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We numerically investigated how nonlinear dynamics depends on the dimensionality and on the higher-
order curvature corrections in the form of Gauss-Bonnet (GB) terms. We especially monitored the
processes of appearances of a singularity (or black hole) in two models: (i) a perturbed wormhole throat in
spherically symmetric space-time, and (ii) colliding scalar pulses in plane-symmetric space-time. We used a
dual-null formulation for evolving the field equations, which enables us to locate the trapping horizons
directly, and also enables us to follow close to the large-curvature region due to its causal integrating
scheme. We observed that the fate of a perturbed wormhole is either a black hole or an expanding throat
depending on the total energy of the structure, and its threshold depends on the coupling constant of the GB
terms (αGB). We also observed that a collision of large scalar pulses will produce a large-curvature region,
of which the magnitude also depends on αGB. For both models, the normal corrections (αGB > 0) work for
avoiding the appearance of singularity, although it is inevitable. We also found that in the critical situation
for forming a black hole, the existence of the trapped region in the Einstein-GB gravity does not directly
indicate the formation of a black hole.
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I. INTRODUCTION

Nobody raises an objection to the fact that general
relativity (GR) describes the nature of strong gravity quite
well. The success of the standard big-bang theory is
recognized as the most successful physical result in the
20th century, and black-hole physics is now applied to
understand several field theories and/or material physics.
We have also seen the first direct detection of gravitational
waves, achieved a century after Einstein’s theoretical
discovery.
One of our most exciting topics now is what the physics

laws beyond GR are. We know that GR cannot merge with
quantum theory in its current form. We also know that
standard cosmology still requires new ideas to explain the
matter contents and the rate of expansion of space-time.
There are several approaches to these problems. Among
them, we think that gravity theories in higher-dimensional
space-time and/or in the theories with higher-order curva-
ture terms are the natural extensions to be considered.
We present in this article several nonlinear behaviors

in gravity theory with the Gauss-Bonnet (GB) terms [1–3].
The Einstein-GB gravity is derived from string theory, with
additional higher-order-curvature correction terms added to
GR in the form of the Lagrangian

LGB ¼ R2 − 4RμνRμν þRμνρσRμνρσ; ð1:1Þ

where R, Rμν, and Rμνρσ are the n-dimensional scalar
curvature, the Ricci tensor, and the Riemann curvature,
respectively. This particular combination gives us several
reasonable properties, such as ghost-free combinations [4],
and a set of equations up to the second derivative in spite of
the higher-curvature combinations. The theory is expected
to have singularity-avoidance features in the context of
gravitational collapses and/or cosmology. However, only a
few studies so far have reported on the investigation of
nonlinear dynamical features in Einstein-GB gravity (e.g.,
numerical studies on critical phenomena [5,6], black-hole
formation in AdS [7,8]).
Our first investigative model concerns wormhole dynam-

ics. Awormhole is a hypothetical object such as a short-cut
tunnel connecting two points in space-time. The idea is
frequently used in science fiction to allow for rapid inter-
stellar travel, warp drives, and time machines. However,
wormholes are also a theoretical research topic with a long
history. (See a review, e.g., Visser [9] for earlier works; see
also e.g., Lobo [10,11] for recent works.)
We are especially interested in the fate of a perturbed

Ellis wormhole [12], whose behavior is well known in four-
dimensional GR. The Ellis wormhole is constructed with a
massless Klein-Gordon field whose kinetic term takes the
sign opposite to normal, which was rediscovered by Morris
and Thorne [13], who considered “traversable conditions”
for human travel through wormholes in a response to Carl
Sagan’s idea for his novel Contact.
The first numerical simulation on its stability behavior

was reported by one of the authors [14]. It shows that the
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Ellis wormhole is unstable against the injection of per-
turbed field to the throat, and the wormhole will be changed
either to a black hole or to an expanding throat depending
on the energy balance. These basic behaviors were repeat-
edly confirmed by other groups [15–18]. We will explain in
more detail in Sec. III.
In this article, we present numerical evolutions of higher-

dimensional wormholes with the GB terms. Wormhole
studies in higher-dimensional space-time is not a new topic.
We can find articles on the subject from the 1980s [19,20],
and recent studies are including higher-curvature terms
(see, e.g., Ref. [21], Refs. [22,23], and references therein).
Most of the research mainly concerns the solutions and
their energy conditions, but to our knowledge there is no
general discussion on the nonlinear stability issues of the
solutions (linear stability analysis can be found in
Refs. [22,23]). Studies on wormholes in Einstein-GB
gravity have long histories. Several solutions and their
classifications are reported in Refs. [24,25], while their
energy conditions are considered in Ref. [21]. Similar
research is extended to Lovelock gravity [26], and also to
the dilatonic GB system [22,23].
A couple of years ago, we constructed Ellis-type

solutions in higher-dimensional GR and reported stability
analysis using a linear perturbation method [27]. The
solutions have at least one negative mode, which leads
to the conclusion that all Ellis-type (static and spherically
symmetric) wormholes in GR are linearly unstable [28].
The time scale of instability becomes shorter as n becomes
large. Therefore, the confirmation of these predictions and
the dynamical behavior with the GB terms are two main
objectives in Sec. III.
Our second investigative model deals with colliding wave

packets. Due to the nonlinear features of the theory, in GR,
gravitational waves interact with themselves when they pass
through each other. Considering a collision of plane gravi-
tational waves is the simplest scenario of this nonlinear
interaction problem (see Ref. [32] and references therein).
In fact, Penrose [33] pointed out that the future light cone

of a plane wave is distorted as it passes through another
plane wave. As one aspect of this global property, Szekeres
[34] and Khan and Penrose [35] found exact solutions of
colliding plane waves in flat space-time, which form a
curvature singularity in their interacting region. Stewart
et al. [36,37] performed numerical simulations in the
framework of a 2þ 2 decomposition of space-time and
found that the expansion of the null geodesic will be
negative after a collision of waves. Since these solutions
assume a plane-symmetric space-time, this singularity does
not have a horizon; it is a “naked” one.
Our attention to this problem focuses on the differences

in the growth of curvature, especially the dependences on
the dimension and the GB terms. We have found that we
can compare the behaviors more easily when we place
colliding matter rather than colliding gravitational waves.

