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Abstract

We know numerically the four-dimensional Ellis wormhole solution (the so-called
Morris-Thorne’s traversable wormhole) is unstable against an input of scalar-pulse
from one side. We investigate this feature for higher-dimensional versions, both in n-
dimensional general relativity and in 5-dimensional Gauss-Bonnet gravity. We derived
Ellis wormhole solutions in n-dimensional general relativity, and evolved it numer-
ically in dual-null coordinate with/without Gauss-Bonnet corrections. Preliminary
results show that those are also unstable. We also find that the throat of wormhole
in Gauss-Bonnet gravity tends to expand (or shrink) after an input of ghost-scalar
pulse if the coupling constant α is positive (negative).

1 Introduction

Wormholes are popular tools in science fictions as a way for rapid interstellar travel, time machines and
warp drives. However, wormholes are also a scientific topic after the influential study of traversable
wormholes by Morris & Thorne [1]. They considered “traversable conditions” for human travel through
wormholes responding to Carl Sagan’s idea for his novel (Contact), and concluded that such a wormhole
solution is available if we allow “exotic matter” (negative-energy matter).

The introduction of exotic matter sounds to be unusual for the first time, but such matter appears in
quantum field theory and in alternative gravitational theories such as scalar-tensor theories. The Morris-
Thorne solution is constructed with a massless Klein-Gordon field whose gravitational coupling takes the
opposite sign to normal, which appears in Ellis’s earlier work [2], who called it a drainhole.

Ellis (Morris-Thorne) wormhole solution was studied in many contexts. Among them, we focus its
dynamical features. The first numerical simulation on its stability behavior was reported by one of
the authors [3]. They use a dual-null formulation for spherically symmetric space-time integration, and
observed that the wormhole is unstable against Gaussian pulses in either exotic or normal massless
Klein-Gordon fields. The wormhole throat suffers a bifurcation of horizons and either explodes to form
an inflationary universe or collapses to a black hole, if the total input energy is negative or positive,
respectively. These basic behaviors were repeatedly confirmed by other groups [4, 5]. 3

The changes of wormhole either to a black hole or an expanding throat supports an unified under-
standing of black holes and traversable wormholes proposed by Hayward [8]. His proposal is that the
two are dynamically interconvertible, and that traversable wormholes are understandable as black holes
under negative energy density.

In this article, we introduce our extensional works of [3]; (a) constructing Ellis solutions in higher-
dimensional general relativity, (b) dynamical effects of Gauss-Bonnet coupling constant in 5-dimensional
wormhole solution.

1Email address: shinkai@is.oit.ac.jp
2Email address: torii@ge.oit.ac.jp
3Note that Armendariz-Picon[6] reports that the Ellis wormhole is stable using perturbation analysis. However, the

conclusion is obtained with fixing the throat of wormhole and not the same situation with above numerical works[7].



2 Wormholes in higher-dimensional gravity

2 Wormhole solutions in higher-dimensional general relativity

2.1 Field equations

We consider the following n-dimensional Einstein-Klein-Gordon system

S =
∫
dnx

√
−g

[
1

2κ2
n

R− 1
2
ε(∂φ)2 − V (φ)

]
, (1)

where κ2
n is a n-dimensional gravitational constant, ε = 1 (or −1) for the normal (ghost) field.

We consider the static and spherically symmetric space-time with the metric

ds2D = −f(r)dt2 + f(r)−1dr2 +R(r)2hijdxidxj (2)

where hijdxidxj represents the line element of a (n − 2)-dimensional constant curvature space S(n−2)

with curvature k = ±1, 0.
The Einstein tensor becomes
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where (n−2)R is the scalar curvature of S(n−2) and is obtained as
(n−2)Rijkl = k(hikhjl − hilhjk), (6)

(n−2)Rij = (n− 3)khij , (7)

(n−2)R = (n− 2)(n− 3)k. (8)

The non-zero components of the energy-momentum tensors

Tµν = εφ,µφ,ν − gµν

[ 1
2
ε(∇φ)2 + V (φ)

]
, (9)

are
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[ 1

2
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]
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[ 1

2
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]
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[ 1

2
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]
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The Einstein equation, Gµν = κ2
nTµν , becomes

(t, t) : −n− 2
2

f2

[
2R′′

R
+
f ′R′

fR
+ (n− 3)

R′2

R2

]
+

(n− 2)(n− 3)kf
2R2

= κ2
nf

[ 1
2
εfφ′2 + V (φ)

]
, (13)

(r, r) :
n− 2

2
R′

R

[
f ′

f
+ (n− 3)

R′

R

]
− (n− 2)(n− 3)k

2fR2
=
κ2
n

f

[ 1
2
εfφ′2 − V (φ)

]
, (14)

(i, j) :

[
f ′′

2
+ (n− 3)f

(
R′′

R
+
f ′R′

fR
+
n− 4

2
R′2

R2

)]
− (n− 3)(n− 4)k

2R2
= κ2

n

[ 1
2
εfφ′2 + V (φ)

]
.(15)



H. Shinkai & T. Torii 3

The Klein-Gordon equation

�φ = −εdV
dφ

(16)

becomes
1

Rn−2

(
Rn−2fφ′

)′ = −εdV
dφ

. (17)

Hereafter, we assume that the scalar field is ghost, ε = −1.

