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We numerically investigate the gravitational collapse of collisionless particles in spheroidal configu-

rations both in four- and five-dimensional (5D) space-time. We repeat the simulation performed by

Shapiro and Teukolsky (1991) that announced an appearance of a naked singularity, and also find similar

results in the 5D version. That is, in a collapse of a highly prolate spindle, the Kretschmann invariant

blows up outside the matter and no apparent horizon forms. We also find that the collapses in 5D proceed

more rapidly than in 4D, and the critical prolateness for the appearance of an apparent horizon in 5D is

loosened, compared to 4D cases. We also show how collapses differ with spatial symmetries comparing

5D evolutions in single-axisymmetry, SO(3), and those in double-axisymmetry, Uð1Þ � Uð1Þ.
DOI: 10.1103/PhysRevD.83.064006 PACS numbers: 04.20.Dw, 04.20.Ex, 04.25.dc, 04.50.Gh

I. INTRODUCTION

The so-called ‘‘large extra-dimensional models’’ as a
consequence of brane-world pictures have changed our
viewpoints for a way of understanding the fundamental
forces. The scenarios of unifying the gravity at TeV scale
or so open the possibility of verification of higher-
dimensional space-time models at the CERN LHC. If the
LHC detects productions (and evaporations) of mini black
holes as expected, then humankind will encounter a
Copernican change of our outlook of the Universe.

With this background, black holes in higher-dimensional
space-time have been extensively studied for a decade.
Many interesting discoveries of new solutions have been
reported, and their properties are being revealed. However,
fully relativistic dynamical features, such as the formation
processes, stabilities and late-time fate, are still unknown
and they are waiting to be studied. Several groups, includ-
ing us, have begun reporting numerical studies in various
topics in higher-dimensional models [1–6].

In this article, we report our numerical simulations
on gravitational collapse in axisymmetric space-time.
The topic has been studied in many ways in (3þ 1)-
dimensional space-time (4D, hereafter); among them, we
think the most impressive result is the work by Shapiro and
Teukolsky [7] (ST91, hereafter); a highly prolate matter
collapse, which may form a naked singularity. We repeat
their simulations and also compare them with (4þ 1)-
dimensional (5D) versions.

In classical general relativity, it is well known that a
space-time singularity will be generally formed in the
gravitational collapse of nonsingular asymptotically flat
initial data. If a singularity forms without an event horizon,

all physical predictions become invalid. In order to avoid
such a disastrous situation, Penrose proposed the cosmic
censorship conjecture [8], which states that singularities
are always clothed by event horizons.
On the other hand, for nonspherical gravitational collap-

ses, Thorne proposed the hoop conjecture [9] which states
that black holes with horizons are formed when and only
when a mass gets compacted into a small region. He ex-
pressed the compactness with a ‘‘hoop’’ around matter. If
matter configuration is highly aspherical, then the hoop
length becomes larger. If so, the conjectured inequality
does not hold, i.e. a horizon will not be formed. Thereby,
the hoop conjecture indicates that a highly aspherical
matter collapse will lead to a naked singularity.
ST91 numerically showed that axisymmetric space-time

with collisionless matter particles in spheroidal distribu-
tion will collapse to singularity, and there are no apparent
horizons formed when the spheroids are highly prolate.
The behaviors are consistent with their initial data analysis
[10], and support the hoop conjecture. However, since
numerical evolutions cannot provide the final structures
nor the conclusive information for formation of naked
singularities, debates were raised after their announce-
ment. For example, Wald et al [11,12] showed examples
that 3-dimensional hypersurfaces can hit singularities;
nevertheless, the space-time is consistent with cosmic
censor. Their examples are not directly related to the
numerical results with ST91, but we learned that a numeri-
cal result provides only limited evidence.
Regarding the 5D cases, the hoop conjecture is supposed

to be replaced with the hyper-hoop version [13–17], in
which the criterion is not a hoop but a surface. In our
previous work [1], we numerically constructed initial
data sequences of nonrotating matter for 5D evolutions
and examined the hyper-hoop conjecture using minimum
area around the matter. We found that the areal criterion
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matches with the appearance of apparent horizons for
spindle matter configurations, but not for ring configura-
tions. The sequences suggest that a highly prolate spindle
in 5D will form a naked singularity similar to the 4D cases.
We also found that the condition for a naked singularity
formation is more relaxed in 5D than in 4D cases.