Therefore, we prepare the model of colliding normal scalar
packets in plane-symmetric space-time, and we show
comparisons in Sec. IV.
The construction of this article is as follows: In Sec. II, we

show the set of field equations in the form of a dual-null
coordinate system and explain our numerical schemes. We
then show the results of the evolutions of a perturbed
wormhole in Sec. III, and the results of the collision of
scalar plane pulses in Sec. IV. SectionVprovides a summary.

II. FIELD EQUATIONS AND
NUMERICAL TECHNIQUE

A. Action

The Einstein-GB action in n-dimensional space-time
ðM; gμνÞ is described as

S ¼
Z
M

dnx
ffiffiffiffiffiffi
−g

p �
1

2κ2
ðαGRR − 2Λþ αGBLGBÞ þ Lmatter

�
;

ð2:1Þ

where LGB is the GB term [Eq. (1.1)], κ2 is the
n-dimensional gravitational constant, and Lmatter is the
matter Lagrangian. This action reproduces the standard
n-dimensional Einstein gravity, if we set the coupling
constant αGB equal to zero. On the other hand, by setting
αGR ¼ 0, the system becomes pure GB gravity. In the actual
simulations, we set αGR ¼ 1, Λ ¼ 0, κ2 ¼ 1 and change
αGB as a parameter while we write the set of equations with
αGR and Λ in this section in order to compare the terms with
those from LGB.
The action (2.1) gives the gravitational equation as

αGRGμν þ gμνΛþ αGBHμν ¼ κ2Tμν; ð2:2Þ

where

Gμν ¼ Rμν −
1

2
gμνR; ð2:3Þ

Hμν ¼ 2ðRRμν − 2RμαRα
ν − 2RαβRμανβ

þRαβγ
μ RναβγÞ −

1

2
gμνLGB; ð2:4Þ

Tμν ¼ −2
δLmatter

δgμν
þ gμνLmatter: ð2:5Þ

B. Dual-null formulation

We use dual-null formulation for expressing space-time
which has spherical symmetry (Sec. III) or planar sym-
metry (Sec. IV) [38]. The use of dual-null coordinates
simplifies the treatment of horizon dynamics, enables us
to approach close to large-curvature regions, and also
clarifies radiation propagation in far regions. We implement
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our dual-null evolution code which was used for four-
dimensional GR [14] so as to follow higher-dimensional
space-time with the GB terms.
We adopt the line element

ds2 ¼ −2efðxþ;x−Þdxþdx− þ r2ðxþ; x−Þγijdzidzj; ð2:6Þ

where the coordinates ðxþ; x−Þ are along the null propa-
gation directions, and γijdxidxj is the metric of the (n − 2)-
dimensional unit constant-curvature space with k ¼ �1, 0.
For writing down the field equations, we introduce the

variables

Ω≡ 1

r
; ð2:7Þ

ϑ� ≡ n − 2Þ∂�r; ð2:8Þ

ν� ≡ ∂�f; ð2:9Þ

where ∂� ≡ ∂=∂x�, and these are the conformal factor,
expansions, and inaffinities, respectively.
The nonzero Einstein tensor components, then, are

αGRGþþ ¼ −Ωð∂þϑþ þ ϑþνþÞð1þ 2~αΩ2ZÞ; ð2:10Þ

αGRG−− ¼ −Ωð∂−ϑ− þ ϑ−ν−Þð1þ 2~αΩ2ZÞ; ð2:11Þ

αGRGþ− ¼ Ω∂−ϑþ þ ðn − 2Þðn − 3ÞΩ2

2

�
ke−f þ 2

ðn − 2Þ2 ϑþϑ−
�

þ ~α

�ðn − 2Þðn − 5Þ
2

k2Ω4e−f þ 2Ω3Z∂−ϑþ þ 2ðn − 5Þ
n − 2

Ω4Zϑþϑ−

�
− Λe−f; ð2:12Þ

αGRGij ¼ γij

�
ef
�∂ðþν−Þ

Ω2
−

2ðn − 3Þ
ðn − 2ÞΩ ∂ð−ϑþÞ −

ðn − 3Þðn − 4Þ
ðn − 2Þ2 ϑþϑ−

�
−
ðn − 3Þðn − 4Þk

2

�

þ ~αγij

�
2efZ

�
∂ðþν−Þ −

2ðn − 5ÞΩ
n − 2

∂ð−ϑþÞ −
ðn − 5ÞΩ2

n − 2
ϑþϑ−

�

þ 4e2f

ðn − 2Þ2 ½ð∂þϑþ þ νþϑþÞð∂−ϑ− þ ν−ϑ−Þ − ð∂ð−ϑþÞÞ2�

þ2ðn − 5ÞZ2Ω2 −
ðn − 2Þðn − 5Þ

2
k2Ω2

�
þ Λr2γij; ð2:13Þ

where ~α ¼ ðn − 3Þðn − 4ÞαGB, Z ¼ kþW, W ¼ 2ef

ðn−2Þ2 ϑþϑ−, and we use the expression, aðþb−Þ ¼ 1
2
ðaþb− þ a−bþÞ.

