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We introduce our numerical studies of gravitational collapses in five-dimensional (5D)

space-time, with a purpose of studying the cosmic censorship hypothesis and the hoop
conjecture. The first model is the collapse of spindle matter which was performed by
Shapiro and Teukolsky (1991) who announced an appearance of a naked singularity
in 4D. Comparing with 4D cases, we found that 5D collapses proceed more rapidly,

the final configurations tend to be spherical, and apparent horizon (AH) forms in wider
parameter ranges. We also observed positive evidence for formation of a naked singularity
in highly spindle cases as well. The second model is the formation of black-ring in 5D.

Our code does not include angular momentum, but the model would be helpful for basic
understandings. We constructed an initial data sequence with ring-shaped matter, and
observed the topology of AHs, if formed. We found a critical ring radius for ring-shaped
AH, and it suggests a dynamical transition of AH topology from ring-shaped to spherical.

We demonstrate such an example in time evolution.
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Singularities
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1. Introduction

Black-holes in higher dimensional space-time are extensively studied for a decade.
One of the motivations is the so-called “large extra-dimensional models” as a con-
sequence of brane-world pictures, which have changed our viewpoints for a way of
understanding the fundamental forces. The scenarios of unifying the gravity at TeV
scale open the possibility of verification of higher-dimensional space-time models at
the CERN Large Hadron Collider (LHC).
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In 4D Einstein space-time, Kerr geometry is known to the unique stationary
black-hole solution in the asymptotically flat boundary. If a gravitational collapse
ends with a black-hole, then its horizon topology is S3, and the only physical quan-
tities which characterize the black-hole are mass and angular-momentum. On the
other hand, in higher-dimensional space-time, this may not be realized. After the
discovery of a torus black-hole (“black ring”) solution 1 in 5D Einstein equation,
quite rich structures are now available, including black Saturn and black di-rings
(see a review 2 for references). We are interested in their dynamical features, such as
the formation processes, stabilities and late-time fate of higher-dimensional “black
objects”, and are developing numerical analyses.

We, in this article, report our numerical studies on gravitational collapses in
five-dimensional axisymmetric space-time.

One of the topic is the cosmic censorship hypothesis (CCH)3, which was origi-
nally proposed in 3 + 1 dimensional GR. CCH states that collapse driven singular-
ities will always be clothed by event horizon and hence can never be visible from
the outside. Regarding to this issue, Shapiro and Teukolsky 4 (ST91, hereafter) nu-
merically demonstrated a counter example; a highly prolate matter collapse makes
space-time singular without forming an apparent horizon (AH), that is, an appear-
ance of a naked singularity. We compared the dynamics between 4D and 5D of
this collapsing behavior 5,6, which is the topic of §3 of this article. In 5D, two axes
can be settled as rotational symmetric axes, so that we also compare gravitational
collapses in axisymmetry with those in “doubly”-axisymmetric space-time.

The second topic is Thorne’s hoop conjecture 7, which states that black hole
horizons are formed when and only when a mass gets compacted into a small region.
The result of ST91 is matched with this hoop conjecture. In D-dimensional cases,
the measure ‘hoop’ is supposed to be replaced with a hyper-hoop8,9,10,11,12,13; (D −
3) dimensional area VD−3 around a mass. We examine the validity of hyper-hoop
conjecture in a 5D initial-data sequence, using minimum area around the matter.
We found that the areal criteria matches with the appearance of AHs for spheroidal
matter configurations, but not for ring configurations if we treat the conjecture for
the necessary and sufficient criteria for the formation of AH.

The third topic is the dynamics of black-ring. We found the critical ring radius for
ring-shaped AH in the initial data sequence, and it suggests a dynamical transition
of AH topology from ring-shaped to spherical. We demonstrate such an example in
time evolution in non-rotating space-time. This will be described in §4.

2. Numerical Methods

We numerically constructed five-dimensional axisymmetric [symmetric on z-axis,
SO(3)] or doubly-axisymmetric [symmetric both on x and z-axes, U(1)×U(1)],
asymptotically flat space-time (see Figure 1). For the comparison, we also performed
four-dimensional axisymmetric space-time evolutions.

The asymptotical flatness is imposed throughout the evolution, which settles the
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Fig. 1. We evolve five-dimensional (a) axisymmetric [SO(3)] or (b) double-axisymmetric [U(1)×
U(1)], asymptotically flat space-time using the Cartesian grid. The initial matter configuration is
expressed with parameters a and b.

fall-off condition to the metric as ∼ 1/r for 4D cases and ∼ 1/r2 for 5D cases.
We construct initial data sequences on a four-dimensional space-like hypersur-

face. Giving the matter distribution, the solution of the Einstein equations is ob-
tained by solving the Hamiltonian constraint equation if we assume the moment
of time symmetry. We apply the standard conformal approach 14 to obtain the
four-metric γij , with conformally flat trial metric. The details are described in 5.

