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Abstract. Wormholes are theoretical products in general relativity, and are popular tools in
science fictions. We know numerically the four-dimensional Ellis wormhole solution (the so-
called Morris-Thorne’s traversable wormhole) is unstable against an input of scalar-pulse from
one side. We investigate this feature for higher-dimensional versions, both in n-dimensional
general relativity and in Gauss-Bonnet gravity. We derived Ellis-type wormhole solution in n-
dimensional general relativity, and found existence of unstable modes in its linear perturbation
analysis. We also evolved it numerically in dual-null coordinate system, and confirmed its
instability. The wormhole throat will change into black-hole horizon for the input of (relatively)
positive energy, while it will change into inflationary expansion for (relatively) negative energy
input. If we add Gauss-Bonnet terms (higher curvature correction terms in gravity), then
wormhole tends to expand (or change to black-hole) if the coupling constant α is positive
(negative).

1. Introduction
Wormhole is hypothetical object such as a short-cut tunnel connecting two points in space-time.
The idea is essential in science fictions as a way for rapid interstellar travel, warp drives, and
time machines. However, wormhole is also a theoretical research topic with long history.

The first appearance of a “tunnel structure” was in 1916 by Flamm [1] just after the
discovery of Schwarzschild’s black-hole solution. Einstein and Rosen [2] proposed a “bridge
structure” between black-holes in order to obtain a regular solution without a singularity. The
name “wormhole” was coined by John A. Wheeler in 1957, and its fantastic applications are
popularized after the influential study of traversable wormholes by Morris and Thorne [3].

They considered “traversable conditions” for human travel through wormholes responding to
Carl Sagan’s idea for his novel Contact, and concluded that such a wormhole solution is available
if we allow “exotic matter” (negative-energy matter).

The introduction of exotic matter sounds to be unusual for the first time, but such matter
appears in quantum field theory and in alternative gravitational theories such as scalar-tensor
theories. The Morris-Thorne solution is constructed with a massless Klein-Gordon field whose
gravitational coupling takes the opposite sign to normal, which is found in Ellis’s earlier work
[4], so that we call it Ellis wormhole, hereafter. (See a review e.g. by Visser [5] for earlier works;
See also e.g. Lobo [6] for recent works).
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Ellis wormhole solution was studied in many contexts. Among them, we focus on its
dynamical features. The first numerical simulation on its stability behavior was reported by
one of the authors [7]. They use a dual-null formulation for spherically symmetric space-time
integration, and observed that the wormhole is unstable against Gaussian pulses in either exotic
or normal massless Klein-Gordon fields. The wormhole throat suffers a bifurcation of horizons
and either explodes to form an inflationary universe or collapses to a black hole, if the total input
energy is negative or positive, respectively. These basic behaviors were repeatedly confirmed by
other groups [8, 9].
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space-time. Suppose we live in the right-side
region and input a pulse to an Ellis-wormhole in
the middle of the diagram. The wormhole throat
suffers a bifurcation of horizons and either explodes
to form an inflationary universe or collapses to a
black hole, if the total input energy is negative or
positive, respectively [7].

The changes of wormhole either to a black hole or an expanding throat supports an unified
understanding of black holes and traversable wormholes proposed by Hayward [10]. His
proposal is that the two are dynamically interconvertible, and that traversable wormholes are
understandable as black holes under the existence of negative energy density.

In this article, we introduce our extensional works of [7], mainly its stability behavior in
higher-dimensional space-time. The higher-dimensional theories such as string/M theories are
applied for various unsolved problems in gravitational phenomena and cosmology, and gain
new insights into them. We believe that wormholes will also give us new fundamental physical
landscapes. We therefore demonstrate wormhole dynamics also in Gauss-Bonnet gravity, which
is one of the modified gravity theory including higher-order corrections of curvatures, one of the
string-motivated gravity theories.

Wormhole study in higher-dimensional space-time is not a new topic. We can find the articles
from 80s [12, 13], and the recent studies are including higher-curvature terms (see e.g. [14] and
[15] and references therein). Most of the researches concern the solutions and their energy
conditions mainly, but to our knowledge there is no general discussion on the stability analysis
of the solutions.