The set of dual-null field equations, then, becomes

∂þϑþ ¼ −ϑþνþ −
1

ΩA
κ2Tþþ; ð2:14Þ

∂−ϑ− ¼ −ϑ−ν− −
1

ΩA
κ2T−−; ð2:15Þ

∂−ϑþ ¼ 1

ΩA

�
−
αGRðn − 2Þðn − 3Þ

2
Ω2e−fZ þ e−fΛþ κ2Tþ−

�
−

~αðn − 2Þðn − 5Þ
2

Ω3e−f

A
ðk2 þ 2WZÞ; ð2:16Þ

and

∂þν− ¼ αGRðn − 3ÞZe
−fΩ2

A

�
−
αGRðn − 3Þ

A
þ ðn − 4Þ

2

�
þ e−fΛ

A

�
2αGRðn − 3Þ
ðn − 2ÞA − 1

�
þ 2ðn − 3Þ
ðn − 2ÞA2

κ2Tþ− þΩ2e−f

A
κ2Tzz

þ ~αðn − 5ÞΩ
2e−f

A2

�
−αGRðn − 3ÞΩ2ðk2 þ 2WZ þ 2Z2Þ − 2~αðn − 5ÞΩ4ðk2 þ 2WZÞZ þ Ω2A

2
½ðn − 2Þk2 þ 2WZ

− 4Z2� þ 4Z
n − 2

ðΛþ efκ2Tþ−Þ
�
−

4~α

ðn − 2Þ2
Ω2ef

A
½ð∂þϑþ þ νþϑþÞð∂−ϑ− þ ν−ϑ−Þ − ð∂ð−ϑþÞÞ2�; ð2:17Þ

where A ¼ αGR þ 2~αΩ2Z. Note that ∂þϑ− ¼ ∂−ϑþ and ∂þν− ¼ ∂−νþ.

NONLINEAR DYNAMICS IN THE EINSTEIN-GAUSS- … PHYSICAL REVIEW D 96, 044009 (2017)

044009-3



C. Matter terms

We assume two scalar fields: the normal field ψðxþ; x−Þ
and the ghost field ϕðxþ; x−Þ,

Tμν ¼ Tψ
μν þ Tϕ

μν; ð2:18Þ

where

Tψ
μν ¼ ∂μψ∂νψ − gμν

�
1

2
ð∇ψÞ2 þ VψðψÞ

�
; ð2:19Þ

Tψ
μν ¼ −∂μϕ∂νϕ − gμν

�
−
1

2
ð∇ϕÞ2 þ VϕðϕÞ

�
ð2:20Þ

both obey the Klein-Gordon equations,

□ψ ¼ dVψ

dψ
; ϕ ¼ dVϕ

dϕ
; ð2:21Þ

respectively. If we define the scalar momenta as

π� ≡ r∂�ψ ¼ 1

Ω
∂�ψ ; ð2:22Þ

p� ≡ r∂�ϕ ¼ 1

Ω
∂�ϕ; ð2:23Þ

then the nonzero Tμν components are

Tþþ ¼ Ω2ðπ2þ − p2þÞ; ð2:24Þ

T−− ¼ Ω2ðπ2− − p2
−Þ; ð2:25Þ

Tþ− ¼ T−þ ¼ e−fðVψ þ VϕÞ; ð2:26Þ

Tzizj ¼
�
efðπþπ− − pþp−Þ −

1

Ω2
ðVψ þ VϕÞ

�
γij: ð2:27Þ

Equation (2.21) becomes

2∂þπ− ¼ 4 − n
n − 2

Ωϑþπ− −Ωϑ−πþ −
1

efΩ
dVψ

dψ
; ð2:28Þ

2∂−πþ ¼ 4 − n
n − 2

Ωϑ−πþ −Ωϑþπ− −
1

efΩ
dVψ

dψ
; ð2:29Þ

2∂þp− ¼ 4 − n
n − 2

Ωϑþp− −Ωϑ−pþ −
1

efΩ
dVϕ

dϕ
; ð2:30Þ

2∂−pþ ¼ 4 − n
n − 2

Ωϑ−pþ −Ωϑþp− −
1

efΩ
dVϕ

dϕ
: ð2:31Þ

These equations complete the system.

D. Numerical integration scheme

The basic idea of numerical integration is as follows: We
prepare our numerical integration range as drawn in Fig. 1.
We give initial data on a surface Σ0, where xþ ¼ x− ¼ 0,
and the two null hypersurfaces Σ� generated from it, where
x∓ ¼ 0 and x� > 0. Generally, the initial data have to be
given as

ðΩ; f; ϑ�;ϕ;ψÞ on Σ0; ð2:32Þ

ðν�; p�; π�Þ on Σ�: ð2:33Þ

We then evolve the data u ¼ ðΩ; ϑ�; f; ν�;ϕ;ψ ; p�; π�Þ
on a constant-x− slice to the next.
Due to the dual-null decomposition, the causal region of

a grid is clear, and there are in-built accuracy checks: the
integrability conditions or consistency conditions ∂−∂þu ¼
∂þ∂−u. In order to update a point N (north), we have
two routes from the points E (east) and W (west). The sets
of equations (2.14)–(2.17) [with Eqs. (2.24)–(2.27)] and
(2.28)–(2.31) give us the updates in the xþ direction (from
W to N) and in the x− direction (from E to N) together with
the consistency conditions. Note, however, that there are
no equations for ∂þνþ, ∂−ν−, ∂�π�, and ∂�p�, so the
consistency on these variables will be checked by other
methods. More detailed procedures are given in Ref. [14].
As a virtue of the dual-null scheme, we can follow the

wormhole throat or black-hole horizons easily. They are
both trapping horizons, hypersurfaces where ϑþ ¼ 0 or
ϑ− ¼ 0 [40,41]. The region between ϑþ ¼ 0 and ϑ− ¼ 0 is
recognized as a trapped region if θþ ¼ 0 locates outer
(xþ direction), and if such a boundary runs null, we can say
that a trapped region is a black hole [see Fig. 2(a)].
Another benefit is the singular-point excision technique.

As we described, the causal region of each grid point in the
dual-null scheme is apparent. When a grid point is inside a
black-hole horizon and near to the singularity, we can
exclude that point and grid points in its future null cone
from further numerical computation.