The space-time is evolved using the Arnowitt-Deser-Misner (ADM) evolution
equations. It is known that the ADM evolution equations excite an unstable mode
(constraint-violation mode) in long-term simulations15,16. However, we are free from
this problem since gravitational collapse proceeds within quite short time. By mon-
itoring the violation of constraint equations during evolutions, we confirm that our
numerical code has second-order convergence, and also that the simulation contin-
ues in stable manner. The results shown in this report are obtained with numerical
grids, 500×500×2×2.

The matter is described with 5000 collisionless particles, which move along the
geodesic equations. We smooth out the matter by expressing each particle with
Gaussian density distribution function with its typical width is twice as much as
the numerical grid.

By imposing axisymmetry or double-axisymmetry, our model becomes practi-
cally a (2 + 1)-dimensional problem. We construct our numerical grids with the
Cartesian coordinate (x, z), and apply the so-called Cartoon method17,18 to recover
the symmetry of space-time.

We use the maximal slicing condition for the lapse function α, and the mini-
mal strain condition for the shift vectors βi for spheroidal collapses, and zero-shift
condition βi = 0 for ring collapses. Both conditions are proposed for avoiding sin-
gularities in numerical evolutions 19, and the behavior of α and βi roughly indicates
the strength of gravity, conversely. The iterative Crank-Nicolson method is used
for integrating ADM evolution equations, and the Runge-Kutta method is used for
matter evolution equations.
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3. Spheroidal Collapse

3.1. Initial-data sequence

We prepare several initial data fixing the total ADM mass and the eccentricity of
distribution, e =

√
1 − a2/b2 = 0.9 (see Figure 1 for a and b). When the initial

matter is highly prolate, AH is not observed. This is consistent with 4D cases 20.
See 5 for details.

3.2. Evolutions

By changing the initial matter distribution sizes, we observe the different final struc-
tures. Figure 2 shows snapshots of 5D axisymmetric evolutions of model b/M = 4
and 10 (model 5DSβ and 5DSδ, respectively; see Table 1); the former collapses to a
black hole while the latter collapses without forming an AH.

All the models we tried result in forming a singularity (i.e., diverging I =
RijklR

ijkl). We stopped our numerical evolutions when the shift vector was not ob-
tained with sufficient accuracy due to the large curvature. For model 5DSδ, we inte-
grated up to the coordinate time t/M = 15.4 and the maximum of the Kretschmann
invariant Imax became O(1000) on z-axis (see Figure 3(Left)), but AH was not
formed.

Table 1. Models and the results of their evolutions whether we observed
AH or not. The eccentricity e of the collapsed matter configurations is

also shown; eAH and ef are at the time of AH formation (if formed), and
on the numerically obtained final hypersurface, respectively.

b/M (t = 0) 2.50 4.00 6.25 10.00

4D axisym. 4Dα 4Dβ 4Dγ 4Dδ
AH-formed no no no
eAH = 0.90

ef = 0.92 ef = 0.89 ef = 0.92 ef = 0.96

5D axisym. 5DSα 5DSβ 5DSγ 5DSδ
SO(3) AH-formed AH-formed no no

eAH = 0.88 eAH = 0.88

ef = 0.82 ef = 0.84 ef = 0.88 ef = 0.96

5D double 5DUα 5DUβ 5DUγ 5DUδ
axisym. AH-formed AH-formed AH-formed no

U(1)×U(1) eAH = 0.86 eAH = 0.87 eAH = 0.92
ef = 0.79 ef = 0.81 ef = 0.90 ef = 0.98

When the initial matter is highly prolate, AH is not observed. This is again
consistent with 4D cases4, and agrees with the predictions from initial data analysis
in 5D cases9,5. The location of the 4-dimensional Kretschmann invariant Imax is on
z-axis, and just outside of the matter. This is again the same with 4D cases 4. The
absence of AH with diverging I suggests a formation of naked singularity in 5D.

In order to compare the results with 4D and 5D, we reproduced the results
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Fig. 2. Snapshots of 5D axisymmetric evolution with the initial matter distribution of b/M = 4

[Fig.(a1) and (a2); model 5DSβ in Table 1] and 10 [Fig.(b1) and (b2); model 5DSδ]. We see the
apparent horizon (AH) is formed at the coordinate time t/M = 3.3 for the former model and the
area of AH increases, while AH is not observed for the latter model up to the time t/M = 15.4 when
our code stops due to the large curvature. The big circle indicates the location of the maximum

Kretschmann invariant Imax at the final time at each evolution. Number of particles are reduced
to 1/10 for figures.

of ST91. We then find that the e = 0.9 initial data with b/M = 10 (model 4Dδ)
collapses without forming AH, and the code stops at the coordinate time t = 20.91
with Imax = 84.3 on the z-axis (z/M = 6.1); all the numbers match quite well with
ST91. (Note that our slicing conditions and coordinate structure is not the same
with ST91.)

