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To obtain an evolution system robust against the violation of constraints, we present a new set of
evolution systems based on the so-called Baumgarte-Shapiro-Shibata-Nakamura (BSSN) equations.
The idea is to add functional derivatives of the norm of constraints, C2, to the evolution equations,
which was proposed by Fiske (2004) and was applied to the ADM formulation in our previous study.
We derive the constraint propagation equations, discuss the behavior of constraint damping, and
present the results of numerical tests using the gauge-wave and polarized Gowdy wave spacetimes.
The construction of the C2-adjusted system is straightforward. However, in BSSN, there are two
kinetic constraints and three algebraic constraints; thus, the definition of C2 is a matter of con-
cern. By analyzing constraint propagation equations, we conclude that C2 should include all the
constraints, which is also confirmed numerically. By tuning the parameters, the lifetime of the
simulations can be increased to 2-10 times longer than that of standard BSSN evolutions.

PACS numbers: 04.25.D-

I. INTRODUCTION

When solving the Einstein equations numerically, the
standard way is to split the spacetime into space and
time. The most fundamental decomposition of the Ein-
stein equations is the Arnowitt-Deser-Misner (ADM) for-
mulation [1, 2]. However, it is well known that in long-
term evolutions in strong gravitational fields such as the
coalescences of binary neutron stars and/or black holes,
simulations with the ADM formulation are unstable and
are often interrupted before producing physically inter-
esting results. Finding more robust and stable formula-
tions is known as the “formulation problem” in numerical
relativity [3–5].
Many formulations have been proposed in the last two

decades. The most commonly used sets of evolution
equations among numerical relativists are the so-called
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [6, 7], the generalized harmonic (GH) formulation
[8, 9], the Kidder-Scheel-Teukolsky (KST) formulation
[10], and the Z4 formulation [11, 12] (we here cite [13, 14]
for applications of the BSSN formulation, [15] for the GH
formulation, [16] for the KST formulation, and [17] for
the Z4 formulation).
The above modern formulations all include the tech-

nique of “constraint damping”, which attempts to con-
trol the violations of constraints by adding the constraint
terms to evolution equations. Using this technique, more
stable and accurate systems are realized (for examples of
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research on this technique, see [18, 19]). This technique
is simply an adjustment of the original system.

In [20–22], two of the authors systematically investi-
gated how the adjusted terms change the original sys-
tems by calculating the constraint propagation equations.
The authors suggested some effective adjustments for
the BSSN formulation under the name “adjusted BSSN
formulation”[22]. The actual constraint damping effect
was confirmed by numerical tests [23].

Fiske proposed a method of adjusting the original evo-
lution system using the norm of the constraints, C2, [24].
We call such a system a “C2-adjusted system.” The new
evolution equations cause the constraints to evolve to-
wards their decay if the coefficient parameters of the ad-
justed terms are set as appropriate positive values. Fiske
reported the damping effect of the constraint violations
for the Maxwell system [24] and for the linearized ADM
and BSSN formulations [25]. He also reported the limi-
tation of the magnitude of the coefficient parameters of
the adjusted terms.

In [26], we applied the C2-adjusted system to the (full)
ADM formulation and performed some numerical tests.
We confirmed that the violations of the constraints are
less than those in the original system. We also reported
the differences in the effective range of the coefficient pa-
rameters of the adjusted terms for the evolution equa-
tions of three-metric and extrinsic curvature.

In this article, we apply the C2-adjusted system to the
(full) BSSN formulation and derive the constraint propa-
gation equations in flat space. We perform some numeri-
cal tests and compare three types of BSSN formulations:

the standard BSSN formulation, the Ã-adjusted BSSN
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formulation, and the C2-adjusted BSSN formulation. We
use the gauge-wave and polarized Gowdy wave testbeds,
which are the test problems as is known to apples-with-
apples testbeds [27]. Since the models are precisely fixed
up to the gauge conditions, boundary conditions, and
technical parameters, testbeds are widely used for com-
parisons between formulations [23, 28, 29].
The structure of this article is as follows. We review

the ideas of adjusted systems and the C2-adjusted system
in Sec.II. In Sec.III, we review the standard and adjusted
BSSN formulations and derive the C2-adjusted BSSN for-
mulation. In Sec.IV, we perform some numerical tests in
the gauge-wave and polarized Gowdy wave testbeds to
show the damping effect of the constraint violations. We
summarize this article in Sec.V. In this article, we only
consider vacuum spacetime, but the inclusion of matter
is straightforward.

II. IDEAS OF ADJUSTED SYSTEMS AND

C2-ADJUSTED SYSTEMS

A. Idea of adjusted systems

Suppose we have dynamical variables ui that evolve
with the evolution equations

∂tu
i = f(ui, ∂ju

i, · · · ), (2.1)

and suppose also that the system has the (first class)
constraint equations

Ca(ua, ∂ju
a, · · · ) ≈ 0. (2.2)

We can then predict how the constraints are preserved
by evaluating the constraint propagation equations

∂tC
a = g(Ca, ∂iC

a, · · · ), (2.3)

which measure the violation behavior of constraints Ca

in time evolution. Equation (2.3) is theoretically weakly
zero, i.e., ∂tC

a ≈ 0, since the system is supposed to be
first class. However, free numerical evolution with dis-
cretized grids introduces a constraint violation, at least
at the level of truncation error, which sometimes grows
and stops the simulations. The unstable feature of ADM
evolution can be understood on the basis of this analysis
[15].
Such features of the constraint propagation equations,

(2.3), change when we modify the original evolution equa-
tions. Suppose we add the constraint terms to the right-
hand-side of (2.1) as

∂tu
i = f(ui, ∂ju

i, · · · ) + F (Ca, ∂jC
a, · · · ), (2.4)

where F (Ca, · · · ) ≈ 0 in principle but not exactly zero in
numerical evolutions. Equation (2.3) will also be modi-
fied to

∂tC
a = g(Ca, ∂iC

a, · · · ) +G(Ca, ∂iC
a, · · · ). (2.5)

Therefore, we are able to control ∂tC
a by making an

appropriate adjustment F (Ca, ∂jC
a, · · · ) in (2.4). If

∂tC
a < 0 is realized, then the system has the constraint

surface as an attractor.
This technique is also known as a constraint-damping

technique. Almost all the current popular formulations
used for large-scale numerical simulations include this im-
plementation. The purpose of this article is to find a
better way of adjusting the evolution equations to realize
∂tC

a ≤ 0.

B. Idea of C2-adjusted systems

Fiske [24] proposed a way of adjusting the evolution
equations which we call “C2-adjusted systems”;

∂tu
i = f(ui, ∂ju

i, · · · )− κij

(
δC2

δuj

)
, (2.6)

where κij is a positive-definite constant coefficient and
C2 is the norm of the constraints, which is defined as

C2 ≡

∫
CaC

ad3x. The term (δC2/δuj) is the functional

derivative of C2 with respect to uj. The associated con-
straint propagation equation becomes

∂tC
2 = h(Ca, ∂iC

a, · · · )−

∫
d3x

(
δC2

δui

)
κij

(
δC2

δuj

)
.