FIG. 1. Numerical grid structure. Initial data are given on null
hypersurfaces Σ� (x∓ ¼ 0, x� > 0) and their intersection Σ0.
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E. Initial data construction

For the preparation of initial data on Σ0 (xþ ¼ x− ¼ 0)
and on Σ� ðx∓ ¼ 0; x� > 0Þ, we integrate the set of
equations (∂þ equations, and ∂− equations) from the center
Σ0. When we consider static solutions, some additional
consistency relations appear. These are

ϑþ þ ϑ− ¼ 0; ð2:34Þ

νþ þ ν− ¼ 0; ð2:35Þ
πþ þ π− ¼ 0; ð2:36Þ
pþ þ p− ¼ 0; ð2:37Þ

which are given from ð∂þ þ ∂−ÞΩ ¼ 0, ð∂þ þ ∂−Þf ¼ 0,
ð∂þ þ ∂−Þψ ¼ 0, and ð∂þ þ ∂−Þϕ ¼ 0, respectively,
together with

efϑþνþ ¼ −
αGRðn − 2Þðn − 3Þ

2
Ω2ðkþWÞ þ Λþ κ2ðVψ þ VϕÞ

−
~αðn − 2Þðn − 5Þ

2

Ω3

A
ðk2 þ 2kW þ 2W2Þ −Ωef

A
κ2ðπ2þ − p2þÞ; ð2:38Þ

efð∂þ þ ∂− þ ν−Þϑ− ¼ 1

ΩA

�
−
αGRðn − 2Þðn − 3Þ

2
Ω2ðkþWÞ þ Λþ κ2ðVψ þ VϕÞ

�

−
~αðn − 2Þðn − 5Þ

2

Ω3

A
ðk2 þ 2kW þ 2W2Þ −Ωef

A
κ2ðπ2− − p2

−Þ; ð2:39Þ

which are given from ð∂þ þ ∂−Þϑþ ¼ 0 and ð∂þ þ ∂−Þϑ− ¼ 0, respectively.

When we consider a static configuration, we have
requirements on Σ0; ϑþ ¼ ϑ− ¼ 0 and νþ ¼ ν− ¼ 0. We
also have a constraint on the matter:

Ωefκ2ðπ2þ − p2þÞ ¼
1

Ω

�
−
αGRðn − 2Þðn − 3Þ

2
kΩ2

þ Λþ κ2ðVψ þ VϕÞ
�

−
~αðn − 2Þðn − 5Þ

2
k2Ω3; ð2:40Þ

which is derived from ∂þϑ� ¼ −∂−ϑ�, and this constraint
will be concerned when we set π�, p� on Σ0.

F. Transformation from normal metric
to dual-null metric

In Sec. III, we compare our numerically constructed
initial data in a dual-null metric with the exact solution in a
normal time-space metric. Such a transformation is given
by the method below.
Suppose we identify a ðt; rÞ metric

ds2 ¼ −Fðt; rÞdt2 þ 1

Fðt; rÞ dr
2 ð2:41Þ

¼ −Fðt; rÞðdt2 − dr2�Þ ð2:42Þ

positive energy
pulse input

th
ro

at

Black Hole
Inflationary 
expansion

negative energy
pulse input

th
ro

at

(a) (b)

FIG. 2. Partial Penrose diagrams of the evolved space-time. Suppose we live in the right-side region and input a pulse to an Ellis
wormhole in the middle of each diagram. The wormhole throat suffers a bifurcation of horizons and either (a) collapses to a black hole,
or (b) explodes to form an inflationary universe, depending on whether the total input energy is positive or negative, respectively. This
basic picture was first given by Ref. [14], and it holds for higher-dimensional GR, as will be shown in Fig. 3, while in the Einstein-GB
gravity slight changes are observed, as will be shown in Fig. 4.
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with a dual-null metric

ds2 ¼ −2efðxþ;x−Þdxþdx−; ð2:43Þ

where a tortoise coordinate r� is introduced as dr
dr�

¼ F. By
identifying two coordinates as

xþ ¼ 1ffiffiffi
2

p ðtþ r�Þ; ð2:44Þ

x− ¼ 1ffiffiffi
2

p ðt − r�Þ; ð2:45Þ

when we consider a static solution, the derivative of a
function Gðt; rÞ in the xþ direction is expressed as

d
dxþ

Gðt; rÞ ¼ ∂r�
∂xþ

dr
dr�

∂G
∂r ¼ Fffiffiffi

2
p ∂G

∂r : ð2:46Þ

Thus, the components in a ðt; rÞ metric can be converted
into a ðxþ; x−Þ metric.

G. Misner-Sharp mass

In order to evaluate the energy, we apply the Misner-
Sharp mass in n-dimensional Einstein-GB gravity [21],

En ¼
ðn − 2ÞAn−2

2κ2nΩ

�
−

2Λ
ðn − 1Þðn − 2ÞΩ2

þ k

þ 2ef

ðn − 2Þ2 ϑþϑ− þ ~αΩ2

�
kþ 2ef

ðn − 2Þ2 ϑþϑ−
�
2
�
;

ð2:47Þ

where An−2 is the volume of the (n − 2)-dimensional unit
constant-curvature space, i.e. A2 ¼ π=Ω2, A3 ¼ 4π=ð3Ω3Þ,
A4 ¼ π2=Ω4, A5 ¼ 8π2=ð15Ω5Þ for k ¼ 1.