We also performed 5D collapses with doubly-axisymmetric [U(1)×U(1)] space-
time. The matter and space-time evolve quite similar to 5D and 4D axisymmetric
cases, but we find that the critical configurations for forming AH is different. Table
1 summarizes the main results of 4D and two 5D cases. We find that AH in 5D
is formed in larger b initial data than 4D cases. This result is consistent with our
prediction from the sequence of initial data 5. AH criteria with initial b is loosened
for 5D doubly-axisymmetric cases.
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Fig. 3. (Left) Kretschmann invariant I for model 5DSδ at t/M = 15.4. The maximum is O(1000),

and its location is on z-axis, just outside of the matter. (Right) I at the location of Imax on the
final hypersurface is plotted as a function of proper time at its location. Labels indicate model-
names in Table 1. The time of AH formation (t=0.6 for model 5DSβ, t=0.9 for 5DUβ) is shown by
a dot.

We also show the eccentricity of matter, eAH and ef , at the time of AH formation
(if formed) and at the final time in the simulation, respectively. The numbers in Ta-
ble 1 indicate that the eccentricity itself is not a guiding measure for AH formation,
but they give us a hint for understanding the differences.

In 4D, the eccentricity increases after AH is formed (4Dα), while it decreases in
5D axisymmetric cases (5DSα and 5DSβ). That is, the 5D collapses proceed towards
spherical configurations. This fact would be explained by the degree of freedom of
the movements. In general, 5D space-time is expected to produce much gravitational
radiation than 4D space-time21,23, since there are more modes of oscillation exist.
Gravitational radiation normally works to change shapes to spherical, because it
is produced from the acceleration of space-time and carries the energy away. (It
is known that compact binary system will evolve into a circular orbit due to the
emission of gravitational radiation.) Therefore collapses in 5D space-time are likely
to evolve towards more spherical. This interpretation together with the hoop con-
jecture will explain why AH-formation condition is loosened in 5D cases.

In the 5D doubly-axisymmetric cases, on the other hand, the magnitude of ef is
smaller than 5D axisymmetric cases for small b/M cases (5DSα vs. 5DUα, or 5DSβ

vs. 5DUβ), while it is larger for large b/M cases (5DSγ vs. 5DUγ, or 5DSδ vs. 5DUδ).
We think this is because that the doubly-axisymmetric collapses proceed in more
symmetric manner than axisymmetric collapse near the origin, while they proceed in
more 4D-like axisymmetric collapses near the axes far from the origin. The collapses
of small b/M initial data, therefore, will evolve into more spherical shape, while the
large b/M initial data will evolve increasing the eccentricity, where the latter is
similar to 4D cases.

In Figure 3 (Right), we plot I at the point which gives Imax on the final hyper-
surface as a function of proper time. The I diverges at the end of simulations in all
the cases, but the diverging time becomes later for larger b/M initial data. We see



June 30, 2011 11:3 WSPC/INSTRUCTION FILE shinkai

Numerical Investigation of Five-dimensional Gravitational Collapses 7

that 5D-collapses are generally proceeding more rapidly than 4D collapses. We also
see that collapses in 5D doubly-axisymmetric space-time is proceeding more slowly
than 5D single axisymmetric cases. If we observe further, the model 5DUβ evolves
quite similar to 5DSβ, while 5DUδ evolves quite similar to 4Dδ. These behaviors
support the previous understandings of the evolution of the eccentricity.

3.3. Summary of spheroidal collapse

The collapsing behaviors are generally quite similar to the cases in 4D, but we
also found that (a) 5D-collapses proceed rapidly than 4D-collapses, (b) AH appears
in highly prolate matter configurations than 4D cases, (c) doubly-axisymmetric
[U(1)×U(1)] assumption makes collapse proceed towards more spherical when it
forms AH, but presents quite similar behavior with 4D cases for large configurations,
and (d) the positive evidence for appearance of a naked singularity in 5D.

4. Ring Collapse

4.1. Initial-data sequence

We prepare homogeneous toroidal matter configurations, described as(√
x2 + y2 − Rc

)2

+
(√

w2 + z2
)2

≤ R2
r , (1)

where Rc is the circle radius of toroidal configuration, and Rr is the ring radius.
From obtained initial data, we also searched the location of AHs and the maximum
value of the Kretchmann invariant Imax.

Fig.4 shows two typical shapes of AHs. We set the ring radius as Rr/rs = 0.1 and
search the sequence with changing the circle radius Rc, where rs is the Schwarzschild
radius of the same mass. When Rc is less than 0.78rs, we find that only the S3-AH
(“common horizon” over the ring) exists. On the other hand, when Rc is larger than
Rc = 0.78rs, only the S1 × S2-AH (“ring horizon”, hereafter) is observed.

