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The current important issue in numerical relativity is to determine which formulation of the Einstein equa-
tions provides us with stable and accurate simulations. Based on our previous work on ‘“asymptotically
constrained” systems, we here present constraint propagation equations and their eigenvalues for the Arnowitt-
Deser-MisnefADM) evolution equations with additional constraint terfagjusted termson the right-hand
side. We conjecture that the system is robust against violation of constraints if the amplification factors
(eigenvalues of the Fourier component of the constraint propagation equaiensegative or purely imagi-
nary. We show that such a system can be obtained by choosing multipliers of the adjusted terms. Our
discussion covers Detweiler's proposal and Frittelli’s analysis, and we also mention the so-called conformal-
traceless ADM systems.
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I. INTRODUCTION variables [5],! and compared them numericallg]. We
found that(a) the three levels of hyperbolicity can be ob-
tained by adding constraint terms and/or imposing gauge

The effort to solve the Einstein equations numerlCa"y_conditions,(b) there is no drastic difference in the accuracy

so-called numerical relativity—is now providing an interest- ; . ) .
) . . . . __of numerical evolutions in these three, dieiithe symmetric
ing bridge between mathematical relativists and numeric : . .

o : . yperbolic system is not always the best for reducing nu-
relativists. Most of the simulations have been performed us-°": - .
. . . . merical errors. Similar results in regard ¢ta) and (b) are
ing the Arnowitt-Deser-MisnefADM) formulation[1] or a o -

e . . reported by Heri7] based on the Frittelli-Reula formulation
modified version. However, the ADM formulation has not 8]
been proven to be a well-posed system, since its evquuoL :

. . L o What are, then, the criteria for predicting the stable evo-
equations do not present a hyperbolic form in its original or, . : o Y
; lutions of a system? Inspired by the\“system” proposal
standard formulation.

Most simulations are performed using “free evolution” 9], e have consider_ed a so-called “asympt_otically con-
procedures(1) solve the Hamiltonian and momentum con- strained” system, that is, a system robust against the viola-

straints to prepare the initial dat&) integrate the evolution tion of constraints|10]. The fundamental idea of the)"
) prepar . 9 . system” is to introduce artificial flow onto the constraint
equations by fixing gauge conditions, af®) monitor the

. . . _surface. However, we also found that such a feature can be
accuracy or stability by evaluating the constraints. Many tri-g.i0q simply by adding constraint terms to the evolution

als have been made in the last few decades, but we have ”Qﬁuations which we named “adjusted systen{€'l]. We
yet obtained a perfect recipe for the long-term stable eVO'“éprained the reason why this works by analyzing the evo-
tion of the Einstein equations. Here we consider the problenytion equations of the constraintthe propagation of the
through the form of the equations. constraints We proposed that the stablity of the system can

One direction in the community is to rewrite the Einstein pe predicted by analyzing the eigenval@asplification fac-
evolution equations in a hyperbolic form and to apply it totors) of the constraint propagation equatiofe describe
numerical simulation$2]. This is motivated by the fact that this in detail in Sec. ). We confirmed that our proposal
we can prove well-posedness for the evolution of severalvorks in both the Maxwell and Ashtekar systefid].
systems if they have a certain kind of hyperbolic feature. The The purpose of this article is to apply our proposal to the
authors recently derivef3,4] three levels of a hyperbolic
system of the Einstein equations using Ashtekar’s connection