H. Kretschmann scalar

For evaluation of the magnitude of the curvature, we
calculate the Kretschmann scalar in n dimensions:

I ðnÞ ¼ RijklRijkl: ð2:48Þ

I ðnÞ is written as

I ð4Þ ¼ I1 þ 16I2 þ 4I3; ð2:49Þ

I ð5Þ ¼ I1 þ 24I2 þ 12I3; ð2:50Þ

I ð6Þ ¼ I1 þ 32I2 þ 20I3 þ 16I4; ð2:51Þ

I ð7Þ ¼ I1 þ 40I2 þ 32I3 þ 32I4; ð2:52Þ

where

I1 ¼ 4e2fð∂þ∂−fÞ2; ð2:53Þ

I2 ¼
e2f

r2
f½ð∂−fÞð∂−rÞ þ ð∂−∂−rÞ�

× ½ð∂þfÞð∂þrÞ þ ð∂þ∂þrÞ�þð∂þ∂−rÞ2g; ð2:54Þ

I3 ¼
½kþ 2e2fð∂−rÞð∂þrÞ�2

r4
; ð2:55Þ

I4 ¼
½e2fð∂þrÞð∂−rÞ�2

r4
: ð2:56Þ

III. NUMERICAL EVOLUTIONS OF A
PERTURBED WORMHOLE

In this section, we show the evolutions of the Ellis-type
wormhole in higher-dimensional space-time both in GR
and in the Einstein-GB gravity theories.
In four-dimensional GR, a wormhole is an unstable

object. If it is perturbed, its throat suffers a bifurcation of
horizons and either collapses to a black hole or explodes
to form an inflationary universe, depending on whether
the additional (perturbed) energy is positive or negative,
respectively (see Fig. 2) [14].
The instability of the Ellis-type wormhole in

n-dimensional GR is also shown using a linear perturbation
method by us [27]. We showed that the solutions have at
least one negative mode, which leads to the conclusion that
all Ellis-type wormholes are linearly unstable. The time
scale of instability becomes shorter as n becomes larger.
Therefore, the objectives of this section are to confirm

the instability of higher-dimensional GR wormholes in
the nonlinear regime and to investigate the behavior of
Einstein-GB wormholes.

A. Wormholes in four-, five-, and six-dimensional GR

The solution shown in Ref. [27] is obtained in a
spherically symmetric space-time (k ¼ þ1) with the metric

ds2 ¼ −Fðt; rÞe−2δðt;rÞdt2 þ Fðt; rÞ−1dr2
þ Rðt; rÞ2γijdzidzj; ð3:1Þ

with a massless ghost scalar field (Vϕ ¼ 0). In order to
construct a static wormhole solution, the metric function is
restricted as F ¼ FðrÞ, R ¼ RðrÞ, ϕ ¼ ϕðrÞ, and δ ¼ 0. By
locating the throat of the wormhole at r ¼ 0, and imposing
the reflection symmetry at the throat, the solution of the
field equations is obtained as

f ≡ 1; R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
a0
R

�
2ðn−3Þ

s
;

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 2Þðn − 3Þp

κ
an−30

Z
1

RðrÞn−2 dr; ð3:2Þ
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where a0 is the radius of the throat, i.e. Rð0Þ ¼ a0, and a
prime denotes a derivative with respect to r. We used this
solution for confirmation of our numerical solution, using
the method described in Sec. II F.
In order to construct the initial static data on Σ�, we

integrate xþ equations [(2.14), (2.16) as ∂þϑ−, (2.17),
(2.28), and (2.30)] and x− equations [(2.15), (2.16), (2.17)
as ∂−νþ, (2.29), and (2.31)] with the boundary values at the
throat,

Ω ¼ 1

a0
; ϑ� ¼ ν� ¼ f ¼ 0; ϕ ¼ ϕ0; ð3:3Þ

where ϕ0 is given by Eq. (3.2), and we set p�ð< 0Þ
from Eq. (2.40).
We find that numerical truncation error can quite easily

destroy the static configuration, but it can be controlled
with finer resolution. All the results below are shown after
we have confirmed that the static solution of the wormhole
is maintained during the evolution (in the x− direction) in
the range of discussion.
We add a perturbation to the static wormhole in the form

of a Gaussian pulse, input from the right-hand universe.
The perturbation is placed as a scalar-field momentum on
the initial data Σþ as a form

δpþ ¼ c1 exp½−c2ðxþ − c3Þ2� ð3:4Þ

for the ghost scalar field where c1, c2, c3 are parameters, or

δπþ ¼ c1 exp½−c2ðxþ − c3Þ2� ð3:5Þ

for the normal scalar field. The static wormhole solution is
from the ghost field, and its total energy is zero. In this
model, positive (negative) c1 in the ghost field (3.4)
indicates the addition of positive (negative) energy to the
system, while c1 ≠ 0 in the normal field (3.5) indicates the
addition of positive energy to the system. After we set this
perturbation form, we re-solve the other variables on Σþ;
i.e., our perturbed initial data are all solutions of the system,
and we can also add a perturbation beyond the linear level.
Figure 3 shows the results of four-, five-, and six-

dimensional wormhole solutions with the above perturba-
tions. The plots show the trajectories of the locations of
vanishing expansions ϑ� ¼ 0 in the ðxþ; x−Þ plane. We see
that the wormhole throat is initially located where
ϑþ ¼ ϑ− ¼ 0, but after a small pulse hits it, the throat
(or horizon) splits into two horizons (ϑþ ¼ 0 and ϑ− ¼ 0),
and they propagate in opposite directions, depending on the
signature of the energy of the pulse.
If the location of ϑþ ¼ 0 is farther out (in the xþ

direction) than that of ϑ− ¼ 0, then the region between
ϑ− ¼ 0 and ϑþ ¼ 0 is said to be trapped. If such a trapped
surface runs null, then the region is judged to be a black
hole. On the contrary, if ϑ− ¼ 0 is farther out (in the

xþ direction), then the region between ϑþ ¼ 0 and ϑ− ¼ 0
can be judged as an expanding throat. These two
differences are confirmed also by calculating the circum-
ference radius (see Fig. 5, later).
The throat begins shrinking and turns into a black hole if

we inject a positive-energy scalar flux (left panels in
Figure 3), while the throat begins expanding if we input
a negative-energy scalar flux (right panels). This funda-
mental feature is the same with those already reported in
Ref. [14], and the fact that higher-dimensional cases show
earlier bifurcation matches with the predicted behavior
from the linear perturbation analysis in Ref. [27].

