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Constraint propagation in the family of ADM systems
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The current important issue in numerical relativity is to determine which formulation of the Einstein equa-
tions provides us with stable and accurate simulations. Based on our previous work on ‘‘asymptotically
constrained’’ systems, we here present constraint propagation equations and their eigenvalues for the Arnowitt-
Deser-Misner~ADM ! evolution equations with additional constraint terms~adjusted terms! on the right-hand
side. We conjecture that the system is robust against violation of constraints if the amplification factors
~eigenvalues of the Fourier component of the constraint propagation equations! are negative or purely imagi-
nary. We show that such a system can be obtained by choosing multipliers of the adjusted terms. Our
discussion covers Detweiler’s proposal and Frittelli’s analysis, and we also mention the so-called conformal-
traceless ADM systems.
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I. INTRODUCTION

The effort to solve the Einstein equations numerically
so-called numerical relativity—is now providing an intere
ing bridge between mathematical relativists and numer
relativists. Most of the simulations have been performed
ing the Arnowitt-Deser-Misner~ADM ! formulation @1# or a
modified version. However, the ADM formulation has n
been proven to be a well-posed system, since its evolu
equations do not present a hyperbolic form in its original
standard formulation.

Most simulations are performed using ‘‘free evolution
procedures:~1! solve the Hamiltonian and momentum co
straints to prepare the initial data,~2! integrate the evolution
equations by fixing gauge conditions, and~3! monitor the
accuracy or stability by evaluating the constraints. Many
als have been made in the last few decades, but we hav
yet obtained a perfect recipe for the long-term stable evo
tion of the Einstein equations. Here we consider the prob
through the form of the equations.

One direction in the community is to rewrite the Einste
evolution equations in a hyperbolic form and to apply it
numerical simulations@2#. This is motivated by the fact tha
we can prove well-posedness for the evolution of seve
systems if they have a certain kind of hyperbolic feature. T
authors recently derived@3,4# three levels of a hyperbolic
system of the Einstein equations using Ashtekar’s connec
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variables @5#,1 and compared them numerically@6#. We
found that~a! the three levels of hyperbolicity can be ob
tained by adding constraint terms and/or imposing ga
conditions,~b! there is no drastic difference in the accura
of numerical evolutions in these three, and~c! the symmetric
hyperbolic system is not always the best for reducing
merical errors. Similar results in regard to~a! and ~b! are
reported by Hern@7# based on the Frittelli-Reula formulatio
@8#.

What are, then, the criteria for predicting the stable e
lutions of a system? Inspired by the ‘‘l-system’’ proposal
@9#, we have considered a so-called ‘‘asymptotically co
strained’’ system, that is, a system robust against the vi
tion of constraints@10#. The fundamental idea of the ‘‘l
system’’ is to introduce artificial flow onto the constrai
surface. However, we also found that such a feature can
obtained simply by adding constraint terms to the evolut
equations which we named ‘‘adjusted systems’’@11#. We
explained the reason why this works by analyzing the e
lution equations of the constraints~the propagation of the
constraints!. We proposed that the stablity of the system c
be predicted by analyzing the eigenvalues~amplification fac-
tors! of the constraint propagation equations~we describe
this in detail in Sec. II!. We confirmed that our proposa
works in both the Maxwell and Ashtekar systems@11#.

The purpose of this article is to apply our proposal to t

of

.jp

1We derived weakly, strongly (5 diagonalizable!, and symmetric
hyperbolic systems. The mathematical inclusion relation is

weakly hyperbolic{strongly hyperbolic

{symmetric hyperbolic.
See details in@4#.
©2001 The American Physical Society19-1
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ADM system~s!. Especially, we consider the ‘‘adjusting pro
cess’’ @adding constraints on the right-hand side~RHS! of
evolution equations# and the resultant changes to the eige
values of the constraint propagation systems. This adjus
process can be seen in many constructions of hyperbolic
tems in the references. In fact, thestandard ADMfor numeri-
cal relativists is the version which was introduced by Yo
@12#, where theoriginal ADM system@1# has already been
adjusted using the Hamiltonian constraint~see more detail in
Sec. III!. The advantage of thestandard ADMsystem is re-
ported by Frittelli @13# from the point of the hyperbolicity
and the characteristic propagation speed of the constra
Our discussion extends her analysis to the amplification
tors.