The main four contents in this article are: (a) constructing Ellis solutions in higher-
dimensional general relativity, (b) stability analysis using linear perturbation method [16], (c)
stability analysis using numerical evolution method, and (d) dynamical effects of Gauss-Bonnet
coupling in 5-dimensional wormhole solution.

In §2, we derive the simplest wormhole solution with ghost scalar field in spherically
symmetric, higher-dimensional space-time. We then study its stability using linear perturbation
analysis, and find that there is at least one unstable mode in any dimensional space-time.

In §3, we try to confirm the prediction of instability using numerical evolutions. We
implemented numerical code in [7] as it can treat higher-dimensional versions. We also
demonstrate the wormhole structure in Gauss-Bonnet gravity theory.
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2. Wormhole solutions in higher-dimensional general relativity
2.1. Field equations
We start from the n-dimensional Einstein-Klein-Gordon system

S =

∫
dnx

√
−g

[
1

2κ2n
R− 1

2
ϵ(∇ϕ)2 − V (ϕ)

]
, (1)

where κ2n is a n-dimensional gravitational constant. The scalar field ϕ is the normal (or ghost)
field if ϵ = 1 (−1).

The metric of the space-time is assumed to be

ds2 = −f(t, r)e−2δ(t,r)dt2 + f(t, r)−1dr2 +R(t, r)2hijdx
idxj , (2)

where hijdx
idxj represents the line element of a unit (n − 2)-dimensional constant curvature

space with curvature k = ±1, 0 and volume Σk. In order to construct a static wormhole solution,
we restrict the metric function as f = f(r), R = R(r), ϕ = ϕ(r), and δ = 0 in this subsection.

The Klein-Gordon equation becomes

1

Rn−2
(Rn−2fϕ′)′ = −ϵdV

dϕ
. (3)

Hereafter, we construct the solution with the massless ghost scalar field (V (ϕ) = 0 and ϵ = −1).
The Klein-Gordon equation (3) is integrated as

ϕ′ =
C

fRn−2
, (4)

where C is an integration constant. The Einstein equations are reduced to

(n− 2)R′

R

[f ′
f

+
(n− 3)R′

R

]
− (n− 2)(n− 3)k

fR2
= − κ2nC

2

f2R2(n−2)
, (5)

(n− 2)R′′

R
=

κ2nC
2

f2R2(n−2)
. (6)

The throat of the wormhole is at r = 0, and a is the radius of the throat, i.e. R(0) = a. The
regularity conditions at the throat is written as R(0) = a > 0, and f(0) = f0 > 0, where f0 is a
constant. Here we can assume a = 1 and f0 = 1 without loss of generality, but we keep a in the
equations in this section for later convenience. We assume the reflection symmetry with respect
to the throat: R′(0) = 0, and f ′(0) = 0. We also impose ϕ(0) = 0 by a shift symmetry of the
scalar field. With these conditions, the integration constant C is determined as

κ2nC
2 = (n− 2)(n− 3)ka2(n−3). (7)

This relation implies that there is no wormhole solution for the cases k = 0 and k = −1. Hence
we investigate the spherically symmetric case k = 1.

The solution of Eqs. (4)–(6) is obtained as

f ≡ 1, (8)

R′ =

√
1−

( a
R

)2(n−3)
, (9)

ϕ =

√
(n− 2)(n− 3)

κn
an−3

∫
1

R(r)n−2
dr. (10)
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Figure 2. The n-dimensional wormhole solutions; (a) The circumference radius R and (b) the
scalar field ϕ are plotted as a function of the radial coordinate r.

The eq. (9) is integrated to give

r(R) = −mBz

(
−m,

1

2

)
−

√
πΓ[1−m]

Γ[m(n− 4)]
, (11)

where m = 1/2(n− 3) and z = Rm. Bz(p, q) is the incomplete beta function defined by
Bz(p, q) :=

∫ z
0 t

p−1(1 − t)q−1dt. For n = 4, this solution reduces to Ellis’s wormhole solution

f ≡ 1, R =
√
r2 + a2, ϕ =

√
2 tan−1(r/a).

