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Abstract

In order to perform accurate and stable long-term numerical calculations, we con-
struct new sets of ADM and BSSN evolution equations by adjusting constraints to
their right-hand-sides. We apply a method suggested by Fiske (2004), which adds
functional derivative of the norm of constraints, C2. We derive their constraint prop-
agation equations (evolution equations of constraints) in flat spacetime, which show
that C

2 itself evolve decaying. We also perform numerical tests with the polarized
Gowdy-wave testbed, and show that the constraint-damping appears. The life-times
of the standard ADM and BSSN simulations are improved as about twice as longer.

1 Introduction

In numerical relativity, the standard way to integrate the Einstein equations is 3+1 splitting of spacetime.
The fundamental spacetime splitting is the Arnowitt-Deser-Misner (ADM) formulation [1]. However, it is
known that the ADM formulation is not suitable formulation to perform long-term simulations in strong
gravitational fields [2]. To perform simulations such as coalescences of binary neutron stars and/or black
holes, many formulations are suggested, one of the most commonly used among the numerical relativists
is the so-called Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation [3].

The current formulations use the constraint-damping technique which is obtained by adding the con-
straint equation to the evolution equations. Fiske [4] suggested a method of constructing a set of evolution
equations which we call “C2-adjusted system”. We apply his system to the ADM and BSSN formula-
tions. To see the effect of the adjustments, we analyze the constraint propagation of the C2-adjusted ADM
and BSSN formulations, and we also perform some numerical tests to confirm the constraint-damping
behaviors.

2 General Idea of C2-adjusted system

Suppose dynamical variables ui obeys a set of evolution equations with constraint equations, Ca;

∂tu
i = f(ui, ∂ju

i, . . . ), (1)

Ca = g(ui, ∂ju
i, . . . ). (2)

Fiske [4] proposed an adjustment of the evolution equations in the way of

∂tu
i = f(ui, ∂ju

i, · · · )− κij

(
δC2

δuj

)
, (3)

where κij is a positive-definite constant coefficient, and C2 is the norm of constraints which is defined as
C2 ≡

∫
CaC

ad3x. The term (δC2/δuj) is the functional derivative of C2 with uj . We call the set of (3)
with (2) as “C2-adjusted formulation”. The associated constraint propagation equation becomes

∂tC
2 = h(Ca, ∂iC

a, · · · )−

∫
d3x

(
δC2

δui

)
κij

(
δC2

δuj

)
. (4)
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2 Constraint Propagation and C2-adjusted formulations

If we set κij so as the second term in the RHS of (4) becomes dominant than the first term, then
∂tC

2 becomes negative, which indicates that constraint violations are expected to decay to zero.

3 Applications

Now, we apply the idea of C2-adjusted system to the ADM and BSSN formulations.

3.1 C
2-adjusted ADM Formulation

3.1.1 Evolution Equations

We apply C2-adjusted system to the ADM formulation. The evolution equations are formally written as

∂tγij = [Original Terms]− κγijmn

(
δ(CADM)2

δγmn

)
, (5)

∂tKij = [Original Terms]− κKijmn

(
δ(CADM)2

δKmn

)
, (6)

where (CADM)2 is the norm of the constraints, which we set

(CADM)2 ≡

∫
{(HADM)2 + γijMADM

i MADM
j }d3x, (7)

and both coefficients, κγijmn and κKijmn, are supposed to be positive definite. The adjusted terms,
(δ(CADM)2/δγmn) and (δ(CADM)2/δKmn), are explicitly written as eqs. (A1) and (A2) in [5], respectively.

3.1.2 Constraint Propagation Equations

In order to investigate the effect of the constraint-damping due to the adjusted terms in (5)-(6), we show
the constraint propagation equations in the flat spacetime:

∂tH
ADM = [Original Terms]− 2κγ∆

2HADM, (8)

∂tM
ADM
i = [Original Terms] + κK∆MADM

i + 3κK∂i∂j(M
ADM)j , (9)

where, we set the coefficients as κγijmn = κγδimδjn and κKijmn = κKδimδjn. In both equations (8)-(9),
we see the diffusion terms, −2κγ∆

2HADM and κK∆MADM
i , respectively. These terms contribute to the

damping of the constraint violations.