(2.7)

The motivation for this adjustment is to naturally ob-
tain the constraint-damping system, ∂tC

2 < 0. If we set
κij so that the second term on the right-hand side of (2.7)
becomes larger than the first term, then ∂tC

2 becomes
negative, which indicates that constraint violations are
expected to decay to zero. Fiske presented numerical ex-
amples for the Maxwell system and the linearized ADM
and BSSN formulations, and concluded that this method
actually reduces constraint violations as expected. In a
previous work [26], we applied the C2-adjusted system to
the (full) ADM formulation and calculated the constraint
propagation equations, then we confirmed that ∂tC

2 < 0
was expected in flat spacetime. We performed numer-
ical tests with the C2-adjusted ADM formulation using
the gauge-wave and Gowdy wave testbeds, and confirmed
that the violations of the constraint are lower than those
of the standard ADM formulation. The simulation con-
tinued 1.7 times longer than that of the standard ADM
formulation with the magnitude of the violations of the
constraint less than order O(100).

III. APPLICATION TO BSSN FORMULATION

A. Standard BSSN formulation

As the notation [7] of the BSSN system, the dynamical

variables (ϕ,K, γ̃ij , Ãij , Γ̃
i) are widely used instead of the
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variables of the ADM formulation, (γij ,Kij), where

ϕ ≡ (1/12) log(det(γij)), (3.1)

K ≡ γijKij , (3.2)

γ̃ij ≡ e−4ϕγij , (3.3)

Ãij ≡ e−4ϕ(Kij − (1/3)γijK), and (3.4)

Γ̃i ≡ γ̃mnΓ̃i
mn. (3.5)

The BSSN evolution equations are, then,

∂tϕ = −(1/6)αK + (1/6)(∂iβ
i) + βi(∂iϕ), (3.6)

∂tK = αÃijÃ
ij + (1/3)αK2 −DiD

iα+ βi(∂iK),
(3.7)

∂tγ̃ij = −2αÃij − (2/3)γ̃ij(∂ℓβ
ℓ)

+ γ̃jℓ(∂iβ
ℓ) + γ̃iℓ(∂jβ

ℓ) + βℓ(∂ℓγ̃ij), (3.8)

∂tÃij = αKÃij − 2αÃiℓÃ
ℓ
j + αe−4ϕRij

TF

− e−4ϕ(DiDjα)
TF − (2/3)Ãij(∂ℓβ

ℓ)

+ (∂iβ
ℓ)Ãjℓ + (∂jβ

ℓ)Ãiℓ + βℓ(∂ℓÃij), (3.9)

∂tΓ̃
i = 2α{6(∂jϕ)Ã

ij + Γ̃i
jℓÃ

jℓ − (2/3)γ̃ij(∂jK)}

− 2(∂jα)Ã
ij + (2/3)Γ̃i(∂jβ

j) + (1/3)γ̃ij(∂ℓ∂jβ
ℓ)

+ βℓ(∂ℓΓ̃
i)− Γ̃j(∂jβ

i) + γ̃jℓ(∂j∂ℓβ
i), (3.10)

where TF denotes the trace-free part. The Ricci tensor
in the BSSN system is normally calculated as

Rij ≡ R̃ij +Rϕ
ij , (3.11)

where

R̃ij ≡ γ̃n(i∂j)Γ̃
n + γ̃ℓm(2Γ̃k

ℓ(iΓ̃j)km + Γ̃nℓjΓ̃
n
im)

− (1/2)γ̃mℓγ̃ij,mℓ + Γ̃nΓ̃(ij)n, (3.12)

Rϕ
ij ≡ −2D̃iD̃jϕ+ 4(D̃iϕ)(D̃jϕ) − 2γ̃ijD̃mD̃mϕ

− 4γ̃ij(D̃
mϕ)(D̃mϕ). (3.13)

The BSSN system has five constraint equations. The
“kinematic” constraint equations, which are the Hamilto-
nian constraint equation and the momentum constraint
equations (H-constraint and M-constraint, hereafter),
are expressed in terms of the BSSN basic variables as

H ≡ e−4ϕR̃ − 8e−4ϕ(D̃iD̃
iϕ+ (D̃mϕ)(D̃mϕ))

+ (2/3)K2 − ÃijÃ
ij − (2/3)AK ≈ 0, (3.14)

Mi ≡ −(2/3)D̃iK + 6(D̃jϕ)Ã
j
i + D̃jÃ

j
i

− 2(D̃iϕ)A ≈ 0, (3.15)

respectively, where D̃i is the covariant derivative associ-

ated with γ̃ij and R̃ = γ̃ijR̃ij . Because of the introduc-
tion of new variables, there are additional “algebraic”
constraint equations:

Gi ≡ Γ̃i − γ̃jℓΓ̃i
jℓ ≈ 0, (3.16)

A ≡ Ãij γ̃ij ≈ 0, (3.17)

S ≡ det(γ̃ij)− 1 ≈ 0, (3.18)

which we call the G-, A-, and S-constraints, respectively,
hereafter. If the algebraic constraint equations, (3.16)-
(3.18), are not satisfied, the BSSN formulation and ADM
formulation are not equivalent mathematically.

B. C2-adjusted BSSN formulation

The C2-adjusted BSSN evolution equations are for-
mally written as

∂tϕ = (3.6)− λϕ

(
δC2

δϕ

)
, (3.19)

∂tK = (3.7)− λK

(
δC2

δK

)
, (3.20)

∂tγ̃ij = (3.8)− λγ̃ijmn

(
δC2

δγ̃mn

)
, (3.21)

∂tÃij = (3.9)− λÃijmn

(
δC2

δÃmn

)
, (3.22)

∂tΓ̃
i = (3.10)− λij

Γ̃

(
δC2

δΓ̃j

)
, (3.23)

where all the coefficients λϕ, λK , λγ̃ ijmn, λÃijmn, and λij

Γ̃

are positive definite. C2 is a function of the constraints
H, Mi, G

i, A, and S, which we set as

C2 =

∫
(H2 + γijMiMj + cGγijG

iGj

+ cAA
2 + cSS

2)d3x, (3.24)

where, cG, cA, and cS are Boolean parameters (0 or 1).
These three parameters are introduced to prove the ne-
cessity of the algebraic constraint terms in (3.24).
The adjusted terms in (3.19)-(3.23) are then written

down explicitly, as shown in Appendix A. The constraint
propagation equations of this system are also derived for
the Minkowskii background, as shown in Appendix B.
Now we discuss the effect of the algebraic constraints.