At the throat

R′′(a) =
n− 3

a
, and ϕ′(a) =

√
(n− 2)(n− 3)

κna
. (12)

These indicate that the throat of the wormhole has larger curvature and the scalar field ϕ
becomes steeper as n goes higher. We plotted these behaviors in Figure 2. For n → ∞, the
functions have the limiting solution, R = r + a and ϕ = π/2 (r > 0).

2.2. Stability analysis
In this subsection, we investigate the linear stability of the higher-dimensional wormhole. We
follow the analysis in [9], where the throat radius is not fixed since it is shown that the instability
occurs by resolution of the degeneracy of a double trapping horizon [7].

We focus on the “spherical” modes, where the (n− 2)-dimensional constant curvature space
is not perturbed. In the time-dependent metric ansatz eq. (2) we write the perturbed functions
as

f(t, r) = f0(r) + εf1(r)e
iωt, (13)

δ(t, r) = δ0(r) + εδ1(r)e
iωt, (14)

R(t, r) = R0(r) + εR1(r)e
iωt, (15)

ϕ(t, r) = ϕ0(r) + εϕ1(r)e
iωt, (16)

where ε is an infinitesimal parameter, and the variables with subscript 0 denote the static
solution.

By introducing the new variable,

ψ1 = R
n−2
2

0

(
ϕ1 −

ϕ′0
R′

0

R1

)
, (17)
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the first-order equations give the single master equation,

−ψ′′
1 + V (r)ψ1 = ω2ψ1, (18)

with the potential,

V (r) =
n− 2

2

[
n− 3

R
2(n−2)
0

+
(n− 4)R′2

0

2R2
0

]
+

2(n− 3)2

R
2(n−2)
0 R′

0
2
. (19)

Here we have assumed a = 1. The variable ψ1 is gauge invariant under the spherically symmetric
ansatz. Since R′

0 is zero at the throat and the potential V diverges there, we regularize the master
equation (18).

Using the 0-mode solution of the master equtaion (18), ψ̄1 =

(
R

n−4
2

0 R′
0

)−1

, we define a pair

of differential operators, D± = ± d

dr
− ψ̄′

1

ψ̄1
. Then the master equation, (18), can be written as

D−D+ψ1 = ω2ϕ1. (20)

Operating D+ from the left and defining the new variable Ψ1 = D+ψ1, we find the regularized
master equation

−Ψ′′
1 +W (r)Ψ1 = ω2Ψ1, (21)

where

W (r) = − 1

4R2
0

[3(n− 2)2

R
2(n−3)
0

− (n− 4)(n− 6)
]
. (22)

Now the potential function is regular everywhere. For n = 4, W (r) has the minimum at the
throat and is negative definite. For n ≥ 5, W (r) has the minimum at the throat, while it
increases apart from the throat and becomes positive for large r.

We search eigenfunctions Ψ1(r) of eq. (21), and find that in any dimension n. There exists
one negative eigenvalue for ω2, which are listed in Table 1. The existence of the eigenfunction
with negative ω2 implies that the solution is unstable. We find large negative ω2 for higher n,
which indicates the timescale of instability becomes shorter.

Table 1. The negative eigenvalues ω2.
n ω2 n ω2

4 − 1.39705243371511 10 −12.0442650147438
5 − 2.98495893027790 11 −13.9552091676647
6 − 4.68662054299460 20 −31.5751101285105
7 − 6.46258414126318 50 −91.3457759137153
8 − 8.28975936306259 100 − 191.283017729717
9 − 10.1535530451867

IC-MSQUARE 2014 IOP Publishing
Journal of Physics: Conference Series 574 (2015) 012056 doi:10.1088/1742-6596/574/1/012056

5



3. Numerical evolutions of wormhole solutions
The purpose of this section is to confirm the prediction of instability of wormholes using
numerical evolutions. We developed our numerical code as it can treat higher-dimensional
versions. We also implemented it for studying the wormhole structure in Gauss-Bonnet
gravity theory, which is one of the modified gravity theory including higher-order corrections of
curvatures.

We begin describing Gauss-Bonnet theory briefly in §3.1, then explain our strategy in §3.2.
The results will be shown in §3.3 and §3.4.