One early effort of the adjusting mechanism was p
sented by Detweiler@14#. Our study also includes his system
and shows that this system actually works as desired f
certain choice of parameter~Sec. IV!. We also study the
same procedure for the ‘‘conformal-traceless’’ ADM~CT-
ADM ! formulations@15,16# which is recently the most popu
lar system in numerical simulations~Sec. V!.

The analysis in the text is for perturbational violation on
flat background. Further applications are available, but
will discuss them in future reports. In the Appendix, we a
give numerical demonstrations of the adjusted ADM syste
discussed in the text.

II. CONSTRAINT PROPAGATION AND ‘‘ADJUSTED
SYSTEM’’

We begin by reviewing the background of ‘‘adjusted sy
tems’’ and our conjecture.

The notion of the evolution equations of the constraints
often discussed from the point of whether they form a fi
class system or not. Fortunately, the constraints on the~origi-
nal or standard! ADM formulation are known to form a first-
class system. Because of this fact, numerical relativists o
need to monitor violation of the Hamiltonian and momentu
constraints during free evolution of the initial data.

Our essential idea here is to feed this procedure back
the evolution equations. That is, we adjust the system’s e
lution equations by characterizing the constraint propaga
in advance. Let us describe the procedure in a general fo
Suppose we have a set of dynamical variables,ua(xi ,t), and
its evolution equations

] tu
a5 f ~ua,] iu

a, . . . !, ~2.1!

which should satisfy a set of constraintsCr(ua,] iu
a, . . . )

'0. The evolution equation forCa can be written as

] tC
r5g~Cr,] iC

r, . . . !. ~2.2!

We can perform two main types of analysis on Eq.~2.2!.
~1! If Eq. ~2.2! is in a first-order form~that is, only in-

cludes first-order spatial derivatives!, then the level of hyper-
bolicity and the characteristic speeds~eigenvaluesl l of the
principal matrix! will definitely determine the stability of the
system. We expect mathematically rigorous well-posed f
tures for strongly or symmetric hyperbolic systems, and
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characteristic speeds suggest to us satisfactory criteria
stable evolutions if they are real and under the propaga
speed of the original variablesua and/or within the causa
region of the numerical integration scheme applied.

~2! On the other hand, the Fourier transformed equat
~2.2!,

] tĈ
r5ĝ~Ĉr!, ~2.3!

whereCr(x,t)5*Ĉr(k,t)exp(ik•x)d3k also characterizes th
evolution of the constraints independently of its hyperbol
ity. As we have proposed and confirmed in@11#, the set of
eigenvaluesL i of the coefficient matrix in Eq.~2.3! provides
a kind of amplification factorof the constraint propagation
and predicts the increase or decrease of the violation of
constraints if it exists. More precisely, we showed in@11#
that if the eigenvalues of Eq.~2.3! ~a! have anegativereal-
part or~b! arenonzero~purely imaginary! eigenvalues, then
we see more stable evolutions than a system which does

This is because the constraints are damped if the eig
values are negative and are propagating away if the eig
values are purely imaginary. We found heuristically that t
system becomes more stable~accurate! when the amplifica-
tion factors,L ’s, satisfy as much the above criteria and/or
large magnitude ofL ’s away from zeros.~Examples in@11#
are of the plane wave propagation in the Maxwell syst
and the Ashtekar system.! We remark that this eigenvalu
analysis requires that we fix a particular background me
for the situation we consider, since the amplification fac
depends on the dynamical variablesua.

The above features of the constraint propagation,
~2.2!, will change when we modify the original evolutio
equations. Suppose we adjust the RHS of Eq.~2.1! by adding
the constraints,

] tu
a5 f ~ua,] iu

a, . . . !1F~Cr,] iC
r, . . . !, ~2.4!

then Eq.~2.2! will also be modified as

] tC
r5g~Cr,] iC

r, . . . !1G~Cr,] iC
r, . . . !. ~2.5!

By taking the characteristic speed of Eq.~2.5! and the am-
plification factor of the Fourier transformed equation~2.5!,
the predicted stability of the system~2.4! becomes different
to that of the original system, Eq.~2.2!.