From (B1)-(B5), we see that the constraints affect each
others. Also, the constraint propagation equations of the
algebraic constraints, (B3)-(B5), include cG(λγ̃∆δab −
2λΓ̃δ

a
b)G

b, −6cAλÃA, and−6cSλγ̃S, respectively. These
terms contribute to reducing the violations of each con-
straint if cG, cA, and cS are nonzero. Therefore, we adopt
cG = cA = cS = 1 in (3.24);

C2 =

∫ (
H2 + γijMiMj + γijG

iGj +A2 + S2
)
d3x.

(3.25)

In Sec.IV, we verify the validity of this decision using
numerical examples.

C. Ã-adjusted BSSN system

In [22], two of the authors reported some examples
of adjusted systems for the BSSN formulation. The au-
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thors investigated the signatures of eigenvalues of the co-
efficient matrix of the constraint propagation equations,
and concluded three of the examples to be the best can-
didates for the adjustment. The actual numerical tests
were performed later [23] using the gauge-wave, linear-
wave, and polarized Gowdy wave testbeds. The most
robust system among the three examples for these three

testbeds was the Ã-adjusted BSSN formulation, which
replaces (3.9) in the standard BSSN system with

∂tÃij = (3.9) + κAαD̃(iMj), (3.26)

where κA is a constant. If κA is set as positive, the
violations of the constraints are expected to be damped

in flat spacetime [22]. We also use the Ã-adjusted BSSN
system for comparison in the following numerical tests.

IV. NUMERICAL EXAMPLES

We test the proposed adjusted systems (C2-adjusted

BSSN, Ã-adjusted BSSN, and the standard BSSN) in
numerical evolutions using the gauge-wave and polarized
Gowdy wave spacetimes, which are the standard tests for
comparisons of formulations in numerical relativity, and
are known as apples-with-apples testbeds [27]. We also
performed the linear-wave testbed but the violations of
the constraint were negligible; thus, we employ only the
above two testbeds in this article. These tests have been
used by several groups and were reported in the same
manner (e.g., [23, 28–30]).
For simplicity, we set the coefficient parameters in

(3.21)-(3.23) to λγ̃ijmn = λγ̃δimδjn, λÃijmn = λÃδimδjn,

and λij

Γ̃
= λΓ̃δ

ij with non-negative coefficient constant

parameters λγ̃ , λÃ, and λΓ̃. Our code passes the conver-
gence test with second-order accuracy. We list the figures
in this article in Table I.

A. Gauge-wave Testbed

1. Metric and Parameters

The metric of the gauge-wave test is

ds2 = −Hdt2 +Hdx2 + dy2 + dz2, (4.1)

where

H = 1−A sin(2π(x− t)/d), (4.2)

which describes a sinusoidal gauge wave of amplitude A
propagating along the x-axis. The nontrivial extrinsic
curvature is

Kxx = −
πA

d

cos(2π(x−t)
d )√

1−A sin 2π(x−t)
d

. (4.3)

Following [27], we chose the numerical domain and pa-
rameters as follows:

• Gauge-wave parameters: d = 1 and A = 10−2.

• Simulation domain: x ∈ [−0.5, 0.5], y = z = 0.

• Grid: xn = −0.5+(n−1/2)dx with n = 1, · · · , 100,
where dx = 1/100.

• Time step: dt = 0.25dx.

• Boundary conditions: Periodic boundary condition
in x-direction and planar symmetry in y- and z-
directions.

• Gauge conditions:

∂tα = −α2K, βi = 0. (4.4)

• Scheme: second-order iterative Crank-Nicolson.

2. Constraint Violations and Damping of Violations
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FIG. 1. L2 norm of each constraint in the gauge-wave evo-
lution using the standard BSSN formulation. The vertical
axis is the logarithm of the L2 norm of the constraints and
the horizontal axis is time. The thin solid line (A-1) is the
H-constraint, the thick solid line (A-2) is the M-constraint,
the dotted line (A-3) is the G-constraint, the dot-dashed line
(A-4) is the A-constraint, and the two-dot-dashed line (A-5)
is the S-constraint.

Figure 1 shows the violations of five constraint equa-
tions H, Mi, G

i, A, and S for the gauge-wave evolution
using the standard BSSN formulation. The violation of
the M-constraint, line (A-2), is the largest during the
evolution, while the violations of both the A-constraint
and S-constraint are negligible. This is the starting point
for improving the BSSN formulation.
Applying the adjustment procedure, the lifetime of the

standard BSSN evolution is increased at least 10-fold. In
Fig.2, we plot the L2 norm of the constraints, (3.25), of
three BSSN formulations: (A) the standard BSSN formu-

lation (3.1)-(3.5), (B) the Ã-adjusted BSSN formulation
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TABLE I. List of figures.

gauge-wave test Gowdy wave test
§IVA §IVB

(A) (D) standard BSSN (3.1)-(3.5) Fig.1 norm each Fig.7 norm each
(constraint propagation, see App. in [22]) Fig.2 norm all Fig.8 norm all

(B) (E) Ã-adjusted BSSN Fig.2 norm all Fig.8 norm all
(3.1)-(3.3), (3.5) and (3.26) Fig.3 norm each
(constraint propagation, see [22])

(C) (F) C2-adjusted BSSN (3.19)-(3.23) Fig.2 norm all Fig.8 norm all
(constraint propagation, see App. B) Fig.3 norm each Fig.9 norm each

Fig.4 correction test Fig.10 correction test
Fig.5 (3.19)-(3.23) test Fig.11 (3.19)-(3.23) test
Fig.6 (3.25) test Fig.12 (3.25) test

-3

-2

-1

 0

 1

 2

 0  200  400  600  800  1000

lo
g 1

0|
|C
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Time

(A) Standard BSSN
(B) A-adjusted BSSN
(C) C2-adjusted BSSN

FIG. 2. L2 norm of all the constraints in gauge-wave evo-
lution comparing three BSSN formulations: (A) standard

BSSN formulation (solid line), (B) Ã-adjusted BSSN formu-
lation (dotted line), and (C) C2-adjusted BSSN formulation
(dot-dashed line). The adopted parameters are κA = 10−1.6

for (B), and λϕ = 10−8.5, λK = 10−8.4, λγ̃ = 10−7.3,
λÃ = 10−2.5, and λ

Γ̃
= 10−1.8 for (C). The violations of C2 for

the Ã-adjusted BSSN formulation, (B), increase with time and
the simulation stops at t = 1200, while the violations of C2 for
the C2-adjusted BSSN formulation, (C), remain at O(10−1)
until t = 1300 and the simulation stops before t = 1400.