We derived weakly, strongly= diagonalizablg and symmetric
hyperbolic systems. The mathematical inclusion relation is
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ADM systents). Especially, we consider the “adjusting pro- characteristic speeds suggest to us satisfactory criteria for
cess” [adding constraints on the right-hand sid®HS) of  stable evolutions if they are real and under the propagation
evolution equationsand the resultant changes to the eigen-speed of the original variablas® and/or within the causal
values of the constraint propagation systems. This adjustingegion of the numerical integration scheme applied.
process can be seen in many constructions of hyperbolic sys- (2) On the other hand, the Fourier transformed equation
tems in the references. In fact, teandard ADMfor numeri- (2.2,
cal relativists is the version which was introduced by York o
[12], where theoriginal ADM system[1] has already been 0 CP=g(CP), (2.3
adjusted using the Hamiltonian constrais¢e more detail in R
Sec. lll). The advantage of thetandard ADMsystem is re- whereC?(x,t)= [ C(k,t)exp(k-x)d°k also characterizes the
ported by Frittelli[13] from the point of the hyperbolicity evolution of the constraints independently of its hyperbolic-
and the characteristic propagation speed of the constrainty. As we have proposed and confirmed([itl], the set of
Our discussion extends her analysis to the amplification faceigenvalues\' of the coefficient matrix in Eq(2.3) provides
tors. a kind of amplification factorof the constraint propagation
One early effort of the adjusting mechanism was pre-and predicts the increase or decrease of the violation of the
sented by Detweilg14]. Our study also includes his system, constraints if it exists. More precisely, we showed[iri]
and shows that this system actually works as desired for that if the eigenvalues of E¢2.3) (a) have anegativereal-
certain choice of parametdSec. I\V). We also study the part or(b) arenonzero(purely imaginary eigenvalues, then
same procedure for the “conformal-traceless” ADIET-  we see more stable evolutions than a system which does not.
ADM) formulations[15,16 which is recently the most popu- This is because the constraints are damped if the eigen-
lar system in numerical simulatioriSec. . values are negative and are propagating away if the eigen-
The analysis in the text is for perturbational violation on avalues are purely imaginary. We found heuristically that the
flat background. Further applications are available, but weystem becomes more stalfdccurate when the amplifica-
will discuss them in future reports. In the Appendix, we alsotion factors,A’s, satisfy as much the above criteria and/or as
give numerical demonstrations of the adjusted ADM systeméarge magnitude of\’s away from zeros(Examples in11]

discussed in the text. are of the plane wave propagation in the Maxwell system
and the Ashtekar systejniWe remark that this eigenvalue

Il. CONSTRAINT PROPAGATION AND “ADJUSTED analysis requires that we fix a particular background metric

SYSTEM” for the situation we consider, since the amplification factor

_ o . depends on the dynamical variables
We begin by reviewing the background of “adjusted sys-  The above features of the constraint propagation, Eq.
tems” and our conjecture. (2.2, will change when we modify the original evolution

The notion of the evolution equations of the constraints isequations. Suppose we adjust the RHS of @) by adding
often discussed from the point of whether they form a firstthe constraints,

class system or not. Fortunately, the constraints oridhigi-
nal or standardADM formulation are known to form a first- oud=f(u2,aud, ...)+F(CP9,CP, ...), (2.9
class system. Because of this fact, numerical relativists onl¥ . -
need to monitor violation of the Hamiltonian and momentumthen Eq.(2.2) will also be modified as
constraints during free evolution of the initial data.

Our essential idea here is to feed this procedure back into 9CP=g(C"aCP, ... )+G(CICP, ...). (2.5
the evolution equations. That is, we adjust the system’s V0Ry taking the characteristic speed of H@.5 and the am-
lution equations by characterizing the constraint propagationjii-ation factor of the Fourier transformed equatiths),

in advance. Let us describe the procedure in a general fornne predicted stability of the systef@.4) becomes different
Suppose we have a set of dynamical variahlééx',t), and to that of the original system, E2.2).
its evolution equations Our proposed “adjusted system” is obtained by finding a
U= F (U, 9 ) 2.1) certain functional form oF (C*,4,C?, ...) in Eq.(2.4) so as

t I ' to get a more stable prediction in the analysis of the eigen-
values\' andA'. In the following discussion, we show two
eigenvalues\' and A" for each ADM system. We remark
again that the term “characteristic speed” here is not for the
2,CP=g(CP,d,CP, . ..). (2.2 dynamical equatiorf2.1), but for the constraint propagation

equationg2.2).

which should satisfy a set of constrair@®(u?,g;u?, ...)
~0. The evolution equation foE? can be written as

We can perform two main types of analysis on E2j2).