Our proposed ‘‘adjusted system’’ is obtained by finding
certain functional form ofF(Cr,] iC

r, . . . ) in Eq.~2.4! so as
to get a more stable prediction in the analysis of the eig
valuesl l andL i . In the following discussion, we show tw
eigenvaluesl l and L i for each ADM system. We remark
again that the term ‘‘characteristic speed’’ here is not for
dynamical equation~2.1!, but for the constraint propagatio
equations~2.2!.

III. STANDARD ADM SYSTEM

A. Standard ADM system and its constraint propagation

We start by analyzing the standard ADM system. B
‘‘standard ADM’’ we mean here the most widely adopte
system, due to York@12#, with evolution equations
9-2
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] tg i j 522aKi j 1¹ ib j1¹ jb i , ~3.1!

] tKi j 5aRi j
(3)1aKKi j 22aKikKk

j2¹ i¹ ja

1~¹ ib
k!Kk j1~¹ jb

k!Kki1bk¹kKi j , ~3.2!

and constraint equations

HªR(3)1K22Ki j K
i j , ~3.3!

Mi ª¹ jK
j
i2¹ iK, ~3.4!

where (g i j ,Ki j ) are the induced three-metric and the extr
sic curvature, (a,b i) are the lapse function and the sh
covector,¹ i is the covariant derivative adapted tog i j , and
Ri j

(3) is the three Ricci tensor.
The constraint propagation equations, which are the t

evolution equations of the Hamiltonian constraint~3.3! and
the momentum constraints~3.4!, can be written as

] tH5b j~] jH!22ag i j ~] iMj !12aKH1a~] lgmk!

3~2gmlgk j2gmkg l j !Mj24g i j ~] ja!Mi , ~3.5!

] tMi52~1/2!a~] iH!1b j~] jMi !1aKMi2~] ia!H
2bkg j l ~] ig lk!Mj1~] ibk!g

k jMj . ~3.6!

The simplest derivation of Eqs.~3.5! and ~3.6! is by using
the Bianchi identity, which can be seen in Frittelli@13#.
@Note thatC in @13# is half our H, and we have correcte
typos in Eq.~11! in @13#.#

The characteristic part of Eqs.~3.5! and ~3.6! can be ex-
tracted as

] tS H
Mi

D .S b l 22ag i l

2~1/2!ad i
l b ld j

i
D ] l S H

Mj
D 5..Pl] l S H

Mj
D ,

~3.7!

which indicates that the characteristic speeds~eigenvalues of
the characteristic matrix,Pl) are

l l5~b l ,b l ,b l6aAg l l ! ~no sum overl !. ~3.8!

Since rank(Pl2b l)52, the matrixPl is diagonalizable, but
not the symmetric.

Simply by inserting~1/2! in front of H above, we obtain

] tS H/2

Mi
D .S b l 2ag i l

2ad i
l b ld j

i
D ] l S H/2

Mj
D ; ~3.9!

the characteristic matrix becomes symmetric~with the same
eigenvalues!. This is a feature of the standard ADM syste
that was pointed out by Frittelli.~Actually H/2 is the form
originally given by the Lagrangian formulation.!

B. Amplification factors on the Minkowskii background

As a first example, we consider the perturbation
Minkowskii spacetime:a51, b i50, g i j 5d i j . By taking
the linear order contribution, Eqs.~3.5! and~3.6! are reduced
to
12401
-

e

f

] tS (1)Ĥ
(1)M̂i

D 5S 0 22ik j

2~1/2!ik i 0 D S (1)Ĥ
(1)M̂j

D ~3.10!

in Fourier components. The eigenvalues of the coeffici
matrix of Eq. ~3.10!, which we call amplification factors,
become

L l5~0,0,6 iAk2!, ~3.11!

wherek25kx
21ky

21kz
2 . These factors will be compared wit

others later, but we note that the real parts of all the am
fication factors are zero.

