcdð@a@b@c@dH Þ

þH6aMa þH7a
bð@bMaÞ þH8a

bcð@b@cMaÞ
þH9a

bcdð@b@c@dMaÞ; (B1)

where

H1 ¼ 2�K � 2��mnijfH1
mnH1

ij �H1
mnð@cH2

ijcÞ þH1
mnð@d@cH3

ijdcÞ þH2
mn‘ð@‘H1

ijÞ �H2
mn‘ð@‘@cH2

ijcÞ
þH2

mn‘ð@‘@d@cH3
ijdcÞ þH3

mnk‘ð@k@‘H1
ijÞ �H3

mnk‘ð@k@‘@cH2
ijcÞ þH3

mnk‘ð@k@‘@d@cH3
ijdcÞg

� 2ð@‘��mnijÞfH2
mn‘Hij

1 �H2
mn‘ð@cH2

ijcÞ þH2
mn‘ð@d@cH3

ijdcÞ þ 2H3
mn‘kð@kH1

ijÞ � 2H3
mn‘kð@k@cH2

ijcÞ
þ 2H3

mn‘kð@k@d@cH3
ijdcÞg � 2ð@k@‘��mnijÞfH3

mnk‘H1
ij �H3

mnk‘ð@cH2
ijcÞ þH3

mnk‘ð@d@cH3
ijdcÞg

� 2�KmnijH4
mnH4

ij; (B2)

H2
a ¼ �a � 2��mnijf�H1

mnH2
ija þ 2H1

mnð@cH3
ijacÞ þH2

mnaH1
ij �H2

mnað@cH2
ijcÞ �H2

mn‘ð@‘H2
ijaÞ

þH2
mnað@d@cH3

ijdcÞ þ 2H2
mn‘ð@‘@cH3

ijacÞ þH3
mna‘ð@‘H1

ijÞ þH3
mnkað@kH1

ijÞ �H3
mna‘ð@‘@cH2

ijcÞ
�H3

mnkað@k@cH2
ijcÞ �H3

mnk‘ð@k@‘H2
ijaÞ þH3

mna‘ð@‘@d@cH3
ijdcÞ þH3

mnkað@k@d@cH3
ijdcÞ

þ 2H3
mnk‘ð@k@‘@cH3

ijacÞg � 2ð@‘��mnijÞf�H2
mn‘H2

ija þ 2H2
mn‘ð@cH3

ijacÞ þ 2H3
mn‘aH1

ij � 2H3
mn‘að@cH2

ijcÞ
� 2H3

mn‘kð@kH2
ijaÞ þ 2H3

mn‘að@d@cH3
ijdcÞ þ 4H3

mn‘kð@k@cH3
ijacÞg

� 2ð@k@‘��mnijÞf�H3
mnk‘H2

ija þ 2H3
mnk‘ð@cH3

ijacÞg; (B3)

H3
ab ¼ �2��mnijfH1

mnH3
ijab �H2

mnaH2
ijb þ 2H2

mnað@cH3
ijbcÞ þH2

mn‘ð@‘H3
ijabÞ þH3

mnabH1
ij �H3

mnabð@cH2
ijcÞ

�H3
mna‘ð@‘H2

ijbÞ �H3
mnkað@kH2

ijbÞ þH3
mnabð@d@cH3

ijdcÞ þ 2H3
mna‘ð@‘@cH3

ijbcÞ þ 2H3
mnkað@k@cH3

ijbcÞ
þH3

mnk‘ð@k@‘H3
ijabÞg � 2ð@‘��mnijÞfH2

mn‘H3
ijab � 2H3

mn‘aH2
ijb þ 4H3

mn‘að@cH3
ijbcÞ þ 2H3

mn‘kð@kH3
ijabÞg

� 2ð@k@‘��mnijÞH3
mnk‘H3

ijab; (B4)

H 4
abc ¼ �2��mnijfH2

mnaH3
ijbc �H3

mnabH2
ijc þ 2H3

mnabð@eH3
ijceÞ þH3

mna‘ð@‘H3
ijbcÞ þH3

mnkað@kH3
ijbcÞg

� 4ð@k��mnijÞH3
mnkaH3

ijbc; (B5)
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H 5
abcd ¼ �2��mnijH3

mnabH3
ijcd; (B6)

H6a ¼ �2�ð3Þ�b
ba � 4�;a � ��mnijf2H1

mnM1a
ij � 2H1

mnð@dM2a
ijdÞ �H1

mnMði�jÞ
a þ 2H2

mn‘ð@‘M1a
ijÞ

� 2H2
mn‘ð@‘@dM2a

ijdÞ þ 2H3
mnk‘ð@k@‘M1a

ijÞ � 2H3
mnk‘ð@k@‘@dM2a

ijdÞg � ð@‘��mnijÞf2H2
mn‘M1a

ij

� 2H2
mn‘ð@dM2a

ijdÞ �H2
mn‘Mði�jÞ

a þ 4H3
mn‘kð@kM1a

ijÞ � 4H3
mn‘kð@k@dM2a

ijdÞg � ð@k@‘��mnijÞ
f2H3

mnk‘M1a
ij � 2H3

mnk‘ð@dM2a
ijdÞ �H3

mnk‘Mði�jÞ
a g � �Kmnijf2H4

mnM3a
ij � 2H4

mnð@‘M4a
ij‘Þg; (B7)