(1) If Eq. (2.2) is in a first-order form(that is, only in- I1l. STANDARD ADM SYSTEM
cludes first-order spatial derivativeshen the level of hyper-
bolicity and the characteristic spee@sgenvalues\' of the
principal matrix will definitely determine the stability of the We start by analyzing the standard ADM system. By
system. We expect mathematically rigorous well-posed fea“standard ADM” we mean here the most widely adopted
tures for strongly or symmetric hyperbolic systems, and thesystem, due to York12], with evolution equations

A. Standard ADM system and its constraint propagation
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dvyij=—2aK; +ViBi+V;B;, (3.9
9Kij = aRP+ aKK;j; — 2aK KK~V Va
+(ViBYK+ (V89K i+ BV K , (3.2
and constraint equations
H:=R®)+K2—K;;K', (3.3
M; =V;KL=VK, (3.9
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W _( 0 —2ikj>
i) Tl -k o

in Fourier components. The eigenvalues of the coefficient
matrix of Eq. (3.10, which we callamplification factors
become

Dy

(1)/\‘/1]) (310

A'=(0,0£iK?), (3.11)

. . . 2_ 1,2 2 2 . .
where (y; ,K;;) are the induced three-metric and the extrin-Wherek“ =k +kj+k; . These factors will be compared with
sic curvature, &,;) are the lapse function and the shift Others later, but we note that the real parts of all the ampli-

covector,V; is the covariant derivative adapted 1§ , and
R(® is the three Ricci tensor.

The constraint propagation equations, which are the time

evolution equations of the Hamiltonian constrait3) and
the momentum constraint8.4), can be written as

dH= B (IH) =2y (9 M;) + 2aKH+ () ymi)
X (2yMM =y M~ 4y (dj) M, (3.5)
M= — (L2 a(dH) + B9, M)) + aK M, — (3,a) H
=B (G M+ (3B YIM; . (3.6

The simplest derivation of Eq$3.5 and (3.6) is by using
the Bianchi identity, which can be seen in Fritteflli3].
[Note thatC in [13] is half ourH, and we have corrected
typos in Eq.(11) in [13].]

The characteristic part of Egé3.5 and(3.6) can be ex-
tracted as

H

H
tM'
I

PARME
gl 9 M, =P M)
3.7

which indicates that the characteristic spe@genvalues of
the characteristic matri®') are

N=(8,8,8'xay")

Since rankP'— 8')=2, the matrixP' is diagonalizable, but
not the symmetric.
Simply by inserting(1/2) in front of H above, we obtain

(le) g —ay! (H/2)_
N )"l —as o, | M)’

the characteristic matrix becomes symmefviith the same

IBI
:( —(1/2) 6|

(nosumovel). (3.8

(3.9

eigenvaluep This is a feature of the standard ADM system

that was pointed out by Frittell(Actually H/2 is the form
originally given by the Lagrangian formulation.

B. Amplification factors on the Minkowskii background

fication factors are zero.

IV. ADJUSTED ADM SYSTEMS

A. Adjustments

Generally, we can write the adjustment terms to E§4)
and(3.2) using Eqs(3.3) and(3.4) by the following combi-
nations(using up to the first derivative of constraints

adjustment term ofd, y;; :

+ Py HA+ QN Myt i (D) +gif (D M), 4.
adjustment term obK;; :
+Rin+Skiij+rkij(DkH)+Sklij(DkM|), (42)

whereP,Q,R,S andp,q,r,s are multipliers(do not confuse
R;; with the three Ricci curvature that we write &%).
Since this expression is too general, we mention some re-
stricted cases below.

We remark that our starting system, E¢3.1) and (3.2),
is the standard ADMsystem for numerical relativists intro-
duced by York[12]. This expression can be obtained from
the originally formulated canonical expression by ADM,
but in that process the Hamiltonian constraint equation is
used to eliminate the three-dimensional Ricci scalar. There-
fore thestandard ADMsystem is already adjusted from the
original ADM system. We start our comparison with this
point.