We find that Imax appears at the outside of matter configuration. Interestingly,
Imax is not hidden by the horizon when Rc is larger [ see the case (c) of Fig.4 ].

We show the surface area of AHs A3 in the left panel in Fig.5. We see typical
two horizons monotonically decrease with Rc/rs, the largest one is when the matter
is spherical (Rc/M = 0). We also observe that the area of the common horizon is
always larger than those of the ring horizon and both are smoothly connected in
the plot. If we took account the analogy of the thermodynamics of black-holes, this
suggests that the black-ring evolves to shrink its circle radius, and the ring horizon
will switch to the common horizon at a certain radius in non-rotating space-time.

4.2. Hyper-Hoop Conjecture

We also calculate hyper-hoops which is defined by two-dimensional area. We propose
to define the hyper-hoop V2 as a surrounding two-dimensional area which satisfies
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Fig. 4. Matter distributions (shaded) and the location of the apparent horizon (line) for toroidal

matter configurations. The asterisk indicates the location of the maximum Kretchmann invariant,
Imax.
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Fig. 5. (Left) The area of the apparent horizon A3. Plots are normalized by the area of spherical
case (Rc = 0). We see both horizons’ area are smoothly connected at Rc/rs = 0.78, and both
monotonically decrease with Rc/rs. (Right) The ratio of the hyper-hoops V2 to the mass MADM

are shown for the sequence of Fig.1. The ratio less than unity indicates that the validity of the
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the local minimum area condition, δV2 = 0. When the area of the space-time outside
the matter is expressed with the coordinate r, then δV2 = 0 leads to the Euler-
Lagrange type equation for V2(r, ṙ). We define the hoop V

(C)
2 and V

(D)
2 ;

Right panel in Fig.5 shows the hyper-hoops V
(C)
2 , V

(D)
2 , and V

(E)
2 . We plot the

points where we found hyper-hoops. We note that Rc/rs = 0.78 is the switching
radius from the common horizon to the ring horizon, and that V

(C)
2 and V

(D)
2 are

sufficiently smaller than unity if there is a common horizon. Therefore, hyper-hoop
conjecture is satisfied for the formation of common horizon. On the other hand,
for the ring horizon, we should consider the hoop V

(E)
2 . In right panel of Fig.5, in

the region Rc/rs > 0.78, V
(E)
2 exists only a part in this region and becomes larger

than unity. Hence, for the ring horizon, the hyper-hoop conjecture is not a proper
indicator as the necessary and sufficient conditions for its formation as far as our
definition of the hyper-hoop is concerned.
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4.3. Time Evolution

Fig. 6 is a snapshot of evolutions for the ring matter of which initial radius are
(a) Rc/M = 1.00 and (b) 1.50, respectively. Both have no AHs on the initial hy-
persurface, and we searched both spheroidal and toroidal horizons simultaneously
at every time steps. We observe a formation of spheroidal AH (common horizon)
in (a), while we see a formation of toroidal AH (ring horizon) then it switches to
common horizon in (b).
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Fig. 6. Snapshots of evolutions of ring-shaped matter: for the initial data of (a) Rc/M = 1.00
and (b) 1.50, both with no AHs on the initial hypersurface. The matter distribution at t = 0.00
and t = 4.00, and the location of AHs are plotted on X-Z coordinates. We see that AH topology

switches from toroidal to spherical in (b).
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Fig. 7. (a) Area of AH is plotted as a function of minimum lapse function αmin for three cases.
We see AH increases monotonically, and jumps when the topology changes. (b) The ring matter
configuration (Rc, Rr) with marks when the horizon forms during its evolution.

In Fig. 7(a), we plot the AH area as a function of the minimum value of the lapse
function, α, which is located at the center of the matter and basically corresponds
inversely with the maximum density of the matter. The area of AH is apparently
increasing, and we see the area increases discontinuously when the topology of
AH changes. We also plot the evolution of matter configuration (Rc(t), Rr(t)) in
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Fig. 7(b) for the same 3 cases. The detail conditions for the formation of ring and
common AHs will be reported elsewhere24.

5. Future works

In this article, we reported our numerical study of gravitational collapses in 5D
space-time. We are now investigating the conditions for topology changes of AHs
for ring matter evolutions, the relations to the hyper-hoop conjecture and/or Pen-
rose inequality from dynamical viewpoints. Our code does not include any angular
momentum, so that the actual studies of black-ring solution is not yet realized. We
are implementing our code to cover these studies and hope to report them near
future.

This work was supported partially by the Grant-in-Aid for Scientific Research
Fund of Japan Society of the Promotion of Science, No. 22540293. Numerical com-
putations were carried out on Altix3700 BX2 at YITP in Kyoto University, and on
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