3.1. Einstein-Gauss-Bonnet gravity
Einstein-Gauss-Bonnet (EGB) gravity is derived from the superstring theory, with additional
higher-order curvature correction terms to general relativity. Such higher-order corrections can
be treated as an expansion of R in the action, but the Gauss-Bonnet term,

LGB = R2 − 4RµνRµν +RµνρσRµνρσ, (23)

has good properties such that it is ghost-free combinations[11] and does not give higher derivative
equations but an ordinary set of equations with up to the second derivative in spite of the higher
curvature combinations.

The EGB action in n-dimensional space-time (M, gµν) is described as

S =

∫
M
dnX

√
−g

[
1

2κ2
{αGR (R− 2Λ) + αGBLGB}+ Lmatter

]
, (24)

where κ2 is the n-dimensional gravitational constant, R, Rµν , Rµνρσ and Lmatter are the n-
dimensional scalar curvature, Ricci tensor, Riemann curvature and the matter Lagrangian,
respectively. This action reproduces the standard n-dimensional Einstein gravity, if we set
the coupling constant αGB equals to zero.

The action (24) gives the gravitational equation as

αGRGµν + αGBHµν + gµνΛ = κ2 Tµν , (25)

where

Gµν = Rµν −
1

2
gµνR, (26)

Hµν = 2
[
RRµν − 2RµαRα

ν − 2RαβRµανβ +R αβγ
µ Rναβγ

]
− 1

2
gµνLGB, (27)

Tµν = −2
δLmatter

δgµν
+ gµνLmatter. (28)

The higher-order curvature terms are considered as correction terms from string theory. These
terms are known to produce two solution branches normally, only one of which has general-
relativity limit. The theory is expected to have singularity-avoidance features in the context of
gravitational collapses and/or cosmology, but as far as we know there is no studies so far using
fully numerical evolutions. (Numerical studies on critical phenomena are recently reported for
small αGB [17, 18, 19]).

Studies on wormholes in Gauss-Bonnet gravity have long histories. Several solutions and
their classifications are reported in [20, 21], while their energy conditions are considered in [14].
Similar researches are extended to the Lovelock gravity[22], and also to the dilatonic Gauss-
Bonnet system [23].
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3.2. Dual-null evolution system
We implemented our evolution code [7] for higher-dimensional space-time, and with Gauss-
Bonnet gravity terms. The system we consider is spherical symmetry, and expressed using dual-
null coordinate. The use of dual-null coordinate simplifies the treatment of horizon dynamics
and radiation propagation clearly.

We adopt the line element

ds2 = −2ef(x
+,x−)dx+ dx− + r2(x+, x−)γijdz

idzj , (29)

where the coordinate (x+, x−) are along to null propagation directions, and γijdx
idxj is the

metric of the (n− 2)-dimensional unit constant curvature space with k = ±1, 0.
For writing down the Einstein equations, we introduced the variables

Ω =
1

r
, (30)

ϑ± = (n− 2)∂±r (31)

ν± = ∂±f (32)

which are conformal factor, expansions, and in-affinities, respectively. We also define

η = Ω2 (n− 2)(n− 3)

2

(
ke−f +

2

(n− 2)2
ϑ+ϑ−

)
. (33)

The non-zero Einstein tensor components, then, are

G++ = −Ω(∂+ϑ+ + ϑ+ν+), (34)

G−− = −Ω(∂−ϑ− + ϑ−ν−), (35)

G+− = Ω∂−ϑ+ + η, (36)

Gij = γij

{
ef

[
∂+ν−
Ω2

− 2(n− 3)

(n− 2)Ω
∂−ϑ+ − (n− 3)(n− 4)

(n− 2)2
ϑ+ϑ−

]
− k

(n− 3)(n− 4)

2

}
.(37)

The EGB equation, (25), becomes

∂+ϑ+ = −ϑ+ν+ +
1

αGRΩ
(αGBH++ − κ2T++), (38)

∂−ϑ− = −ϑ−ν− +
1

αGRΩ
(αGBH−− − κ2T−−), (39)