B. Original ADM vs standard ADM

Frittelli's adjustment analysigl3] can be written in terms
of Egs.(4.1) and(4.2), as

Rij=(U4)(u—1)ayi, 4.3

where u is a constant and set other multipliers in EGs1)
and (4.2) to zero. Hereu=1 corresponds to the standard

ADM system(no adjustment, sincR;;=0) andu=0 to the
original ADM system(without any adjustment to the canoni-

As a first example, we consider the perturbation ofcal formulation by the ADM systejn

Minkowskii spacetime:a=1, =0, ¥ij= 6ij - By taking
the linear order contribution, Eq&3.5) and(3.6) are reduced
to

Keeping the multiplie4.3) in mind, we here discuss the
case of nonzerd;; ,&kj (all other multipliers being zepo
The constraint propagation equations become
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dH= B (IH) =2y (M) + 2aKH+ (3 ymid (2y™ Y = y™ Y M; — 491 (9;0) M+ 2KRH - 2K R H
+ 2Ky S M= 2K TS My, (4.9
M=~ (U2 a7 H) + B M) + aKM; = (d;0) H— B*¥ (3 yi) M+ (9 Bi) YIM + ¥ (9, R H— Y™ (i Ry H

+RI(9;H) = Ry (9 H) + ¥1(9;S) Mic— ¥ (8,S) M+ S0, M) = ' S (9. M) + (9,9 Ry H

+ T REH=TKRIH = (3 V) RicH+ (9,91 SEMy+ T SO M =T SIM = (") S M (4.5)
that is, Egs(4.4) and (4.5 form a first-order system. The principal part can be written as
H i3 —2ay! H

‘”(Mi) 2( (1)@t R~ SR 6]+ - vmkﬁlsimk) ‘9'(/\4;)' 9

The general discussion of the hyperbolicity and characteristievolution of the energy norm of the constrairits?+ M 2,
speed of the systert4.6) is hard, so hereafter we restrict can be negative definite when we apply the maximal slicing

ourselves to the case
(4.7)

where we recover Eq4.3) by choosingx;=(un—1)/4 and
k,=0. The eigenvalues of E¢4.6) then become

N=(8'8(1-Ko) B!
+Va?yY(1+4ky)+ (k,8")?) (no sum ovet)
(4.8

K
Rij=riavij, S.j:Kz,BkYij :

and the hyperbolicity of Eq(4.6) can be classified af)
symmetric hyperbolic wher;=3/2 andx,=0, (ii) strongly
hyperbolic whena?y" (1+4k,)+ k5(8')?>0 where «;#
—1/4, and (i) weakly hyperbolic whena?y'"(1+4x;)
+5(8")%=0.

conditionK=0. (We will comment more on his criteria in
Sec. IV C 2) His adjustment can be written in our notation
in Egs.(4.1) and(4.2) as

Pij=—La%y, (4.17)
R =La3(K;;—(1/3)Ky;j), (4.12
S'Ikl =La?[3(d;a) 5}()_((9@)7”)’“], (4.13
sij =L a8 81y~ (113) 7 '], (4.19

everything else zero, wheteis a constant. Detweiler’s ad-
justment, Eqgs.(4.12—(4.14), does not put the constraint
propagation equation in first-order form, so we cannot dis-
cuss hyperbolicity or the characteristic speed of the con-

For the case of Eq4.7) on a Minkowskii background straints.
metric, the linear order terms of the constraint propagation For the Minkowskii background spacetime, the adjusted

equations become

constraint propagation equations with above choice of mul-
tiplier become

M7 0 —2ik;\ [ WH
g () {1, =( —(1/2)(1+4ky)ik; O ) @, Wi —2LK? —2ik;
(4.9 @iy |-k — (LK 8 - (LIB)kik

whose Fourier transform gives the eigenvalues Wy

A= (0,0 V- KA(1+4xy)). (4.10 X( “U\%,-) | “13
That is (two zeros, two purely imaginanyfor the standard : :
ADM system andfour zero$ for the original ADM system. The eigenvalues of the Fourier transform are
Therefore, according to our conjecture, the standard ADM I_(_ 2 2 2
system is expected to have better stability than the original A= (LK = (LK~ (4L 73k
ADM system. + VK[ — 1+ (4/9)L%Kk?]). (4.16

This indicates negative real eigenvalues if we choose small
positive L.
We confirmed numerically, using perturbation on
Detweiler’'s modification to the ADM systefii4] can be  Minkowskii spacetime, that Detweiler’s system presents bet-
realized through one choice of the multipliers in E¢61)  ter accuracy than the standard ADM system, but only for
and (4.2). He found that with a particular combination the small positiveL. See the Appendix.