2.2 Wormhole solution with massless scalar field in spacetime k = 1

We show the simplest solution, under the assumptions of the massless scalar field, V (φ) = 0, in the closed
universe, k = 1. Other cases are presented elsewhere [7]. The Klein-Gordon equation (17) is integrated
as

φ′ =
C

fRn−2
, (18)

where C is an integration constant. The Einstein equations, then, are reduced to
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fR2
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2
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We impose that the wormhole has a throat radius, a, at the coordinate r = 0. Then the regularity
conditions are

R = a, R′ = 0, f = f0 f ′ = 0, (21)

where f0 is a constant. We can assume a = 1 and f0 = 1 without loss of generality, but we keep a in the
equations for a while. Eq. (19) gives

κ2
nC

2 = (n− 2)(n− 3)a2(n−3) (22)

The solution of Eqs. (18)-(20) is

f ≡ 1, (23)

R′ =

√
1 −

( a
R

)2(n−3)

, (24)

φ =

√
(n− 2)(n− 3)

κn
an−3

∫
1

Rn−2
dr. (25)

The Eq. (24) is integrated to give

r(R) = −mBRm

(
−m, 1

2

)
−

√
πΓ[1 −m]

Γ[m(n− 4)]
, (26)

where m = 1
2(n−3) , and Bz(p, q) is an incomplete beta function defined by

Bz(p, q) :=
∫ z

0

tp−1(1 − t)q−1dt (27)

which can be expressed with the hypergeometric function F (α, β, γ; z) as

Bz(p, q) =
zp

p
F (p, 1 − q, p+ 1; z). (28)

Although Eq. (26) is implicit with respect to R, it is rewritten in the explicit form by using the inverse
incomplete beta function.

For n = 4, this solution reduces to Ellis’s wormhole solution. For n → ∞, the function becomes
R = r + a and φ behaves like a step-function approaching φ→ π/2.
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Figure 1: The n-dimensional wormhole solution. The circumference radius R (left panel) and the scalar
field φ (right panel) are plotted as a function of radial coordinate r. The cases of n = 4–10 are shown.

3 Effects of Gauss-Bonnet coupling constant in 5-dimensional
wormhole evolution

3.1 Gauss-Bonnet gravity

Gauss-Bonnet gravity is derived from the superstring theory, with additional higher-order curvature
correction terms to general relativity. Such higher-order corrections can be treated as an expansion of R
in the action, but the Gauss-Bonnet term,

LGB = R2 − 4RµνRµν + RµνρσRµνρσ, (29)

has nice properties such that it is ghost-free combinations[9] and does not give higher derivative equa-
tions but an ordinary set of equations with up to the second derivative in spite of the higher curvature
combinations.

The Einstein-Gauss-Bonnet action in (N + 1)-dimensional spacetime (M, gµν) is described as

S =
∫
M
dN+1X

√
−g

[
1

2κ2
{αGR (R− 2Λ) + αGBLGB} + Lmatter

]
, (30)

where κ2 is the (N + 1)-dimensional gravitational constant, R, Rµν , Rµνρσ and Lmatter are the (N + 1)-
dimensional scalar curvature, Ricci tensor, Riemann curvature and the matter Lagrangian, respectively.
This action reproduces the standard (N +1)-dimensional Einstein gravity, if we set the coupling constant
αGB (≥ 0) equals to zero.

The action (30) gives the gravitational equation as

αGRGµν + αGBHµν = κ2 Tµν , (31)

where

Gµν = Rµν −
1
2
gµνR + gµνΛ, (32)

Hµν = 2
[
RRµν − 2RµαRα

ν − 2RαβRµανβ + R αβγ
µ Rναβγ

]
− 1

2
gµνLGB, (33)

Tµν = −2
δLmatter

δgµν
+ gµνLmatter. (34)

The higher-order curvature terms are considered as correction terms from string theory. These terms
are known to produce two solution branches normally, only one of which has general-relativity limit. The
theory is expected to have singularity-avoidance features in the context of gravitational collapses and/or
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cosmology, but as far as we know there is no studies so far using fully numerical evolutions. (Numerical
studies on critical phenomena are recently reported for small αGB [10, 11, 12]).