B. Wormholes in Einstein-GB gravity

We also evolved the perturbed wormhole initial data
with the GB terms (αGB ≠ 0) and studied their effects on
the evolutions. We first prepared the static Ellis-type
wormhole solution by solving equations on Σ� numeri-
cally. We checked that the solution in n ¼ 4 Einstein-GB
gravity is identical with that in GR.
We then confirmed that the solution is static by evolving

it without perturbation. We actually found that the evolu-
tions with large jαGBj are quite unstable numerically, and it
is hard to keep its static configurations long enough.
Therefore, we can present the results only for small-
jαGBj cases, for those we confirmed the static configuration
is maintained for the range of discussion.
Figure 4 shows the cases of n ¼ 5 and 6 Einstein-GB

gravity with αGB ¼ þ0.001. The lines show the locations
of horizons (ϑ� ¼ 0). We change the amplitude of the
perturbation, c1 in Eq. (3.4), and find that for large c1, the
throat turns into a black hole, while for small c1, the throat
begins expanding. This statement will be clarified in Fig. 5.
Figure 5 shows the evolution behavior of the circum-

ference radius of the throat. We plotted for the cases of
Fig. 4. If the amplitude of the perturbation, c1, is above a
particular value, then the throat begins shrinking, which
indicates the formation of a black hole. The critical value of
the parameter exists at E ∼ 1.0 for n ¼ 5 and at E ∼ 2.5 for
n ¼ 6 in terms of the Misner-Sharp mass (2.47), which
means the threshold is larger for n ¼ 6. Since the energy of
the injected pulse is always positive, the existence of the
critical positive value for forming a black hole suggests that
introducing the GB terms with αGB > 0 turns out to have a
sort of “negative” energy. The larger threshold for forming
a black hole in higher dimensions also indicates that such
effects become stronger in higher dimensions.
For quantitative comparisons, we prepared Table I, in

which we list how the initial (positive-energy) perturbation,
ΔE, results in a black hole (if it is formed). We evaluated
the Misner-Sharp mass (2.47) at the end of the grid,
xþ ¼ 5, and measured the horizon coordinate, x−H where
the outgoing trapping horizon, θþ ¼ 0, propagates at null.
We see that in higher n, x−H is smaller, which indicates the
early formation of a black hole due to the large instability.
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Interestingly, the final mass of the black hole, Ef, depends
only on the dimension n and αGB, and does not depend on
the injected energy, ΔE. The black-hole mass, Ef, is
supposed to be a critically formed minimum mass of the
black hole, and such an existence of the minimum mass (or
threshold) was the same with those in the four-dimensional
GR cases [14]. This threshold is larger for large αGB. The

listed cases are fixed by the amplitude, c1, of the injected
perturbation, but if we check the ratio Ef=Ei, then we see
that the final mass of the black hole becomes smaller when
αGB is larger. Both suggest that the GB terms work for
avoiding the appearance of a black hole (or singularity).
One more interesting finding is the critical case. When

we tune the perturbation amplitude c1 close to the critical

(a1) (a2)

(b1)
(b2)

FIG. 3. Evolutions of a perturbed wormhole in four-, five-, and six-dimensional GR (αGB ¼ 0). Locations of the horizons [where the
expansions are ϑþ ¼ 0 (red lines) and ϑ− ¼ 0 (blue lines)] are plotted as a function of ðxþ; x−Þ. Figures (a1) and (a2) are the results of
the injection of a positive-energy scalar pulse which hits the throat at xþ ¼ x− ¼ 1, while Figures (b1) and (b2) are those of a negative-
energy pulse. Arrows indicate the trajectories of pulses. The pulse parameters are c1 ¼ −0.1 for (a1), c1 ¼ 0.1 for (b1), c1 ¼ −0.01 for
(a2), and c1 ¼ 0.01 for (b2). We also set c2 ¼ 3 and c3 ¼ 1, which means that the pulse hits the wormhole throat at xþ ¼ x− ¼ 1. The
throat begins turning into a black hole if we input positive-energy scalar flux (upper panels), while the throat expands if we input
negative-energy scalar flux (lower panels). This is what we expected from Fig. 2. We also see that the bifurcation of the throat appears
earlier for higher dimensions, which suggests larger instability. The figures should be symmetric, but the large curvature stops numerical
evolution just after a black hole is formed, so that the plots in the left panels are terminated in the middle of x−.
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value, as we show in Fig. 6, we find that the throat (double
trapping horizon, ϑ� ¼ 0) bifurcates to two trapping
horizons (ϑþ ¼ 0 and ϑ− ¼ 0), and they remain at a
quasi-constant radius, and shortly after that they propagate

outward. That is, the wormhole first changes to a temporal
trapped region, and then decides its fate towards either a
black hole or an expanding throat. Actually, the circum-
ference radius of the throat in this critical case takes the

(a) (b)

FIG. 4. Evolutions of a perturbed wormhole in Einstein-GB gravity with αGB ¼ þ0.001. The left and right panels show the cases of five-
and six-dimensional space-time, respectively. Locations of the horizons [where the expansions are ϑþ ¼ 0 (red lines) and ϑ− ¼ 0 (blue
lines)] are plotted as a function of ðxþ; x−Þ for several amplitudes of the perturbation (3.4) with c1 ¼ 0.3, 0.5, 0.7 for n ¼ 5, and c1 ¼ 0.5,
0.6, 0.65, 0.7 for n ¼ 6. The other parameters of the injections are c2 ¼ 16 and c3 ¼ 0.7. Arrows indicate the trajectories of pulses.We see
that for large c1, the throat turns into a black hole, while for small c1, the throat begins expanding, which is different from GR cases.