C. Detweiler’'s system

1. Detweiler’s system and its constraint amplification

124019-4
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2. Differences with Detweiler’'s requirement Wy 2K0k2 —2ik: M7y
: _ _ i
We comment here on the differences between Detweiler’s t( (1)/\“4) ( — (1/2)ik; 0 ) ( (1)/\%) )
criteria for stable evolution and ours. i i 4.23
Detweiler calculated thé&2 norm of the constraint€, '

over the three-hypersurface and imposed the negative defing the eigenvalues of the coefficient matrix are

niteness of its evolution:
A'= (0,0 40k2 = VK2(— 1+ k2K?)). (4.24

Detweilers Cr'te”a:”;‘f C,CrdV<0, V nonzeroC,, That is, the amplification factors becort® 0, two negative
(4.17 real valueg for the choice of relatively small negative,.

o mpor ) ) We also confirmed that this system works as desired. We
whereC,CP=:G*’C,C,, andG,,=diad 1,y;;] for the pair  give a numerical example in the Appendix.
of C,=(H,M,).

Assuming the constraint propagation to B€,=A?C, 2. Adjusting the Hamiltonian constraint system
in the Fourier components, the time derivative of th2 Our final example is a combination of the one in Sec.
norm can be written as IV B and that above, that is,

H(C,CP = (APT+ AP+ 5GP C,C,. (418 Py = KoaYij (4.25
Together with the fact that the2 norm is preserved by Rij=k1avij , (4.26
Fourier transform, we can say, for the case aftatic back- o _ . o
ground metric, all other multipliers being zero in Eq&4.1) and(4.2). Simi-

lar to the previous one, the Fourier-transformed constraint
Detweiler's criteria= eigenvalues propagation equation is
of (A+AT) are all negativey k. (4.19 (D ( 2 keok? —2iki) Wy
0 . | = . . ~ |
On the other hand, vt —(1/2)iki—2k4ik; 0 @44,
(4.27)
our criteria=eigenvalues ofare all negativev k.
(4.20 which gives the eigenvalues
Therefore for the case of a static background, Detweiler’s A'=(0,0k0k?>+ VK2 (—1+ kok®—4ky)).  (4.28
criterion is stronger than ours. For example, the matrix o ) )
We can expect a similar asymptotical stable evolution by
-1 a _ choosingky and«;, so as to make the eigenvalu@s 0, two
A= 0 -1 wherea is constant, (4.21)  negative real valugs

for the evolution system{;,C,), satisfies our criterion but V. CONFORMAL-TRACELESS ADM SYSTEMS

not Detweiler's wherja|= 2. This matrix, however, gives The so-called “conformally decoupled traceless ADM
asymptotical decay for&;,C,). Therefore we may say that formulation” was first developed by the Kyoto grofip5].
Detweiler requires monotonic decay of the constraints, whiléAfter the rediscovery that this formulation is more stable
we assume only asymptotical decay. than the standard ADM formula by Baumgarte and Shapiro
We remark that Detweiler’s truncations on higher-order[16], several groups began to use the CT-ADM formulation
terms in theC norm corresponds to our perturbational analy-for their numerical codes and reported an advantage in sta-
sis; both are based on the idea that the deviations from thility [17,18. Along with this conformal decomposition,
constraint surfacéthe errors expressed as a nonzero conseveral hyperbolic formulations have also been proposed

straint valug are initially small. [19-21], but they have not yet been applied to numerical
simulations.