(3.1)-(3.3), (3.5), and (3.26), and (C) the C2-adjusted
BSSN formulation (3.19)-(3.23). We set the parameter

of the Ã-adjusted BSSN formulation to κA = 10−1.6 and
the parameters of the C2-adjusted BSSN formulation to
λϕ = 10−8.5, λK = 10−8.4, λγ̃ = 10−7.3, λÃ = 10−2.5,

and λΓ̃ = 10−1.8 to minimize C2 at t = 1000. The fig-
ure shows the damping of the constraint violations for

the Ã-adjusted BSSN formulation [line (B)] and the C2-
adjusted BSSN formulation [line (C)] in contrast to the
standard BSSN formulation [line (A)]. Line (B) monoton-
ically increases, while line (C) has an L2 norm remaining
at a level ≤ O(10−1) after t = 600.

The violation of C2 for the Ã-adjusted BSSN formu-
lation is the smallest among the three formulations until

t = 50, after which that for the C2-adjusted BSSN for-
mulation is the smallest.

To observe the behavior of each violation of the con-
straint for the two adjusted BSSN formulations, we plot
the norm of each constraint equation in Fig.3. We see
that the violations of the M-constraint for the two ad-
justed BSSN formulations, (B-2) and (C-2), are less than
those of the standard BSSN formulation in Fig.1. This
is the main consequence of the two adjusted BSSN for-
mulations.

In the two panels in Fig.3, we see that the domi-
nant violation changes from the M-constraint to the S-
constraint as the evolution continues. Before t = 100,
line (B-2) in lower than line (C-2). After that, line (C-5)
in lower than line (B-5). This explains the intersection
of lines (B) and (C) at t = 50 in Fig.2. Since line (B-
5) overlaps with line (B) in Fig.2 after t = 100 and line
(C-5) overlaps with line (C) in Fig.2 after t = 500, the
reduction of the violations of the S-constraint is the key
to reducing C2 for the C2-adjusted BSSN formulation.

In panel (b), we see that all the violations of the con-
straints are better controlled than in panel (a), and we
thus conclude that the C2-adjusted BSSN formulation is
more robust against the violation of constraints than the

Ã-adjusted BSSN formulation.

The violations of the A-constraint and S-constraint are
larger than those in Fig.1. From (B4) and (C4), the viola-
tion of the A-constraint is triggered by the M-constraint
and A-constraint. The increase in the violations of the
A-constraint is caused by the term 2λÃδ

ij(∂iMj), since
the other adjusted term, −6cAλÃA, contributes to re-
ducing the violations of the A-constraint. Similarly, in
(B5) and (C5), the violation of the S-constraint is trig-
gered by only the A-constraint since the magnitude of λγ̃

is negligible. Therefore, the increase in the violations of
the S-constraint is due to the increase in the violations
of the A-constraint.

The lower positions of lines (B-2) and (C-2) in Fig.3
than line (A-2) in Fig.1 is explained by the terms
λÃ∆Ma in (B2) and (1/2)κA∆Mi in (B7), respectively,
since these terms contribute to reducing the violations of
the M-constraint.

From (A1) and (A3), it can be seen that the adjusted
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FIG. 3. L2 norm of each constraint in the gauge-wave evolution using the Ã-adjusted BSSN formulation [panel (a)] and
C2-adjusted BSSN formulation [panel (b)]. The thin solid lines (B-1) and (C-1) are the H-constraint, the thick solid lines (B-2)
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are the same as those in Fig.2. In both panels, we see that the violations of the H-constraint (B-1) and (C-1), the

M-constraint (B-2) and (C-2), and the G-constraint (B-3) and (C-3) are less than those for the standard BSSN formulation in
Fig.1. However, the violations of the A-constraint (B-4) and (C-4) and the S-constraint (B-5) and (C-5) are larger. Line (B-5)
overlaps with line (B) in Fig.2 after t = 100, and line (C-5) overlaps with line (C) in Fig.1 after t = 500.
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FIG. 4. L2 norm of (adjusted terms)/(original terms) of
each evolution equation for the C2-adjusted BSSN formula-
tion, (3.19)-(3.23), in the the gauge-wave test. We see that

the largest ratio is that for the evolution equation of Ãij .
The corrections to the ϕ, K, and γ̃ij evolution equations are
reasonably small.

terms of the evolution equations of ϕ and γ̃ij for the
C2-adjusted BSSN formulation include a second-order
derivative of the H-constraint. This means that these
evolution equations include fourth-order derivative terms
of the dynamical variables. To investigate the magni-
tudes of the adjusted terms, we show the ratio of the L2
norm of the original terms to that of the additional terms
in the evolution equations in Fig.4. We see that the mag-
nitudes of the adjusted terms of ϕ and γ̃ij are reasonably
small. Therefore, the characteristic of the C2-adjusted

evolution system cannot be changed from hyperbolic to
parabolic by adjusting the procedures.
In the simulations with the C2-adjusted BSSN formu-

lation, the constraint with the largest violation is the
S-constraint. The S-constraint depends only on the dy-
namical variables γ̃ij . To control the S-constraint di-
rectly, there is no other choice than setting λγ̃ to an
appropriate value, as can be seen from (B5). However,
we must set λγ̃ to a value as small as possible since the
adjusted term of γ̃ij includes higher derivatives of γ̃ij .
Therefore, it is difficult to control the S-constraint, and
we have not yet found an appropriate set of parameters.

3. Damping Effect of each Adjusted Term in C2-adjusted
BSSN Formulation

To observe the differences in the effect of the reduction
of the violations of constraints for each of the adjusted
terms, we compared evolutions for a set of equations ap-
plying only one of the adjusted terms. As previously
mentioned, the reduction of the M-constraint is the key
to improving constraint damping in gauge-wave space-
time at an earlier time (approximately t = 100). From

(B2), we see that the adjusted terms of K and Ãij di-
rectly affect the M-constraint. The left panel in Fig.5
shows the norm of C2 with λÃ 6= 0 and λϕ = λK = λγ̃ =

λΓ̃ = 0. The right panel shows C2 with λK 6= 0 and
λϕ = λγ̃ = λÃ = λΓ̃ = 0. In both cases, we confirm that
the violation of constraints is dominated by that of the
M-constraint. In the left panel, we see that the case of
λÃ = 10−3 is the best-controlled evolution, while in the
right panel we see that the standard BSSN evolution min-
imizes the violation of constraints. The latter indicates
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FIG. 5. Sensitivity of adjusting parameters for the C2-adjusted BSSN formulation, (3.19)-(3.23). The left panel shows the case
when λÃ 6= 0 and the other parameters are zero. The right panel shows the case when λγ̃ 6= 0 and the other parameters are
zero. We see that if we set λÃ to an appropriate value such as λÃ = 10−3, then the violation of C2 decreases ideally. However,
the violation of C2 is larger than that for the standard BSSN formulation if only λK is nonzero.

that the adjustment to the K-equation, (3.20), does not
contribute to reducing any of the constraint violations if
it is the only adjustment implemented.