IV. ADJUSTED ADM SYSTEMS

A. Adjustments

Generally, we can write the adjustment terms to Eqs.~3.1!
and~3.2! using Eqs.~3.3! and~3.4! by the following combi-
nations~using up to the first derivative of constraints!:

adjustment term of] tg i j :

1Pi j H1Qk
i j Mk1pk

i j ~DkH!1qi j
kl~DkMl !, ~4.1!

adjustment term of] tKi j :

1Ri j H1Sk
i j Mk1r k

i j ~DkH!1skl
i j ~DkMl !, ~4.2!

whereP,Q,R,S andp,q,r ,s are multipliers~do not confuse
Ri j with the three Ricci curvature that we write asRi j

(3)).
Since this expression is too general, we mention some
stricted cases below.

We remark that our starting system, Eqs.~3.1! and ~3.2!,
is the standard ADMsystem for numerical relativists intro
duced by York@12#. This expression can be obtained fro
the originally formulated canonical expression by ADM@1#,
but in that process the Hamiltonian constraint equation
used to eliminate the three-dimensional Ricci scalar. The
fore thestandard ADMsystem is already adjusted from th
original ADM system. We start our comparison with th
point.

B. Original ADM vs standard ADM

Frittelli’s adjustment analysis@13# can be written in terms
of Eqs.~4.1! and ~4.2!, as

Ri j 5~1/4!~m21!ag i j , ~4.3!

wherem is a constant and set other multipliers in Eqs.~4.1!
and ~4.2! to zero. Herem51 corresponds to the standa
ADM system~no adjustment, sinceRi j 50) andm50 to the
original ADM system~without any adjustment to the canon
cal formulation by the ADM system!.

Keeping the multiplier~4.3! in mind, we here discuss th
case of nonzeroRi j ,Si j

k ~all other multipliers being zero!.
The constraint propagation equations become
9-3
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] tH5b j~] jH!22ag i j ~] iMj !12aKH1a~] lgmk!~2gmlgk j2gmkg l j !Mj24g i j ~] ja!Mi12KRH22Ki j Ri j H
12Kg i j Si j

k Mk22Ki j Sk
i j Mk , ~4.4!

] tMi52~1/2!a~] iH!1b j~] jMi !1aKMi2~] ia!H2bkg j l ~] ig lk!Mj1~] ibk!g
k jMj1gk j~] jRki!H2g jk~] iRjk!H

1Ri
j~] jH!2Rjkg jk~] iH!1g l j ~] jSli

k !Mk2g j l ~] iSjl
k !Mk1Si

k j~] jMk!2g j l Sjl
k ~] iMk!1~] jg

k j!RkiH
1G jk

j Ri
kH2G j i

k Rk
j H2~] ig

jk!RjkH1~] jg
l j !Sli

k Mk1G j l
j Si

klMk2G j i
l Sl

k jMk2~] ig
j l !Sjl

k Mk ; ~4.5!

that is, Eqs.~4.4! and ~4.5! form a first-order system. The principal part can be written as

] tS H
Mi

D .S b l 22ag j l

2~1/2!ad i
l1Ri

l2d i
lRkmgkm b ld i

j1Si
jl 2gmkd i

lSmk
j D ] l S H

Mj
D . ~4.6!
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The general discussion of the hyperbolicity and character
speed of the system~4.6! is hard, so hereafter we restric
ourselves to the case

Ri j 5k1ag i j , Si j
k 5k2bkg i j , ~4.7!

where we recover Eq.~4.3! by choosingk15(m21)/4 and
k250. The eigenvalues of Eq.~4.6! then become

l l5„b l ,b l ,~12k2!b l

6Aa2g l l ~114k1!1~k2b l !2
… ~no sum overl !

~4.8!

and the hyperbolicity of Eq.~4.6! can be classified as~i!
symmetric hyperbolic whenk153/2 andk250, ~ii ! strongly
hyperbolic whena2g l l (114k1)1k2

2(b l)2.0 where k1Þ
21/4, and ~iii ! weakly hyperbolic whena2g l l (114k1)
1k2

2(b l)2>0.
For the case of Eq.~4.7! on a Minkowskii background

metric, the linear order terms of the constraint propagat
equations become

] lS (1)Ĥ
(1)M̂i

D 5S 0 22ik j

2~1/2!~114k1!ik i 0 D S (1)Ĥ
(1)M̂j

D
~4.9!

whose Fourier transform gives the eigenvalues

L l5„0,0,6A2k2~114k1!…. ~4.10!