3.2 C
2-adjusted BSSN Formulation

3.2.1 Evolution Equations

Next, we apply the idea to the BSSN formulation. The evolution equations are formally written as

∂tϕ = [Original Terms]− λϕ

(
δ(CBSSN)2

δϕ

)
, (10)

∂tK = [Original Terms]− λK

(
δ(CBSSN)2

δK

)
, (11)

∂tγ̃ij = [Original Terms]− λγ̃ijmn

(
δ(CBSSN)2

δγ̃mn

)
, (12)

∂tÃij = [Original Terms]− λ
Ãijmn

(
δ(CBSSN)2

δÃmn

)
, (13)

∂tΓ̃
i = [Original Terms]− λij

Γ̃

(
δ(CBSSN)2

δΓ̃j

)
, (14)
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where all the coefficients λϕ, λK , λγ̃ ijmn, λÃijmn, and λij

Γ̃
are positive definite. (CBSSN)2 is a function

of the constraints HBSSN, MBSSN
i , Gi, A, and S, which we set as

(CBSSN)2 =

∫
{(HBSSN)2 + γijMBSSN

i MBSSN
j + cGγijG

iGj + cAA
2 + cSS

2}d3x, (15)

where, cG, cA, and cS are Boolean parameters (0 or 1). These three parameters are introduced to prove
the necessity of the algebraic constraint terms in (15). The adjusted terms in (10)-(14) are then written
down explicitly, as shown as eqs. (A1)-(A5) in [6], respectively.

3.2.2 Constraint Propagation Equations

In order to see the effect of the adjusted terms in (10)-(14), we derive the constraint propagation equations
in the flat spacetime:

∂tH
BSSN = [Original Terms] +

(
−128λϕ∆

2 − (3/2)λγ̃∆
2 + 2λΓ̃∆

)
HBSSN

+ cG
(
−(1/2)λγ̃∆∂m − 2λΓ̃∂m

)
Gm + 3cSλγ̃∆S, (16)

∂tM
BSSN
a = [Original Terms] +

{
(8/9)λKδbc∂a∂b + λ

Ã
∆δa

c + λ
Ã
δbc∂a∂b

}
MBSSN

c − 2cAλÃ
∂aA,

(17)

∂tG
a = [Original Terms] + δab

(
(1/2)λγ̃∂b∆+ 2λΓ̃∂b

)
HBSSN

+ cG
(
λγ̃∆δab + (1/2)λγ̃δ

ac∂c∂b − 2λΓ̃δ
a
b

)
Gb − λγ̃cSδ

ab∂bS, (18)

∂tA = [Original Terms] + 2λ
Ã
δij(∂iM

BSSN
j )− 6cAλÃ

A, (19)

∂tS = [Original Terms] + 3λγ̃∆HBSSN + cGλγ̃∂ℓG
ℓ − 6cSλγ̃S. (20)

where we set the coefficient parameters, λγ̃ijmn = λγ̃δimδjn, λÃijmn
= λ

Ã
δimδjn and λΓ̃

ij = λΓ̃δ
ij for

simplicity. In the above equations, we see the appearances of diffusion terms (−128λϕ∆
2 − (3/2)λγ̃∆

2 +
2λΓ̃∆)HBSSN, λ

Ã
∆MBSSN

a , cG(λγ̃∆− 2λΓ̃)G
a, −6cAλÃ

A and −6cSλγ̃S, respectively. These terms con-
tribute to the damping of the violations. If we set the parameters, cG, cA and cS , are zero, equations
(18)-(20) turn not to include diffusion terms. Therefore, (CBSSN)2 should include Gi, A and S.

4 Numerical Tests

We perform simulations of the polarized Gowdy wave which is one of the testbeds for comparing formu-
latiuons [7]. The numerical parameters are the same with those in [7].
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Figure 1: L2 norm of each constraint in the polarized Gowdy wave test with the ADM formulations.
The L2 norm of the constrains are shown as a function of the backward time. We adopt the parameters
same with the line (c) in Fig.2 of [5].



4 Constraint Propagation and C2-adjusted formulations

In Figure 1, we show that the constraint violations with the ADM formulaitons. We see that the
adjusted cases decrease the violation, and the lifetime of simulations becomes about 1.7 times longer
than that of the standard case. Next, in Fig.2, we show that the constraint violations with the BSSN
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Figure 2: L2 norm of each constraint with the BSSN formulations. We adopt the parameters same with
the line (C) in Fig.8 of [6].

formulations. We see the similar effects, and the lifetime of simulations of the adjusted case becomes
more than twice longer than that of the standard case.

5 Summary

In this report, we reviewed the idea of the C2-adjusted system and applied the system to the ADM and
BSSN formulations. We see the effect of constraint-damping due to the adjusted terms by showing the
constraint propagation equations. We performed the simulations with these formulations in the Gowdy
wave testbed and confirmed the constraint-damping behaviors and the life time of the simulations be-
comes longer than those of the standard cases. Please refer [6] for more details.
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