4. Damping Effect of Algebraic Constraints

In Sec.III B, we started that the definition of C2,
(3.25), should include the algebraic constraints. We here
confirm this using the gauge-wave evolution in Fig.6. The
coefficient parameters λϕ, λK , λγ̃ , λÃ, and λΓ̃ are the
same as those in Fig.2. We plot each constraint equation
in the panels. Panel (a) shows the case cG = cA = cS = 0,
(b) shows the case cG = 0, cA = cS = 1, (c) shows
the case cA = 0, cG = cS = 1, and (d) shows the case
cS = 0, cG = cA = 1. In panel (a), we see that the sim-
ulation stops at t = 800 owing to a sudden increase in
the violation of the constraint. In comparison with panel
(b) in Fig.3 [cG = cA = cS = 1], the violation of the
constraint is lower if C2 includes the algebraic constraint
terms. This result is consistent with the discussion in
Sec.III B. Panels (b) and (c) show that if we turn off
cG or cA, then the violations of the G-constraint or A-
constraint become worse than those indicated by lines
(C-3) and (C-4) in Fig.3, respectively. These results are
consistent with the discussion of the definition of C2 in
Sec.III B. Panel (d), on the other hand, appears similar
to Fig.3. This is due to the smallness of λγ̃ as mentioned
above.

B. Gowdy wave Testbed

1. Metric and Parameters

The metric of the polarized Gowdy wave is given by

ds2 = t−1/2eλ/2(−dt2 + dx2) + t(ePdy2 + e−Pdz2),
(4.5)

where P and λ are functions of x and t. The forward
direction of the time coordinate t corresponds to the ex-
panding universe, and t = 0 corresponds to the cosmo-
logical singularity.
For simple forms of the solutions, P and λ are given

by

P = J0(2πt) cos(2πx), (4.6)

λ = −2πtJ0(2πt)J1(2πt) cos
2(2πx) + 2π2t2[J2

0 (2πt)

+ J2
1 (2πt)]− (1/2){(2π)2[J2

0 (2π) + J2
1 (2π)]

− 2πJ0(2π)J1(2π)}, (4.7)

where Jn is the Bessel function.
Following [27], a new time coordinate τ , which satisfies

harmonic slicing, is obtained by the coordinate transfor-
mation

t(τ) = kecτ , (4.8)

where k and c are arbitrary constants. We also follow
[27] by setting k, c, and the initial time t0 as

k ∼ 9.67076981276405, c ∼ 0.002119511921460,
(4.9)

t0 = 9.87532058290982, (4.10)

so that the lapse function in the new time coordinate is
unity and t = τ at the initial time.
We also use the following parameters specified in [27].
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FIG. 6. Effect of differences in the definition of C2, (3.25), on the damping of each constraint equation. Panel (a) shows the
case cG = cA = cS = 0, (b) shows the case cG = 0, cA = cS = 1, (c) shows the case cG = 1, cA = 0, cS = 1, and (d) shows the
case cG = cA = 1, cS = 0. The thin solid lines are the H-constraint, the thick solid lines are the M-constraint, the dotted lines
are the G-constraint, the dot-dashed lines are the A-constraint, and the two-dot-dashed lines are the S-constraint.

• Simulation domain: x ∈ [−0.5, 0.5], y = z = 0.

• Grid: xn = −0.5 + (n − (1/2))dx, n = 1, · · · , 100,
where dx = 1/100.

• Time step: dt = 0.25dx.

• Boundary conditions: Periodic boundary condition
in x-direction and planar symmetry in y- and z-
directions.

• Gauge conditions: harmonic slicing and βi = 0.

• Scheme: second-order iterative Crank-Nicolson.

2. Constraint Violations and Damping of Violations

We first show the case of the standard BSSN formu-
lation, (3.6)-(3.10). Figure 7 shows the L2 norm of the
violations of the constraints as a function of backward
time (−t). We see that the violation of the M-constraint
is the largest at all times and that all the violations of
constraints increase monotonically with time. Compared
with [23], our code shows that the H-constraint (A-1)

remains at the same level but the M-constraint (A-2) is
smaller.

Similarly to in the gauge-wave test, we compare the
violations of C2 for three types of BSSNs in Fig.8:
(A) the standard BSSN formulation (3.6)-(3.10), (B)

the Ã-adjusted BSSN formulation (3.6)-(3.8), (3.10),
and (3.26), and (C) the C2-adjusted BSSN formulation
(3.19)-(3.23). We adopt the parameters κA = −10−0.2,
λϕ = −10−10, λK = −10−4.6, λγ̃ = −10−11, λÃ =

−10−1.2, and λΓ̃ = −10−14.3 to minimize the violations of
the constraints at t = −1000 for these evolutions. In the
case of the Ã-adjusted BSSN formulation, the violation of
the constraints decreases if we set |κA| larger than 10−0.2.
In the case of the C2-adjusted BSSN formulation, it de-
creases if we set |λÃ| larger than 10−1.2. Note that the
signatures of the above κA and λs are negative, contrary
to the predictions in [22] and Sec.III, respectively. This is
because these simulations are performed with backward
time.

As shown in Fig.8, the violations of C2 for the standard

BSSN formulation and Ã-adjusted BSSN formulation in-
crease monotonically with time. On the other hand, that
for the C2-adjusted BSSN formulation decreases after
t = −200 and maintains a magnitude under O(10−2)
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after t = −400.
To investigate the reason why C2 starts to decay

rapidly after t = −200, we plot each constraint in Fig.9.
We see that the violations of the A-constraint and S-
constraint increase with negative time, in contrast to
the standard BSSN formulation, and those of the M-
constraint and G-constraint decrease after t = −200.
The propagation equation of the M-constraint, (B2), in-
cludes the term −2cAλÃ∂aA, which contributes to con-
straint damping. Similarly, the propagation equation
of the G-constraint, (B3), includes δab{(1/2)λγ̃∂b∆ +
2λΓ̃∂b}H − λγ̃cSδ

ab∂bS; the decay of the violations of
the G-constraint is caused by these terms. Therefore,
these terms are considered to become significant of ap-
proximately t = −200 when the violations of the A, H,
and S-constraints become a certain order of magnitude.
In contrast to the gauge-wave testbed (Fig.4), we pre-

pared Fig.10, which shows the magnitudes of the ratio of
the L2 norm of the adjusted terms to the original terms.
Since the magnitudes of the adjusted terms of ϕ and γ̃ij
can be disregarded, the effect of the reduction of the ad-
justed terms of ϕ and γ̃ij is negligible. Therefore, the
C2-adjusted BSSN evolution in the Gowdy wave can be
regarded as maintaining its hyperbolicity.