D. Another possible adjustment However, it is not yet clear why the CT-ADM formula-

tion gives better stability than the ADM formulation. The

1. Simplified Detweiler system Potsdam group22] found that the eigenvalues of the CT-

Similar to Detweiler's equatiori4.11), we next consider ADM evolution equationave fewer “zero eigenvalues”
only the adjustment than those of the ADM system, and they conjectured that
instability can be caused by “zero eigenvalues” that violate

Pij= Koy , (4.22  the “gauge mode.” Miller[23] applied von Neumann’s sta-
bility analysis to plane wave propagation and reported that
all other multipliers being zero in Eq$&4.1) and(4.2). the CT-ADM formulation has a wider range of parameters

On the Minkowskii background, the Fourier componentsthat give us stable evolution. These studies provide support
of the constraint propagation equation can be written as  for the CT-ADM formulation in some sense, but on the
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other_ har_1d, it is alrc,o shown that an exgmple of an ill-posed PANE _Z(aja)’Aij _(4/3)K2a((9jK)“,yij
solution in the CT-ADM formulation existéas well in the

ADM formulation) [24]. + 12k, AT (9;)— Za'AL(aj;ik)
Here, we apply our constraint propagation analysis to this ‘
CT-ADM system. ~ 2kl Y = 2(1~ ip) (1 A) ¥
A. CT-ADM equations +2a(1- KZ)AEFI- — 9 (B oy —¥M(5,8")
Since one reported feature of the CT-ADM formulation is K081 + (2137 (89)), 5.9

the use of the momentum constraint on the RHS of the evo-
lution equationg22], we here present the set of CT-ADM

equations carefully for such a replacement of the constraint ,
terms. whereL is the Lie derivative along the shift vect@', and

The widely used notatioh15,16 is to use the variables R®) is the three-metric scalar curvature. Here we introduced
(¢5,ij =K1Aij T instead of the standard ADM variables Parametersc which show where we replace the terms with

(vij Kij), where constraints. For examplec(, x,,«3)=(0,0,0) is the case of
no replacemenfithe standard ADM equations expressed us-
=€y, (5.1 ing Egs.(5.1)—(5.3)], while Baumgarte and Shapif@6] use
- (K11K27K3):(11110)'
Aj=e (K — (1/3)y;;K), (5.2 The constraint equations in the CT-ADM system can be

o expressed as
l“':]__‘}k,yjk’ (53)

and we impose d@tj:l during the evolutions. The set of

a4 — 447 — 447
evolution equations becomes H=e "R -8e *"y1(9,0,¢)—8e "Y1 (d,4)(d;¢)

(0= Lg) = (—1/6)aK, (5.4) +8e *(9,¢)T" + (213 K>~ Ay AT, (5.9
(0= Lp)yij=—2aA;, (5.5
o =0 AN Y= (213)(a,K)— AT+ 6(a;¢)Al —TKAL,
(0= LpK=a(1- k)R + a(1- k) K2+ ax A A" Mi=(0;A) v = (213)(9iK) — A (9 )A; “(5.1()
+(U3)ak K2 = y1(V,Va), (5.6)
(0= LpAj=—e **(VV a)"+e *aRY gi=Ti+o7. (5.1
—e *a(1/3)y;;(1- k3)R®
a(K’Aij —Zz\ikﬂ}‘)+e*4¢a(1/3) ¥ijK3 HereH, M are the Hamiltonian and momentum constraints
o and the third oneg, is a consistency relation due to the
X[ —AAK + (2/3)K?], (5.7  algebraic definition of Eq(5.3).

B. Constraint propagation equations of the CT-ADM formulation

Similar to the ADM cases, we here show the propagation equations fo(=6s-(5.11). The expressions are given using
Egs. (3.5 and (3.6), but we have to be careful to keep using the new varidblevherever it appears. Followind 6], we

expresR(® as
~Ri(js): —(1/2)7Y|m(f7|f9m;’ij)+(1/2);’ki3jfk+(1/2);’kjf9ifk+(1/2)fkf(ij)k+;|mfh?jkm+;|mfhTikm+7ylmfrmfk|j :
(5.12

The constraint propagation equations, then, are obtained by straightforward calculations as

dH=B(9;H)— 2 **Y (3, M)+ 2aKH—2ae *4(3,y)) M;— 4ae™**(3,$) I M;— 4e” 44y (9,a) M;
+2k26 4 (Ga) YI M+ 2K26 4 a( 3y ) M+ 2,6 4P ayl (9, M) + 16K ae” (3, ) YI M — (413) k1 aK K,
(5.13
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OM;= = (12)a(3H) + B (M) + aK M= (i) H= 4B (3 ) M+ BV (9 i) My + (G810 e ¥ IM,