∂−ϑ+ = ∂+ϑ− = − η

Ω
+

1

αGRΩ
(κ2T+− − αGBH+− + e−fΛ), (40)

∂+ν− = ∂−ν+ = −2(n− 3)

(n− 2)
η +

(n− 3)(n− 4)

(n− 2)2
Ω2 ϑ+ϑ− + k

(n− 3)(n− 4)

2ef
Ω2

+
2(n− 3)

(n− 2)

1

αGR
(κ2T+− − αGBH+− + e−fΛ)

+
Ω2

efαGR

(
κ2Tzz − αGBHzz − r2Λ

)
, (41)

where Hµν components are lengthy and we omit them in this article.
We assume ghost scalar field ϕ(x+, x−),

Tµν = −∂µϕ∂νϕ− gµν

(
−1

2
(∇ϕ)2 + V (ϕ)

)
, (42)
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which obeys the Klein-Gordon equation,

⊓⊔ϕ =
dV

dϕ
. (43)

If we define scalar momentum as

p± = r∂±ϕ =
1

Ω
∂±ϕ, (44)

then non-zero Tµν components are T++ = −Ω2p2+, T−− = −Ω2p2−, T+− = e−fV , and

Tzz = −efp+p− − Ω−2V . The eq. (43) becomes

∂+p− =

(
1

n− 2
− 1

2

)
Ωϑ+p− − 1

2
Ωϑ−p+ − 1

2efΩ

dV

dϕ
, (45)

∂−p+ = −1

2
Ωϑ+p− +

(
1

n− 2
− 1

2

)
Ωϑ−p+ − 1

2efΩ

dV

dϕ
. (46)

These equations complete the system.

x plusx minus

wormhole throat

S

Σ+Σ−

Figure 3. Numerical grid structure. Initial data
are given on null hypersurfaces Σ± (x∓ = 0, x± >
0) and their intersection S. [7].

The basic idea of numerical integration is as follows. We prepare our numerical integration
range as drawn in Figure 3. The grid will cover both universes connected by the wormhole throat
x+ = x−. We give initial data on a surface S and the two null hypersurfaces Σ± generated from
it. Generally the initial data have to be given as

(Ω, f, ϑ±, ϕ) on S: x+ = x− = 0 (47)

(ν±, p±) on Σ±: x
∓ = 0, x± > 0. (48)

We then evolve the data u = (Ω, ϑ±, f, ν±, ϕ, p±) on a constant-x− slice to the next.
Due to the dual-null decomposition, the causal region of a grid is clear, and there are in-built

accuracy checks: the integrability conditions or consistency conditions ∂−∂+u = ∂+∂−u. In
order to update a point N (north), we have two routes from the points E (east) and W (west).
The set of equations, (38)-(41) and (45)-(46), gives us x+-direction (W to N) and x−-direction
(E to N) integrations together with the consistency conditions.

As a virtue of the dual-null scheme, we can follow the wormhole throat or black-hole horizons
easily. They are both trapping horizons, hypersurfaces where ϑ+ = 0 or ϑ− = 0 [24, 25]. Another
benefit is the singular point excision technique, since the causal region of each grid point is
apparent. When a grid point is inside a black-hole horizon and near to the singularity, we can
exclude that point and grid points in its future null cone from further numerical computation.
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In order to evaluate the energy, we apply the Misner-Sharp mass in n-dimensional EGB
gravity[14],

En =
(n− 2)An−2

2κ2n
Ω

[
− 1

Ω2
2

Λ

(n− 1)(n− 2)
+

(
k +

2

(n− 2)2
efϑ+ϑ−

)
+(n− 3)(n− 4)αGBΩ

2
(
k +

2

(n− 2)2
efϑ+ϑ−

)2
]
. (49)

3.3. Evolutions of 4, 5, and 6-dimensional wormhole solutions in GR
We checked our numerical code whether it reproduces the static wormhole solution, obtained in
§2. We express our n-dimensional Ellis wormhole solutions in dual-null coordinate and evolved.
We find that numerical truncation error can quite easily destroy the stability, but this stability
can be controlled with fine resolution. All the results below are obtained after we confirmed
the resolution of the code which does not destroy the stability of wormhole throat structure by
numerical errors within the evolution (in x−-direction ) shown in the figure.