3. Damping Effect of each Adjusted Term in C2-adjusted
BSSN Formulation

To investigate the contribution to constraint damp-
ing of each adjusted term, (3.19)-(3.23), we per-
form evolutions with only one of the parameters,
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FIG. 8. L2 norm of the constraints, C2, of the polarized
Gowdy wave tests for the standard BSSN and two adjusted
formulations. The vertical axis is the logarithm of the L2
norm of C2 and the horizontal axis is backward time. The
solid line (A) is the standard BSSN formulation, the dot-

ted line (B) is the Ã-adjusted BSSN formulation with κA =
−10−0.2, and the dot-dashed line (C) is the C2-adjusted BSSN
formulation with λϕ = −10−10, λK = −10−4.6, λγ̃ = −10−11,
λÃ = −10−1.2, and λ

Γ̃
= −10−14.3. Note that the signa-

tures of κA and λs are negative since the simulations evolve
backward. We see that lines (A) and (C) are identical until
t = −200. Line (C) then decreases and maintains its magni-
tude under O(10−2) after t = −400. We confirm this behavior
until t = −1500.

(λϕ, λK , λγ̃ , λÃ, λΓ̃), nonzero. Since the magnitudes of

the adjusted terms of Ãij and K are largest until t =
−200 in Fig.10, these terms are expected to be the key
to reducing the constraint violation.

The effect of these terms on reducing C2 is plotted in
Fig.11. The left panel shows the case of λÃ 6= 0 with the
other parameters equal to zero. The right panel shows
the case of λK 6= 0 with the other parameters equal to
zero. In the left panel, we see that the violation of C2

decreases with increasing negative time. Therefore, the

adjusted terms of Ãij contribute to the reduction of con-
straint violations. On the other hand, the adjusted terms
of K do not appear to contribute to the reduction of con-
straint violations. These results are consistent with the
case of the gauge-wave testbed; thus, it is important to
adjust λÃ to an appropriate value to control the con-
straints.

4. Damping Effect of Algebraic Constraints

In Sec.III, we investigated the effect of the definition
of C2. Similarly to the gauge-wave test in the previous
subsection, we here show the effect of constraint damp-
ing caused by the algebraic constraints. The coefficient
parameters, λϕ, λK , λγ̃ , λÃ and λΓ̃, are all the same as



10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0  200  400  600  800  1000

Lo
g(

L2
 n

or
m

 o
f c

on
st

ra
in

t)

-Time

(C-1) H-constraint
(C-2) M-constraint
(C-3) G-constraint
(C-4) A-constraint
(C-5) S-constraint

FIG. 9. As Fig.7 but for the C2-adjusted BSSN formulation.
The parameters, (λϕ, λK , λγ̃ , λÃ, λΓ̃
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FIG. 10. L2 norm of (additional terms)/(original terms) of
each evolution equation for the C2-adjusted BSSN formula-
tion, (3.19)-(3.23). We see that the largest ratio is that for the

evolution of Ãij . The corrections to the γ̃ij and Γ̃i evolution
equations are reasonably small.

those for (C) in Fig.8.
In Figs.12 (a) and (c), we see that all the violations

of the constraints are larger than those in Fig.9. These
results are consistent with the discussion in Sec.III B.
On the other hand, the violations of each constraint
in panels (b) and (d) almost overlap with those in
Fig.9. These results are, however, not contradictory.
For example, the parameter cG appears in the terms
cG(−(1/2)λγ̃∆∂m−2λΓ̃∂m)Gm in (B1), cG(λγ̃∆−2λΓ̃)G

a

in (B3), and cGλγ̃∂ℓG
ℓ in (B5). All these terms include λγ̃

or λΓ̃. Both λγ̃ and λΓ̃ are set to reasonably small values
in these simulations; thus, a reduction of the constraint
violations owing to the existence of the G-constraint in

C2 is not observable. Therefore, a difference in the vio-
lations of the constraints between panel (b) and Fig.9 is
not distinguishable. Similarly, the parameter cS appears
in the terms 3cSλγ̃∆S in (B1), −cSλγ̃δ

ab∂bS in (B3),
and −6λγ̃cSS in (B5), all of which include λγ̃ . Conse-
quently, the constraint-damping effect via the algebraic
constraints G, A, and S is apparent.

V. SUMMARY AND DISCUSSION

To obtain an evolution system robust against the vi-
olation of constraints, we derived a new set of adjusted
BSSN equations applying the idea proposed by Fiske [24]
to obtain what we call a “C2-adjusted system.”
That is, we added the functional derivatives of the

norm of the constraints, C2, to the evolution equations
[(3.19)-(3.23)]. This implementation was applied to the
ADM formulation in our previous study [26] and is ap-
plied to the BSSN equations in this study. We per-
formed numerical tests in the gauge-wave and Gowdy
wave testbeds and confirmed that the violations of con-
straints decrease as expected, and that longer and accu-
rate simulation than that for the standard BSSN evolu-
tion is possible.
The construction of the C2-adjusted system is straight-

forward. However, in BSSN, there are two kinetic con-
straints and three algebraic constraints; thus, the defini-
tion of C2 is a matter of concern. By analyzing constraint
propagation equations, we concluded that C2 should in-
clude all the constraints. This was also confirmed by
numerical tests.
To evaluate the reduction of the violations of the con-

straints for the C2-adjusted BSSN formulation, we also

performed evolutions for the Ã-adjusted BSSN formu-
lation proposed in [22]. We concluded that the C2-
adjusted BSSN formulation exhibits superior constraint

damping to the standard and Ã-adjusted BSSN formu-
lations. In particular, the lifetimes of the simulations
for the C2-adjusted BSSN formulation in the gauge-wave
and Gowdy wave testbeds were ten times and two times
larger than those for the standard BSSN formulation, re-
spectively.
Fiske reported the applications of the idea of C2-

adjustment to “linearized” ADM and BSSN formulations
in his dissertation [25]. (As he mentioned, his BSSN is
not derived from the standard BSSN equations but from
a linearized ADM using a new variable, Γ. His set of
BSSN equations also does not include the A- and S-
constraints in our notation.). He observed damping of
the constraint violation of five orders of magnitude and
the equivalent solution errors in his numerical evolution
tests. Our studies reported in this article show that the
full BSSN set of equations with fully adjusted terms also
produces the desired constraint-damping results (Fig.2
and Fig.8); although improvements of fewer orders of
magnitude were obtained, the improvements are appar-
ent.
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FIG. 11. Effect of adjusting parameters for the C2-adjusted BSSN formulations, (3.19)-(3.21) The left panel shows the case
when λÃ 6= 0 and the other parameters are zero. We see that the value λÃ = −10−1 exhibits the best performance for
controlling C2. (The standard BSSN case diverges at t = −750, while the case λÃ = −10−1 diverges at t = −1500.) The right
panel shows the case when λK 6= 0 and the other parameters are zero. However, the violation of C2 is larger than that for the
standard BSSN formulation if only λK is used for adjustment with the other parameters equal to zero.