0

(a) (b)

FIG. 5. The behavior of the circumference radius of the throat for the cases of Fig. 4. Panel (a) shows the cases of five-dimensional
space-time, while (b) gives the cases of six-dimensional space-time. We see that if the amplitude of the perturbation, c1, is above a
particular value, the throat begin shrinking, which indicates the formation of a black hole. This critical value is expressed with the
Misner-Sharp mass (2.47), and we find that the magnitude is larger for n ¼ 6.
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value between the red lines and blue lines in Fig. 5; i.e., it
remains almost constant but oscillates slightly when it is
forming a temporal trapped region. Since the final two

objects are totally different and there is no static configu-
ration between them, we guess that this is the first-order
transition.
This critical behavior also suggests us that the existence

of such a trapped region is not a necessary condition for
forming a black hole in this model. We do not know if such
an observation is general in the presence of the GB terms,
or if this is only due to the effect of the ghost field. We,
however, note that, in Einstein-GB gravity, a couple of
examples of the differences (from GR) in causality and
energy conditions have been reported (e.g., Refs. [21,42]).
Therefore, this new finding might not be surprising.

IV. NUMERICAL EVOLUTIONS OF THE
COLLISION OF SCALAR PULSES

In this section, we show our results of the collision of
massless scalar pulses in plane-symmetric space-time.
There are several exact solutions of the colliding plane
waves, which produce curvature singularity after their
collisions (see, e.g., Ref. [32] and references therein).
We prepare a similar situation in our code and examine
such a strong curvature effect in higher-dimensional GR
and in Einstein-GB gravity. We first note that in the
construction of exact solutions, the wave fronts are
assumed to be a step function, while in our simulations
the wave fronts are a continuous function.
We put a perturbed normal scalar field (ψ) in the flat

background on the initial surfaces and evolve it. The space-
time is assumed to be plane symmetric (k ¼ 0 in Sec. II),
and we do not consider the ghost scalar field (ϕ) in this

TABLE I. Injected perturbation and the final black-hole structure (when it is formed). Initial Misner-Sharp energy ΔE, Eq. (2.47), is
the additional energy due to the injected part. The amplitude c1 in Eq. (3.5) is listed, while we set c2 ¼ 16 and c3 ¼ 0.7 for all cases. The
total energies, Ei and Ef , are evaluated at xþ ¼ 5, and Ef is regarded as the mass of the black hole (when it is formed). The horizon
coordinate x−H is evaluated where the ϑþ ¼ 0 trapping horizon becomes null.

n αGB Injected field Initial Final BH

Field c1 ΔE=a0 Ei=a0 Ef=a0 x−H=a0

4 0 πþ þ0.25 þ0.03 0.88 3.14 2.94
4 0 πþ þ0.50 þ0.10 0.95 3.14 2.09
5 0 πþ þ0.25 þ0.15 0.52 6.28 2.26
5 0 πþ þ0.50 þ0.61 0.97 6.28 1.66
6 0 πþ þ0.25 þ0.38 0.50 9.87 1.92
6 0 πþ þ0.50 þ1.50 1.63 9.87 1.46
5 0.001 πþ þ0.25 þ0.15 0.53 6.30 2.67
5 0.001 πþ þ0.50 þ0.61 0.98 6.30 1.72
5 0.001 πþ þ1.00 þ2.23 2.61 6.30 0.98
5 0.01 πþ þ0.50 þ0.59 1.02 noBH
5 0.01 πþ þ0.75 þ1.31 1.74 6.41 1.92
5 0.01 πþ þ1.00 þ2.21 2.65 6.41 1.19
6 0.001 πþ þ0.50 þ1.53 1.46 noBH
6 0.001 πþ þ0.75 þ3.42 3.36 9.93 1.34
6 0.001 πþ þ1.00 þ6.07 6.60 9.93 1.00
6 0.01 πþ þ1.00 þ6.90 5.00 noBH
6 0.01 πþ þ1.50 þ8.78 8.15 noBH

FIG. 6. The evolutions of the wormhole in the Einstein-GB
theory (five-dimensional, αGB ¼ þ0.01). The locations of the
horizons are plotted. When the amplitude of the perturbation, c1,
is close to the critical value for the fate of the wormhole (either to
expansion or to a black hole), a temporal trapped region with a
constant radius appears. This behavior also suggests that the
existence of such a trapped surface is not a necessary condition
for forming a black hole in the Einstein-GB theory.
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section. The initial scalar field is set as ψ ¼ 0 and has
momentum�

πþ ¼ a expð−bðxþ= ffiffiffi
2

p
− cÞ2Þ

π− ¼ 0
on Σþ; ð4:1Þ

�
πþ ¼ 0

π− ¼ a expð−bðx−= ffiffiffi
2

p
− cÞ2Þ on Σ−; ð4:2Þ

where a, b, c are parameters.

FIG. 7. Evolutions of colliding two scalar pulses in five-dimensional GR: (a) the small-amplitude case [a ¼ 0.2 in Eqs. (4.1) and
(4.2)], and (b) the large-amplitude case (a ¼ 0.4). The scalar momentum π�, scalar field ψ , the conformal factor Ω, metric function
ef, and the Kretschmann scalar I ð5Þ are plotted in the ðxþ; x−Þ coordinates. Initial data were set at both Σ−ðxþ ¼ 0; x− > 0Þ and
Σþðxþ > 0; x− ¼ 0Þ and evolved. For small pulses, we see that they just cross, and space-time turns back toward flat again, while
for large pulses, we see that nonlinear curvature evolution appears after the collision of pulses. The latter behavior is similar to the exact
solutions of the plane-wave collision.
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A. Evolutions in GR

The two typical evolutions are shown in Fig. 7. We plot
the behaviors of the scalar field and the Kretschmann
scalar, I ð5Þ, for five-dimensional GR. We set a ¼ 0.2 and
0.4, and b ¼ 10, c ¼ 2 for these plots. For small pulses
[Fig. 7(a)], we see that two pulses just pass through each
other, and the curvature I ð5Þ turns back to flat again. On the
contrary, for large pulses [Fig. 7(b)], the nonlinear curva-
ture evolution appears after the collision of pulses. The
latter behavior is similar to the exact solutions of the
plane-wave collision (see, e.g., figures in Ref. [43]). We
actually find that in all blow-up regions, both expansions
are ϑ� < 0 (Fig. 8). In four-dimensional plane-symmetric
space-time, if the curvature blows up, then it means the
appearance of a naked singularity, since there is no chance
to form a horizon. However, in higher dimensions, we
expect such a blow-up will be hidden in a horizon, as the
expansions suggest.