+(1/3)(2k1+ k3) (F @) H+ (113) (21 + k3) a(dyH) — 2k 00 Al M — (113) k3a Gy H+ 2 k30 (3 p) K, (5.14

3G'=2AG 1+ 2Kka ¥ M; . (5.15

These form a first-order system, and the characteristic part can be extracted as

H B 2(—1+ky)ay’l 0 H
ol Mi | =| [(213)k1+ (13 k53— (1/2)]a s, B's! 0]a| M|, (5.16
g' 0 0 0 gl
whose characteristic speeds are
N'=(0,0,08",8", 8"+ ay"(1— k) [1— (413 k1 — (2/3) k3]) (nO sum ovet). (5.17)

By analyzing the reality of the eigenvalues, the diagonalizability of the characteristic matrix, and the possibility of a symmetric
characteristic matrix, we can classify the hyperbolicity of the sydtern6) as

weakly hyperbolie> (1 — k,)[1—(4/3) k1 —(2/3) k3]=0, (5.18
strongly hyperbolie> (1 — k) =[1—(4/3) k1 — (2/3) k3] =0,
or (1— ky)[1— (4/3) k1 — (2/3) k3]>0, (5.19
symmetric hyperbolie>(— 1+ «,)=[1—(4/3) k1 — (2/3) k3]. (5.20
That is, for the nonadjusted systemy( «,, x3) = (0,0,0), constraint propagation forms a strongly hyperbolic system, while the

Baumgarte-Shapiro form gives only weak hyperbolicitie note that the first-order version of the CT-ADM system by
Frittelli and Reulg 20] has also well-posed constraint propagation equations.

C. Amplification factors on a Minkowskii background

For a Minkowskii background, the constraint propagation equations at linear order become

My 0 2(1,—1)ik; 0\ [ WH
al DA | = [(23)ky+ (1) k3— (1/2)]ik; 0 0| @Ay |. (5.2
(1)@ 0 2K25ij 0 (1)@

The constraint amplification factor becomes

A'=(0,0,0,0,0+ V—K?(1— kp)[1— (413) k1 — (2/3) k3]). (5.22)

That is,A' are either zero, purely imaginary, ar real num-  adjusted ADM, and conformal traceless ADMT-ADM)
bers. For the nonadjusted system they are zero and puregystems, and tried to find a system that is robust for violation
imaginary [that is, the same as Eq3.11)], while the of the constraints, which we can call an “asymptotically
Baumgarte-Shapiro form gives us all zero eigenvaluesconstrained” system.
Therefore, from our point of view, these two are not very We conjectured that if the amplification factqeigenval-
different in their characterization of constraint propagation. ues of the coefficient matrix of the Fourier-transformed con-
straint propagation equationare negative or purely imagi-
nary, then the system has better asymptotically constrained
features than a system where they are not. According to our
We have reviewed ADM systems from the point of view conjecture, the standard ADM system is expected to have
of the adjustment of the dynamical equations by constrainbetter stability than the original ADM systefmo growing
terms. We have shown that characteristic speeds and amplinode in amplification factojs Detweiler's modified ADM
fication factors of the constraint propagation change due tsystem, which is one particular choice of adjustment, defi-
their adjustments. We compared the equations for the ADMnitely has good properties in that there are no growing modes