We found in the application to the ADM system [26]
that the adjustment to the Kij-evolution equation is es-
sential. In the present study, we found that the adjust-

ment to the Ãij -evolution equation is essential for con-
trolling the constraints. In both cases, the associated ad-
justment parameters (Lagrangian multipliers), λÃ in this
study, are reasonably sensitive and require fine-tuning.
Methods of monitoring the order of constraint violations
and maintaining them by tuning the parameters auto-
matically would be useful. Applications of control theory
in this direction are being investigated.

The correction terms of the C2-adjusted system in-
clude higher-order derivatives and are not quasi-linear;
thus, little is known mathematically about such systems.
These additional terms might effectively act as artificial
viscosity terms in fluid simulations, but might also en-
hance the violation of errors. To investigate this direction
further, the next step is to apply the idea to a system in

which constraints do not include second-order derivatives
of dynamical variables. We are working on the Kidder-
Scheel-Teukolsky formulation [10] as an example of such
a system, which we hope to report in the near future.
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Appendix A: Additional C2-adjusted terms

The adjusted terms δC2/δϕ, δC2/δK, δC2/δγ̃mn,

δC2/δÃmn, and δC2/δΓ̃a in (3.19)-(3.23) are written as
follows:

δC2

δϕ
= 2H̄1H− 2(∂aH̄

a
2 )H− 2H̄a

2∂aH + 2(∂a∂bH̄
ab
3 )H + 2(∂aH̄

ab
3 )∂bH+ 2(∂bH̄

ab
3 )∂aH+ 2H̄ab

3 ∂a∂bH

− 2(∂aM̄1i
a)e−4ϕγ̃ijMj + 8M̄1i

ae−4ϕ(∂aϕ)γ̃
ijMj − 2M̄1i

ae−4ϕ(∂aγ̃
ij)Mj − 2M̄1i

ae−4ϕγ̃ij∂aMj

− 4γ̃ije−4ϕMiMj + 4cGe
4ϕγ̃ijG

iGj , (A1)

δC2

δK
= 2H̄4H− 2(∂ℓM̄2i

ℓ)e−4ϕγ̃ijMj + 8M̄2i
ℓe−4ϕ(∂ℓϕ)γ̃

ijMj − 2M̄2i
ℓe−4ϕ(∂ℓγ̃

ij)Mj − 2M̄2i
ℓe−4ϕγ̃ij∂ℓMj , (A2)
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FIG. 12. Effect of differences in the definition of C2. Panel (a) shows the case cG = cA = cS = 0, panel (b) shows the case
cG = 0, cA = cS = 1, panel (c) shows the case cG = 1, cA = 0, and cS = 1, and panel (d) shows the case cG = cA = 1 and
cS = 0. In comparison with Fig.9, all the violations of the constraints in (a) and (c) are larger. On the other hand, the lines
in (b) and (d) are almost identical.

δC2

δγ̃mn
= 2H̄mn

5 H− 2(∂iH̄
imn
6 )H− 2H̄imn

6 ∂iH+ 2(∂i∂jH̄
ijmn
7 )H + 2(∂iH̄

ijmn
7 )∂jH+ 2(∂jH̄

ijmn
7 )∂iH

+ 2H̄ijmn
7 ∂i∂jH + 2M̄3i

mne−4ϕγ̃ijMj − 2(∂cM̄4i
cmn)e−4ϕγ̃ijMj + 8M̄4i

cmne−4ϕ(∂cϕ)γ̃
ijMj

− 2M̄4i
cmne−4ϕ(∂cγ̃

ij)Mj − 2M̄4i
cmne−4ϕγ̃ij∂cMj − e−4ϕγ̃imγ̃jnMiMj + 2cGG

imn
1 e4ϕγ̃ijG

j

− 2cG(∂ℓG
imnℓ
2 )e4ϕγ̃ijG

j − 8cGG
imnℓ
2 e4ϕ(∂ℓϕ)γ̃ijG

j − 2cGG
imnℓ
2 e4ϕ(∂ℓγ̃ij)G

j − 2cGG
imnℓ
2 e4ϕγ̃ij∂ℓG

j

+ cGe
4ϕGmGn + 2cAA

mn
1 A+ 2cSS

mn
1 S, (A3)

δC2

δÃmn

= 2H̄mn
8 H + 2e−4ϕγ̃ijM̄5i

mnMj − 2(∂cM̄6i
cmn)e−4ϕγ̃ijMj + 8M̄6i

cmne−4ϕ(∂cϕ)γ̃
ijMj

− 2M̄6i
cmne−4ϕ(∂cγ̃

ij)Mj − 2M̄6i
cmne−4ϕγ̃ij∂cMj + 2cAA

mn
2 A, (A4)

δC2

δΓ̃a
= 2H̄9aH− 2(∂bH̄

b
10a)H− 2H̄b

10a∂bH+ 2cGG
i
3ae

4ϕγ̃ijG
j , (A5)

where

H̄1 = −4e−4ϕR̃+ 32e−4ϕ{D̃iD̃iϕ+ (D̃iϕ)(D̃
iϕ)},

(A6)

H̄a
2 = 8e−4ϕ(γ̃ijΓ̃a

ij − 2D̃aϕ), (A7)

H̄ab
3 = −8e−4ϕγ̃ab, (A8)

H̄4 = (4/3)K − (2/3)γ̃ijÃij , (A9)
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H̄mn
5 = −e−4ϕR̃mn + e−4ϕ(∂j Γ̃

(m)γ̃n)j

− 2e−4ϕΓ̃km
jΓ̃

jn
k − 2e−4ϕΓ̃iℓ(mΓ̃n)

ℓi

− e−4ϕΓ̃amiΓ̃ai
n − e−4ϕΓ̃miℓΓ̃n

ℓi

+ (1/2)e−4ϕγ̃ij,aℓγ̃
ij γ̃amγ̃ℓn + 8e−4ϕD̃mD̃nϕ

− 8e−4ϕ(D̃(mϕ)Γ̃n)
ij γ̃

ij + 8e−4ϕ(D̃mϕ)(D̃nϕ)

+ 2ÃmbÃn
b + (2/3)ÃmnK, (A10)

H̄ℓmn
6 = e−4ϕ{Γ̃ℓmn + 2Γ̃(nm)ℓ + (1/2)Γℓγ̃mn

+ 8γ̃ℓ(m(D̃n)ϕ)− 4γ̃mnD̃ℓϕ}, (A11)

H̄ijmn
7 = −(1/2)e−4ϕγ̃mnγ̃ij , (A12)

H̄mn
8 = −2Ãmn − (2/3)γ̃mnK, (A13)

H̄9a = (1/2)e−4ϕγ̃ij γ̃ij,a, (A14)