B. Evolutions in Einstein-GB

We also evolved the same initial data by the set of
evolution equations with nonzero αGB.
Figure 9(a) displays the Kretschmann scalar, I ð5Þ, for

both αGB ¼ þ1 and αGB ¼ −1 cases for the same initial
data with the large-amplitude case (a ¼ 0.4) in Fig. 7(b).
We see that the local peak of I ð5Þ at the collision of
two pulses (at xþ ¼ x− ¼ 2

ffiffiffi
2

p
) is smaller (larger) when

αGB > 0 (αGB < 0) than that in GR. This result indicates
that introducing the GB terms (in the way of the normal
higher-curvature correction, αGB > 0) will work for reduc-
ing the growth of the local curvature.
In Fig. 9(b), we plot the “evolution” behavior of the

Kretschmann scalar, I ð5Þ, at the origin (xþ ¼ x−) where

two pulses collide. At later times, we see that the curvature
will diverge for all the cases (GR and Einstein-GB) due to
the large amplitude of the initial pulses, but these growing
behaviors are again ordered by αGB. Supposing that the
curvature singularity will be formed at the final phase of
this evolution (analogues to the plane-wave collision), then
we can say that introducing the GB terms cannot stop the
formation of the singularity, but it will shift its appearance
later if αGB > 0.
Figure 10 shows the magnitude of the Kretschmann

scalar, I ðnÞ, at the moment of the collision of scalar pulses
(at the first peak of I ðnÞ). We plot the cases αGB ¼ 0, �0.1,
�0.5, �1.0 and the dimensions n ¼ 4, 5, 6, and 7. We see
that for n ¼ 4, all three cases have the same magnitude,
which is consistent with the fact that the GB correction does
not appear at n ¼ 4. For larger dimensions, the magnitude
becomes lower. We also find that introducing positive αGB
(i.e., the normal higher-curvature correction) reduces its
magnitude.
In summary, the collision of scalar pulses will produce

curvature singularity if its initial amplitude is large enough,
but its appearance will be delayed in higher dimensions
and/or with the GB terms with αGB > 0.

FIG. 8. The expansions ϑ� for the evolutions shown in Fig. 7.
(a) Small-amplitude case (a ¼ 0.2). (b) Large-amplitude case
(a ¼ 0.4).

(a) large amplitude case, Gauss-Bonnet gravity

(b)

FIG. 9. (a) Kretschmann scalar, I ð5Þ, of the evolutions of
colliding two scalar pulses in five-dimensional Einstein-GB
gravity with αGB ¼ �1. The initial data are the same with the
large-amplitude case in Fig. 7(b). We see that the local peak of
I ð5Þ at the collision of two pulses (at xþ ¼ x− ¼ 2

ffiffiffi
2

p
) is smaller

(larger) when αGB > 1 (αGB < 1). (b) Kretschmann scalar, I ð5Þ,
at the origin (xþ ¼ x−) of these evolutions, together with one with
αGB ¼ 0 (i.e., GR).
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V. SUMMARY AND DISCUSSIONS

The Einstein-GB gravity theory is one of the plausible
candidates which describes the early Universe, but so
far little is known of its nonlinear dynamical behaviors.
We numerically investigated the dynamics in higher-
dimensional space-time with and without the GB terms.
We prepared a code for solving the full set of evolution
equations in the spherically symmetric or planar symmetric
space-time using the dual-null formulation, and we showed
the dynamical features on two models, the fate of the
perturbed wormhole and the collision of scalar pulses.
For wormhole dynamics, we monitored the throat

structure of the static wormhole by injecting a perturbation
to it. We confirmed the instability of the Ellis-type worm-
hole in higher dimensions, which was predicted from the
linear analysis before. We also find that the fate of the

wormhole (to either a black hole or expanding throat) is
determined by the signature of the total energy in GR which
has the same features as those in four-dimensional cases. In
Einstein-GB gravity, however, we observed that the thresh-
old of the energy which makes a wormhole to a black hole
is larger for the GB correction with the normal sign of the
coupling constant (αGB > 0), and also larger for higher-
dimensional cases. These facts indicate that adding the GB
terms has similar effects to reducing the total energy of the
system.
For scalar pulses’ collision, we observed that curva-

ture (Kretschmann scalar) evolves more mildly in the
presence of the normal GB terms (αGB > 0) and in
higher-dimensional space-time. The appearance of the
singularity is inevitable in our model, but the basic
feature is matched with the expected effect of the
cosmologists; i.e., the avoidance (or lower possibility)
of the appearance of the singularity.
Both models suggest consistent features: the chances

of the appearance of a singularity or black hole will be
reduced in higher-dimensional space-time and/or in the
presence of the GB terms. As is shown in other models
(e.g., Refs. [44,45]), in higher-dimensional GR, the chance
of appearances of naked singularities is suppressed com-
pared to the four-dimensional GR cases. This is suggested
by the existence of many freedoms in gravity, which
suppresses the growth of curvature and makes the for-
mation of horizons less eccentric. The introduction of the
GB terms seems to work for this direction.
We hope that these results will be used as a guiding

principle for understanding the fundamental dynamical
features of the Einstein-GB gravity.
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