We put perturbations of the static wormhole in the form of Gaussian pulses, input from the
right-hand universe. The perturbation is put in the scalar field momentum on its initial data
on Σ+

δp+ = c1 exp(−c2(l − c3)
2), (50)

with all the other initial data as the the static wormhole solution. Here c1, c2, c3 are parameters,
and we show the cases with small amplitude and width c1 = ±0.01 and c2 = 3, and the initial
location c3 = 1. That is, the pulse will hit the wormhole throat at x+ = x− = 1. Positive (or
negative) c1 corresponds enhancing (or reducing) the supporting ghost field.

Figure 4. Location of the expansion ϑ+ (red lines) and ϑ− (blue lines) for evolutions of a
solution in 4, 5, and 6-dimensional General Relativity (αGB = 0) as a function of (x+, x−). The
throat begins expanding if we input negative energy scalar flux (left panel), while the throat
turns to be a black hole if we input positive energy scalar flux (right panel).

Figure 4 shows the results of n = 4, 5, and 6 dimensional wormhole solution with above
perturbation. The plot shows where the vanishing locations of expansions, ϑ± = 0, in (x+, x−)
plane. We see first the wormhole throat is the location both ϑ± = 0, but after a small pulse hit
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it, then the throat (or horizon) split into two (ϑ+ = 0 and ϑ− = 0), depending on the signature
of the energy of pulse.

If the location of ϑ+ is outer (in x+-direction) than that of ϑ−, then the region ϑ− < x < ϑ+
is judged as a black-hole. Otherwise the region ϑ+ < x < ϑ− can be judged as an expanding
throat. The throat begins expanding if we input negative energy scalar flux (left panel in Figure
4), while the throat turns to be a black hole if we input positive energy scalar flux (right panel).

3.4. Evolutions of 5-dimensional wormhole solution in EGB gravity
We also evolve the same initial data with Gauss-Bonnet terms αGB ̸= 0 and study their effects
to the evolutions.

Figure 5 shows the case of 5-dimensional EGB gravity. The initial data of wormhole on
Σ± = 0 are obtained numerically, solving the set of equations. The evolutions with αGB ̸= 0 are
quite unstable, and we are hard to keep its static configurations long enough. We see if αGB > 0
the throat begins expansion (left panel in Figure 5). On the contrary, if αGB < 0, then the
throat turns to be black-hole (right panel).

Figure 5. The same with Figure 4, but for 5-dimensional Einstein-Gauss-Bonnet gravity. When
αGB > 0 (left panel), the throat begins expanding (left panel), while the throat turns to be a
black hole for αGB < 0 (right panel).

4. Conclusions and Discussions
We studied the simplest wormhole solutions and their stability.

The space-time is assumed to be static and spherically symmetric, has ghost scalar field,
and has reflection symmetry at the throat. The four-dimensional version is known to the Ellis
(Morris-Thorne) solution, and we derived its extension in the n-dimensional space-time.

Using the linear perturbation technique, we showed that the solutions have at least one
negative mode, which concludes that all wormholes are linearly unstable. The time scale of
instability becomes shorter as n becomes large.

We, next, confirm the instability with numerical evolutions. Our code uses dual-null
coordinate system, which is well-suited for studying horizon structure. At the throat, both the
ingoing and outgoing expansions vanish, which means that the throat consists of a degenerate
horizon. If we put a small amplitude scalar pulse to the throat, then the wormhole throat
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bifurcates, its horizon structure changes into a black-hole or an expanding throat depending the
pulse energy is positive or negative, respectively. We also investigated the effect of the higher-
order curvature corrections using Gauss-Bonnet terms, and found that such corrections do not
work for stabilization of wormholes.

All the behavior of wormholes may be explained simply with energy balance. In [7], for
small perturbations, an existence of critical solution is suggested. The similar behaviors are also
observed in our investigations, which will be reported elsewhere.

We guess a wormhole with exotic matter is a disguise to avoid public notice, and does prefer
to appear as a black-hole or an expanding universe.
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