Studies on wormholes in Gauss-Bonnet gravity have long histories. Several solutions and their classi-
fications are reported in [13, 14], while their energy conditions are considered in [15]. Similar researches
are extended to the Lovelock gravity[16], and also to the Dilatonic Gauss-Bonnet system [17]. Our aim
is to investigate their dynamical features.

3.2 Dual-null evolution system

In this article, we report our two initial numerical results. One is the evolution of 5D wormhole in general
relativity. The other is its evolution in Gauss-Bonnet gravity.

We implemented our 4D dual-null evolution code [3] to 5D evolution code with Gauss-Bonnet terms.
The system we consider is spherical symmetry, and expressed using dual-null coordinate

ds2 = −2e−f(x
+,x−)dx+ dx− + r2(x+, x−)dΩ2

3. (35)

Wormhole is constructed with ghost scalar field φ(x+, x−), but we also include normal scalar field
ψ(x+, x−) contribution. The energy-momentum tensor is written as

Tµν = Tψµν + Tφµν (36)

=
[
ψ,µψ,ν − gµν

(
1
2
(∇ψ)2 + V1(ψ)

)]
+

[
εφ,µφ,ν − gµν

(
1
2
ε(∇φ)2 + V2(φ)

)]
,

where ε = −1. This derives Klein-Gordon equations

�ψ =
dV1

dψ
, �φ = −εdV2

dφ
. (37)

Following [3], we introduce the conformal factor Ω, expansion ϑ±, in-affinity ν±, and scalar momentum
π±, p± as

Ω =
1
r
, (38)
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1
Ω
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(
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2
9
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)
, (43)

Ã = αGR + 4αGBηe
f , (44)

B = κ2T+− + e−fΛ. (45)

The set of evolution equations (x+ and x−-directions), then, are

∂±Ω = −1
3
ϑ±Ω2 (46)

∂±ϑ± = −ν±ϑ± − 1
ÃΩ

κ2T±± (47)

∂±ϑ∓ =
1
ÃΩ

(−3αGRη +B) (48)

∂±f = ν± (49)

∂±ν∓ =
αGR

Ã

{
η − 4 (3αGRη −B)

3Ã

}
+

(κ2TzzΩ2 − Λ)
Ãef

+
8αGB

9Ã3

{
ef (3αGRη −B)2 − κ4T++T−−

}
(50)
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together with Klein-Gordon equations

∂±ψ = Ωπ±, (51)
∂±φ = Ωp±, (52)

∂+π− = −1
6
Ωϑ+π− − 1

2
Ωϑ−π+ − 1

2efΩ
dV1

dψ
, (53)

∂+p− = −1
6
Ωϑ+p− − 1

2
Ωϑ−p+ − 1

2efΩ
dV2

dφ
, (54)

∂−π+ = −1
2
Ωϑ+π− − 1

6
Ωϑ−π+ − 1

2efΩ
dV1

dψ
, (55)

∂−p+ = −1
2
Ωϑ+p− − 1

6
Ωϑ−p+ − 1

2efΩ
dV2

dφ
, (56)

where the energy momentum tensor is written as

T++ = Ω2(π2
+ − p2

+), (57)
T−− = Ω2(π2

− − p2
−), (58)

T+− = e−f (V1(ψ) + V2(φ)) , (59)

Tzz = ef (π+π− − p+p−) − 1
Ω2

(V1(ψ) + V2(φ)) . (60)

3.3 Preliminal results

We prepare the solution obtained in §2.2 as our initial data on (x+, x−) = (x+, 0) hypersurface, and
integrate along to x−-direction using the set of equations above. Numerical integration techniques are
the same with [3].

The preliminal results show that the wormhole throat is unstable, the expansion ϑ± go splitting soon
after the evolution begins. Fig. 2 shows their locations in (x+, x−) plane. If the location of ϑ+ is outer
(in x+-direction) than that of ϑ−, then the region ϑ− < x < ϑ+ is judged as a black-hole. Otherwise the
region ϑ+ < x < ϑ− can be judged as an expanding throat. Fig. 2 indicates the throat begins expanding,
then turns to be a black hole. We also evolve the same initial data with Gauss-Bonnet terms αGB 6= 0
and study their effects to the evolutions. We see if αGB > 0 the throat expansion becomes slower. On
the contrary, if αGB < 0, then the throat expansion is accelerated in the initial stage.
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Figure 2: Location of the expansion ϑ+ (red lines) and ϑ− (blue lines) for evolutions of a solution in §2.2
as a function of (x+, x−). The throat begins expanding, then turns to be a black hole. When αGB > 0
(left panel), expansions are slightly slowing down and αGB > 0 affects to black hole formation earlier,
while when αGB < 0 (right panel) we see Gauss-Bonnet term accelerates expansion.
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