VI. CONCLUDING REMARKS
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Detweiler's adjustments choice of adjusting multipliers against the fact that the “Ein-
2o on Minkowskii spacetime stein equations” are time-reversal invariant. This question
S i 7/ o o li—o001 can be answered by the following. If we take a time-reversal
[L=-001 — transformation §;— —4d;), the Hamiltonian constraint and
0.0 - [‘ 7 wemee - L=0.02 the evolution equations df;; keep their signatures, while
u 5 L= 4005 S the momentum constraints and the evolution equationg;of
— change their signatures. Therefore if we adjust#eequa-
tions using the Hamiltonian constraint andKy; equations
using the momentum constraintsupposing the multiplier
A i has+ parity), then we can break the time-reversal invariant
I \ ] feature of the “ADM equations.” In fact, the examples we
6.0 - 5 obtained all obey this rule. The CT-ADM formulation keeps
] its signature against the adjustments we made, so that we
cannot find any additional advantage from this analysis.
Considering the constraint propagation equations is a kind
‘ ‘ - - - of substitutional approach for numerical integrations of the
0.0 05 10 15 20 dynamical equations. However, this might be one of the
time main directions for our future research, as Friedrich and
Nagy[25] impose a zero speed of the constraint propagation
FIG. 1. Demonstration of the Detweiler's modified ADM sys- as the first principle when they considered the initial bound-
tem on Minkowskii background spacetinféhe system of Sec. ary value problem of the Einstein equatidi2s].
v C) The L2 norm of the constraints is plotted as a function of We are now app|y|ng our discussion to more genera|
time. Artificial error was added at=0.25. Herel is the parameter spacetimes and trying to find guidelines for choosing appro-
used in Eqs(4.12)—(4.14). We see that the evolution is asymptoti- priate gauge conditions from analysis of the constraint
cally constrained for small>0. propagation equations. These efforts will be reported else-

where[27].
in the amplification factors. We also showed that this can be

obtained by a simpler choice of adjustment multipliers.

We also studied the CT-ADM system which is popular
with numerical relativists nowadays. However, from our H.S. appreciates helpful comments by Pablo Laguna,
point of view, we do not see any particular advantages fogorge Pullin, Manuel Tiglio, and the hospitality of the CGPG
the CT-ADM system over the standard ADM system. group. We also thank Steven Detweiler for communications.

The reader might ask why we can break the time-reversalve thank Bernard Kelly for a careful reading of the manu-
invariant feature of the evolution equations by a particularscript. This work was supported in part by NSF grant

PHY00-90091 and the Everly research funds of Penn State.
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[L=so008 . T e APPENDIX: NUMERICAL DEMONSTRATIONS OF
= Lo S 1=-001 --===- L=+0.02 ADJUSTED ADM SYSTEMS
E [ — - L=+0.04
g a0l ) We here show two numerical demonstrations of the ad-
5 . 1 justed ADM systems that were discussed in Sec. I\D@t-
5 I L=0 (standard ADM) weiler's modified ADM systemand Sec. IV D I(simplified
E 40 N version.
g -3 Detweiler's adjustment, Eq94.12—(4.14), can be pa-
S 6ol rametrized by a constaht and our prediction from the am-
o plification factor on the Minkowskii background is that this
S a0l system will be asymptotically constrained for small positive
L L. Figure 1 is a demonstration of this system. We evolved
Minkowskii spacetime numerically in a plane-symmetric

-10.0 —— e e e spacetime and added artificial error in the middle of the evo-
0.0 0.5 1.0 15 2.0 ; . : . :
lution. Our numerical integration uses the Brailovskaya
scheme, which was described in detail in our previous paper
FIG. 2. Demonstration of the simplified Detweiler's modified [6]- The code passes convergence tests and the plots are for
ADM system on Minkowskii background spacetirtae system of 401 gridpoints in the range=[0,10], and we fix the time
Sec. IV D 1. For comparison with Fig. 1, we skt= — x,, where ~ 9grid At=0.2Ax. The error was introduced as a pinpoint
Ko is the parameter used in E¢.22. We see the evolution is Kick, in the form ofAg,, = 10"2 atx=5.0 andt=0.25. We
asymptotically constrained for small>0. monitor how theL2 norm of the constraintstJer)

time
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behaves. From Fig. 1, we see that a small positiveduces tion of the Courant-Friedrich-Lewy condition, while in this
theL2 norm in time, which is the asymptotically constrained system we cannot calculate the exact characteristics since the
feature we expected. The case of slightly largevill make  system is not first order.

the system unstable. This is the same feature we have seen inSimilarly, we plotted in Fig. 2 the case of a simplified
the numerical demonstration of the system or adjusted version(the system of Sec. IV D)1We see the desired fea-
Maxwell system and Ashtekar systdiil]; for that case the ture again by changing the parameigrthat appears in Eq.
upper bound of the multiplier can be explained by viola-(4.22.
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