One of the objectives of the present work is to compare
the dynamics between 4D and 5D. A simple estimation
from the free-falling time indicates that the gravitational
collapse in 5D takes longer than in 4D cases. We show this
is not applicable to the highly nonlinear final stages. In 5D,
two axes can be settled as rotational symmetric axes, so
that we also compare gravitational collapses in axisymme-
try with those in ‘‘doubly’’-axisymmetric space-time.

II. NUMERICAL CODE

We evolve five-dimensional axisymmetric (symmetric
on z-axis, SO(3)) or doubly-axisymmetric [symmetric both
on x and z-axes, Uð1Þ � Uð1Þ], asymptotically flat space-
time (see Fig. 1). For the comparison, we also performed
four-dimensional axisymmetric space-time evolutions.

We start our simulation from time symmetric and con-
formally flat initial data, which are obtained by solving the
Hamiltonian constraint equations [1]. The asymptotical
flatness is imposed throughout the evolution, which settles
the fall-off condition to the metric as �1=r for 4D cases
and �1=r2 for 5D cases.

The matter is described with 5000 collisionless particles,
which move along the geodesic equations. We smooth out
the matter by expressing each particle with a Gaussian
density distribution function, with its typical width twice
as much as the numerical grid. The particles are homoge-
neously distributed in a spheroidal shape, parametrized

with a and b (Fig. 1), or eccentricity e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2=b2
p

.
By imposing axisymmetry or double-axisymmetry, our

model becomes practically a (2þ 1)-dimensional prob-
lem. We construct our numerical grids with the Cartesian
coordinate ðx; zÞ, and apply the so-called Cartoon method
[2,18] to recover the symmetry of space-time.

The space-time is evolved using the Arnowitt-Deser-
Misner (ADM) evolution equations. It is known that the

ADM evolution equations excite an unstable mode
(constraint-violation mode) in long-term simulations
[19,20]. However, we are free from this problem, since
gravitational collapse occurs within quite a short time. By
monitoring the violation of constraint equations during
evolutions, we confirm that our numerical code has
second-order convergence, and also that the simulation
continues in stable manner. The results shown in this report
are obtained with numerical grids, 129� 129� 2� 2. We
confirmed that higher resolution runs do not change the
physical results.
We use the maximal slicing condition for the lapse

function �, and the minimal strain condition for the shift
vectors �i. Both conditions are proposed for avoiding the
singularity in numerical evolutions [21], and the behavior
of � and �i roughly indicates the strength of gravity,
conversely. The iterative Crank-Nicolson method is used

z 

1, 2

R (x, y, w)

(a) 

1

(b) 

2

Z (z, w)

a 

b b 

X (x, y)a 

FIG. 1. We evolve five-dimensional (a) axisymmetric [SO(3)]
or (b) double-axisymmetric [Uð1Þ � Uð1Þ], asymptotically flat
space-time using the Cartesian grid. The initial matter configu-
ration is expressed with parameters a and b.
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FIG. 2 (color online). Snapshots of 5D axisymmetric evolution
with the initial matter distribution of b=M ¼ 4 [(a1) and (a2);
model 5DS� in Table I] and 10 [(b1) and (b2); model 5DS�].
We see the apparent horizon (AH) is formed at the coordinate
time t=M ¼ 3:3 for the former model and the area of AH
increases, while AH is not observed for the latter model up to
the time t=M ¼ 15:4, when our code stops due to the large
curvature. The big circle indicates the location of the maximum
Kretschmann invariant Imax at the final time at each evolution.
Number of particles are reduced to 1=10 for figures.
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for integrating ADM evolution equations, and the Runge-
Kutta method is used for matter evolution equations.