H̄b
10a = e−4ϕδba, (A15)

M̄1i
a = 6Ãa

i − 2Ãmnγ̃
mnδai, (A16)

M̄2i
j = −(2/3)δji, (A17)

M̄3i
mn = −6(D̃(mϕ)Ãn)

i + 2(D̃iϕ)Ã
mn − D̃(mÃn)

i

+ Ãa(nΓ̃m)
ai + Ãi

(mΓ̃n)
jℓγ̃

jℓ, (A18)

M̄4i
cmn = −γ̃c(nÃm)

i + (1/2)γ̃mnÃc
i − (1/2)Ãnmδci,

(A19)

M̄5i
mn = 6(D̃(mϕ)δn)i − 2(D̃iϕ)γ̃

mn − δi
(mΓ̃n)

jℓγ̃
jℓ

+ (1/2)γ̃mn
,i, (A20)

M̄6i
cmn = γ̃c(mδn)i, (A21)

Giab
1 = Γ̃iab + γ̃i(bΓ̃a)

mnγ̃
mn, (A22)

Giabℓ
2 = −γ̃ℓ(bγ̃a)i + (1/2)γ̃abγ̃iℓ, (A23)

Gi
3j = δij , (A24)

Aab
1 = −Ãab, (A25)

Aab
2 = γ̃ab, (A26)

Sab
1 = (1/2)εajkεbnℓ. (A27)

Appendix B: Constraint Propagation Equations for

C2-adjusted BSSN Formulation and Ã-adjusted

BSSN Formulation in Minkowskii spacetime

Here we give the constraint propagation equations for

the C2-adjusted BSSN formulation and Ã-adjusted BSSN
formulation in Minkowskii spacetime. For simplicity, we
set λγ̃ijmn = λγ̃δimδjn, λÃijmn = λÃδimδjn, and λij

Γ̃
=

λΓ̃δ
ij . The constraint propagation equations for the C2-

adjusted BSSN formulation are

∂tH = [Original Terms] +
(
−128λϕ∆

2 − (3/2)λγ̃∆
2 + 2λΓ̃∆

)
H+ cG

(
−(1/2)λγ̃∆∂m − 2λΓ̃∂m

)
Gm + 3cSλγ̃∆S,

(B1)

∂tMa = [Original Terms] +

{
(8/9)λKδbc∂a∂b + λÃ∆δa

c + λÃδ
bc∂a∂b

}
Mc − 2cAλÃ∂aA, (B2)

∂tG
a = [Original Terms] + δab

(
(1/2)λγ̃∂b∆+ 2λΓ̃∂b

)
H+ cG

(
λγ̃∆δab + (1/2)λγ̃δ

ac∂c∂b − 2λΓ̃δ
a
b

)
Gb − λγ̃cSδ

ab∂bS,

(B3)

∂tA = [Original Terms] + 2λÃδ
ij(∂iMj)− 6cAλÃA, (B4)

∂tS = [Original Terms] + 3λγ̃∆H + cGλγ̃∂ℓG
ℓ − 6cSλγ̃S, (B5)

and those of the Ã-adjusted BSSN formulation are

∂tH = [Original Terms], (B6)

∂tMi = [Original Terms] + (1/2)κA∆Mi, (B7)

∂tG
i = [Original Terms], (B8)

∂tA = [Original Terms] + κAδ
ij∂iMj, (B9)

∂tS = [Original Terms], (B10)

where ∆ is the Laplacian operator in flat space. “Origi-
nal Terms” refers to the right-hand side of the constraint
propagation equations for the standard BSSN formula-
tion. Full expressions for the terms are given in the ap-
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pendix of [22].

Appendix C: Constraint Propagation Equations for

BSSN Formulation with βi = 0

The constraint propagation equations for the standard
BSSN formulation with βi = 0 are as follows (the full

expressions are available in the appendix of [22]).

∂tH = [(2/3)αK + (2/3)αA]H+ [−4e−4ϕα(αkϕ)γ̃
kj − 2e−4ϕ(∂kα)γ̃

jk]Mj

+ [−2αe−4ϕÃk
j∂k − αe−4ϕ(∂jÃkℓ)γ̃

kℓ − e−4ϕ(∂jα)A]Gj

+ [2αe−4ϕγ̃−1γ̃ℓk(∂ℓϕ)A∂k + (1/2)αe−4ϕγ̃−1(∂ℓA)γ̃ℓk∂k + (1/2)e−4ϕγ̃−1(∂ℓα)γ̃
ℓkA∂k]S

+ [(4/9)αKA− (8/9)αK2 + (4/3)αe−4ϕ(∂i∂jϕ)γ̃
ij + (8/3)αe−4ϕ(∂kϕ)(∂ℓγ̃

ℓk) + αe−4ϕ(∂j γ̃
jk)∂k

+ 8αe−4ϕγ̃jk(∂jϕ)∂k + αe−4ϕγ̃jk∂j∂k + 8e−4ϕ(∂ℓα)(∂kϕ)γ̃
ℓk + e−4ϕ(∂ℓα)(∂k γ̃

ℓk) + 2e−4ϕ(∂ℓα)γ̃
ℓk∂k

+ e−4ϕγ̃ℓk(∂ℓ∂kα)]A, (C1)

∂tMi = [−(1/3)(∂iα) + (1/6)∂i]H+ αKMi + [αe−4ϕγ̃km(∂kϕ)(∂j γ̃mi)− (1/2)αe−4ϕΓ̃m
kℓγ̃

kℓ(∂j γ̃mi)

+ (1/2)αe−4ϕγ̃mk(∂k∂j γ̃mi) + (1/2)αe−4ϕγ̃−2(∂iS)(∂jS)− (1/4)αe−4ϕ(∂iγ̃kℓ)(∂j γ̃
kℓ)

+ αe−4ϕγ̃km(∂kϕ)γ̃ji∂m + αe−4ϕ(∂jϕ)∂i − (1/2)αe−4ϕΓ̃m
kℓγ̃

kℓγ̃ji∂m + αe−4ϕγ̃mkΓ̃ijk∂m

+ (1/2)αe−4ϕγ̃ℓkγ̃ji∂k∂ℓ + (1/2)e−4ϕγ̃mk(∂j γ̃im)(∂kα) + (1/2)e−4ϕ(∂jα)∂i + (1/2)e−4ϕγ̃mkγ̃ji(∂kα)∂m]Gj

+ [−Ãk
i(∂kα) + (1/9)(αj)K + (4/9)α(∂iK) + (1/9)αK∂i − αÃk

i∂k]A, (C2)

∂tG
i = 2αγ̃ijMj + [4αγ̃ij(D̃jϕ) − αγ̃ij∂j − (∂kα)γ̃

ik]A, (C3)

∂tA = αKA, (C4)

∂tS = −2αγ̃A. (C5)
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