H7a
b ¼ �2��b

a � ��mnijf�2H1
mnM2a

ijb þ 2H2
mnbM1a

ij � 2H2
mnbð@dM2a

ijdÞ � 2H2
mn‘ð@‘M2a

ijbÞ �H2
mnbMj�i

a

�H2
mnbMi�j

a þ 2H3
mnb‘ð@‘M1a

ijÞ þ 2H3
mnkbð@kM1a

ijÞ � 2H3
mnb‘ð@‘@dM2a

ijdÞ � 2H3
mnkbð@k@dM2a

ijdÞ
� 2H3

mnk‘ð@k@‘M2a
ijbÞ �H3

mnb‘ð@‘MðiÞ�jÞ
a �H3

mnb‘ð@‘MðjÞ�iÞ
ag � ð@‘��mnijÞf�2H2

mn‘M2a
ijb

þ 4H3
mn‘bM1a

ij � 4H3
mn‘bð@dM2a

ijdÞ � 4H3
mn‘kð@kM2a

ijbÞ � 2H3
mn‘bMj�i

a � 2H3
mn‘bMi�j

ag
þ 2ð@k@‘��mnijÞH3

mnk‘M2a
ijb þ 2�KmnijH4

mnM4a
ijb; (B8)

H8a
bc ¼ ���mnijf�2H2

mnbM2a
ijc þ 2H3

mnbcM1a
ij � 2H3

mnbcð@dM2a
ijdÞ � 2H3

mnb‘ð@‘M2a
ijcÞ � 2H3

mnkbð@kM2a
ijcÞ

�H3
mnbcMj�i

a �H3
mnbcMi�j

ag þ 4ð@k��mnijÞH3
mnkbM2a

ijc; (B9)

H 9a
bcd ¼ 2��mnijH3

mnbcM2a
ijd: (B10)

The propagation equation of the momentum constraint with C2-adjusted ADM formulation can be written as

@tMa ¼ M1aH þM2a
bð@bH Þ þM3a

bcð@b@cH Þ þM4a
bcdð@b@c@dH Þ þM5abMb þM6ab

cð@cMbÞ
þM7ab

cdð@c@dMbÞ; (B11)

where

M1a ¼ ��;a � 2��mnijfM1a
mnH1

ij �M1a
mnð@cH2

ijcÞ þM1a
mnð@d@cH3

ijdcÞ þM2a
mn‘ð@‘H1

ijÞ �M2a
mn‘ð@‘@cH2

ijcÞ
þM2a

mn‘ð@‘@d@cH3
ijdcÞg � 2ð@‘��mnijÞfM2a

mn‘H1
ij �M2a

mn‘ð@cH2
ijcÞ þM2a

mn‘ð@d@cH3
ijdcÞg

� 2�KmnijfM3a
mnH4

ij þM4a
mn‘ð@‘H4

ijÞg � 2ð@‘�KmnijÞM4a
mn‘H4

ij; (B12)

M2a
b ¼ �1

2��a
b � 2��mnijf�M1a

mnH2
ijb þ 2M1a

mnð@cH3
ijbcÞ þM2a

mnbH1
ij �M2a

mnbð@cH2
ijcÞ �M2a

mn‘ð@‘H2
ijbÞ

þM2a
mnbð@d@cH3

ijdcÞ þ 2M2a
mn‘ð@‘@cH3

ijbcÞg � 2ð@‘��mnijÞf�M2a
mn‘H2

ijb þ 2M2a
mn‘ð@cH3

ijbcÞg
� 2�KmnijM4a

mnbH4
ij; (B13)

M3a
bc ¼ �2��mnijfM1a

mnH3
ijbc �M2a

mnbH2
ijc þ 2M2a

mnbð@dH3
ijcdÞ þM2a

mn‘ð@‘H3
ijbcÞg � 2ð@‘��mnijÞM2a

mn‘H3
ijbc;

(B14)

M 4a
bcd ¼ �2��mnijM2a

mnbH3
ijcd; (B15)

M5ab ¼ �mb�
m
;a þ �‘�ab;‘ þ �K�ab � ��mnijf2M1a

mnM1b
ij � 2M1a

mnð@dM2b
ijdÞ �M1a

mnMðj�iÞ
b

þ 2M2a
mn‘ð@‘M1b

ijÞ � 2M2a
mn‘ð@‘@dM2b

ijdÞg � ð@‘��mnijÞf2M2a
mn‘M1b

ij � 2M2a
mn‘ð@dM2b

ijdÞ
�M2a

mn‘Mðj�iÞ
bg � 2�KmnijfM3a

mnM3b
ij �M3a

mnð@‘M4b
ij‘Þ þM4a

mn‘ð@‘M3b
ijÞ �M4a

mn‘ð@‘@dM4b
ijdÞg

� 2ð@‘�KmnijÞfM4a
mn‘M3b

ij �M4a
mn‘ð@dM4b

ijdÞg; (B16)
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M6ab
c ¼ �c�ab � ��mnijf�2M1a

mnM2b
ijc þ 2M2a

mncM1b
ij � 2M2a

mncð@dM2b
ijdÞ � 2M2a

mn‘ð@‘M2b
ijcÞ

�M2a
mncMj�i

b �M2a
mncMi�j

bg þ 2ð@‘��mnijÞM2a
mn‘M2b

ijc � 2�Kmnijf�M3a
mnM4b

ijc þM4a
mncM3b

ij

�M4a
mncð@dM4b

ijdÞ �M4a
mn‘ð@‘M4b

ijcÞg þ 2ð@‘�KmnijÞM4a
mn‘M4b

ijc; (B17)

M 7ab
cd ¼ 2��mnijM2a

mncM2b
ijd þ 2�KmnijM4a

mncM4b
ijd: (B18)
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