For discussing physics, we search the location of appar-
ent horizon (AH) and calculate the Kretschmann invariant
(I ¼ RabcdR

abcd) on the spatial hypersurface.

III. RESULTS

We prepare several initial data fixing the total ADM
mass and the eccentricity of distribution, e ¼ 0:9. By
changing the initial matter distribution sizes, we observe
the different final structures. Figure 2 shows snapshots
of 5D axisymmetric evolutions of model b=M ¼ 4 and
10 (model 5DS� and 5DS�, respectively; see Table I);
the former collapses to a black hole while the latter col-
lapses without AH formation.

All the models we tried result in forming a singularity
(i.e., diverging I). We stopped our numerical evolutions
when the shift vector was not obtained with sufficient
accuracy due to the large curvature. For model 5DS�, we
integrated up to the coordinate time t=M ¼ 15:4 and the
maximum of the Kretschmann invariant Imax became
Oð1000Þ on z axis (see Fig. 3), but AH was not formed.

When the initial matter is highly prolate, AH is not
observed. This is consistent with 4D cases [7,10], and
matches with the predictions from initial data analysis in
5D cases [1,14]. The location of Imax is on z-axis, and just
outside of the matter [22]. This is again the same with 4D
cases [7]. The absence of AH with diverging I suggests a
formation of naked singularity in 5D.

In order to compare the results with 4D and 5D,
we reproduced the results of ST91. We then find that
the e ¼ 0:9 initial data with b=M ¼ 10 (model 4D�) col-
lapses without forming AH, and the code stops at the
coordinate time t ¼ 20:91 with Imax ¼ 84:3 on the z-axis
(z=M ¼ 6:1); all the numbers match quite well with ST91.

(Note that our slicing conditions and coordinate structure
are not the same as in ST91.)
Figure 4 compares hypersurfaces for the 5D models

which collapse (a) with forming AH, (b) without forming
AH, and (c) 4D collapses without forming AH. We see
hypersurfaces are bending due to the slicing conditions,
and figures tell us how numerically integrated region cov-
ers the space-time.
We also performed 5D collapses with doubly-

axisymmetric [Uð1Þ � Uð1Þ] space-time. The matter and
space-time evolve quite similarly to the 5D and 4D axi-
symmetric cases, but we find that the critical configurations
for forming AH are different. Table I summarizes the main
results of 4D and two 5D cases. We find that AH in 5D is
formed in larger b initial data than 4D cases. This result is
consistent with our prediction from the sequence of initial
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FIG. 3 (color online). Kretschmann invariant I for model
5DS� at t=M ¼ 15:4. The maximum isOð1000Þ, and its location
is on z-axis, just outside of the matter.

TABLE I. Model names and the results of their evolutions whether we observed AH or not.
The eccentricity e of the collapsed matter configurations is also shown; eAH and ef are at the time
of AH formation (if formed), and on the numerically obtained final hypersurface, respectively.

b=Mðt ¼ 0Þ 2.50 4.00 6.25 10.00

4D axisym. 4D� 4D� 4D� 4D�
AH-formed no no no

eAH ¼ 0:90
ef ¼ 0:92 ef ¼ 0:89 ef ¼ 0:92 ef ¼ 0:96

5D axisym. 5DS� 5DS� 5DS� 5DS�
SO(3) AH-formed AH-formed no no

eAH ¼ 0:88 eAH ¼ 0:88
ef ¼ 0:82 ef ¼ 0:84 ef ¼ 0:88 ef ¼ 0:96

5D double 5DU� 5DU� 5DU� 5DU�
axisym. AH-formed AH-formed AH-formed no

Uð1Þ � Uð1Þ eAH ¼ 0:86 eAH ¼ 0:87 eAH ¼ 0:92
ef ¼ 0:79 ef ¼ 0:81 ef ¼ 0:90 ef ¼ 0:98
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data [1]. AH criteria with initial b are loosened for 5D
doubly-axisymmetric cases.

We also show the eccentricity of matter, eAH and ef, at

the time of AH formation (if formed) and at the final time
in the simulation, respectively. The numbers in Table I
indicate that the eccentricity itself is not a guiding measure
for AH formation, but they giveus a hint for understanding
the differences.

In 4D, the eccentricity increases after AH is formed
(4D�), while it decreases in 5D axisymmetric cases
(5DS� and 5DS�). That is, the 5D collapses proceed
towards spherical configurations. This fact would be ex-
plained by the degree of freedom of the movements. In
general, 5D space-time is expected to produce much more
gravitational radiation than 4D space-time [3,5], since
more modes of oscillation exist. Gravitational radiation
normally works to change shapes to spherical, because it
is produced from the acceleration of space-time and carries
the energy away. (It is known that a compact binary system

will evolve into a circular orbit due to the emission of
gravitational radiation.) Therefore, collapses in 5D space-
time are likely to evolve towards more spherical. This
interpretation together with the hoop conjecture will
explain why the AH-formation condition is loosened in
5D cases.
In the 5D doubly-axisymmetric cases, on the other hand,

the magnitude of ef is smaller than 5D axisymmetric cases
for small b=M cases (5DS� vs 5DU�, or 5DS� vs 5DU�),
while it is larger for large b=M cases (5DS� vs 5DU�, or
5DS� vs 5DU�). We think this is because the doubly-
axisymmetric collapses proceed in a more symmetric man-
ner than axisymmetric collapse near the origin, while they
proceed in more 4D-like axisymmetric collapses near the
axes far from the origin. The collapses of small b=M initial
data, therefore, will evolve into a more spherical shape,
while the large b=M initial data will evolve, increasing the
eccentricity, where the latter is similar to 4D cases.
In Fig. 5, we plot I at the point which gives Imax on the

final hypersurface as a function of proper time. The I
diverges at the end of simulations in all the cases, but the
diverging time becomes later for larger b=M initial data.
We see that 5D collapses are generally proceeding more
rapidly than 4D collapses. We also see that collapses in 5D
doubly-axisymmetric space-time is proceeding more
slowly than 5D single-axisymmetric cases. If we observe
further, the model 5DU� evolves quite similarly to 5DS�,
while 5DU� evolves quite similarly to 4D�. These behav-
iors support the previous understandings of the evolution of
the eccentricity.

IV. DISCUSSIONS

In this article, we reported our numerical study of gravi-
tational collapses in 5D space-time. We collapsed spheroi-
dal matter expressing with collisionless particles, and
observed the evolution of the Kretschmann invariant and
the apparent horizon (AH) formation.

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10

I > O(10)

matter surface

AH

P
ro

pe
r 

ti
m

e

z / M

(a)
I > O(10)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35

matter surface

P
ro

pe
r 

ti
m

e

z / M

(b)
I > O(10)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35

matter surface

P
ro

pe
r 

ti
m

e

z / M

(c)

I > O(10)

FIG. 4 (color online). The snapshots of the hypersurfaces on the z axis in the propertime versus coordinate diagram; (a) model
5DS�, (b) model 5DS�, and (c) model 4D�. The uppermost hypersurface is the final data in numerical evolution. We also mark the
matter surface and the location of AH if exist. The ranges with I � 10 are marked with bold lines and peak value of I expressed by
asterisks.
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The collapsing behaviors are generally quite similar to
the cases in 4D, but we also found that (a) 5D-collapses
proceed rapidly than 4D-collapses, (b) AH appears in
more highly prolate matter configurations than 4D cases,
(c) doubly-axisymmetric [Uð1Þ � Uð1Þ] assumption makes
collapse proceed towards more spherical when it forms
AH, but presents quite similar behavior with 4D cases for
large configurations, and (d) the positive evidence for
appearance of a naked singularity in 5D.

Up to this moment, we only checked the existence of
apparent horizons, and not the event horizons. The system
does not include any angular momentum. We are imple-
menting our code to cover these studies.

We are now preparing our next detailed report including
the validity of the hyper-hoop conjecture in 5D, and the
cases of the ring objects.
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