That is ~two zeros, two purely imaginary! for the standard
ADM system and~four zeros! for the original ADM system.
Therefore, according to our conjecture, the standard AD
system is expected to have better stability than the orig
ADM system.

C. Detweiler’s system

1. Detweiler’s system and its constraint amplification

Detweiler’s modification to the ADM system@14# can be
realized through one choice of the multipliers in Eqs.~4.1!
and ~4.2!. He found that with a particular combination th
12401
ic

n

al

evolution of the energy norm of the constraints,H 21M 2,
can be negative definite when we apply the maximal slic
condition K50. ~We will comment more on his criteria in
Sec. IV C 2.! His adjustment can be written in our notatio
in Eqs.~4.1! and ~4.2! as

Pi j 52La3g i j , ~4.11!

Ri j 5La3~Ki j 2~1/3!Kg i j !, ~4.12!

Si j
k 5La2@3~] ( ia!d j )

k 2~] la!g i j g
kl#, ~4.13!

si j
kl5La3@d ( i

k d j )
l 2~1/3!g i j g

kl#, ~4.14!

everything else zero, whereL is a constant. Detweiler’s ad
justment, Eqs.~4.12!–~4.14!, does not put the constrain
propagation equation in first-order form, so we cannot d
cuss hyperbolicity or the characteristic speed of the c
straints.

For the Minkowskii background spacetime, the adjus
constraint propagation equations with above choice of m
tiplier become

] lS (1)Ĥ
(1)M̂i

D 5S 22Lk2 22ik j

2~1/2!ik i 2~L/2!k2d i
j2~L/6!kikj

D
3S (1)Ĥ

(1)M̂j
D . ~4.15!

The eigenvalues of the Fourier transform are

L l5„2~L/2!k2,2~L/2!k2,2~4L/3!k2

6Ak2@211~4/9!L2k2#…. ~4.16!

This indicates negative real eigenvalues if we choose sm
positiveL.

We confirmed numerically, using perturbation o
Minkowskii spacetime, that Detweiler’s system presents b
ter accuracy than the standard ADM system, but only
small positiveL. See the Appendix.
9-4
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2. Differences with Detweiler’s requirement

We comment here on the differences between Detweil
criteria for stable evolution and ours.

Detweiler calculated theL2 norm of the constraintsCr

over the three-hypersurface and imposed the negative
niteness of its evolution:

Detweiler8s criteria⇔] tE CrCrdV,0, ; nonzeroCr ,

~4.17!

whereCrCr5:GrsCrCs andGrs5diag@1,g i j # for the pair
of Cr5(H,Mi).

Assuming the constraint propagation to be] tĈr5Ar
sĈs

in the Fourier components, the time derivative of theL2
norm can be written as

] t~ĈrĈr!5~Ars1Āsr1] tḠ
rs!ĈrĈ̄s . ~4.18!

Together with the fact that theL2 norm is preserved by
Fourier transform, we can say, for the case of astatic back-
ground metric,

Detweiler8s criteria⇔eigenvalues

of ~A1A†! are all negative; k. ~4.19!

On the other hand,

our criteria⇔eigenvalues ofAare all negative; k.
~4.20!

Therefore for the case of a static background, Detweile
criterion is stronger than ours. For example, the matrix

A5S 21 a

0 21D wherea is constant, ~4.21!

for the evolution system (Ĉ1 ,Ĉ2), satisfies our criterion bu
not Detweiler’s whenuau>A2. This matrix, however, gives
asymptotical decay for (Ĉ1 ,Ĉ2). Therefore we may say tha
Detweiler requires monotonic decay of the constraints, wh
we assume only asymptotical decay.

We remark that Detweiler’s truncations on higher-ord
terms in theC norm corresponds to our perturbational ana
sis; both are based on the idea that the deviations from
constraint surface~the errors expressed as a nonzero c
straint value! are initially small.

D. Another possible adjustment

1. Simplified Detweiler system

Similar to Detweiler’s equation~4.11!, we next consider
only the adjustment

Pi j 5k0ag i j , ~4.22!

all other multipliers being zero in Eqs.~4.1! and ~4.2!.
On the Minkowskii background, the Fourier componen

of the constraint propagation equation can be written as
12401
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] tS (1)Ĥ
(1)M̂i

D 5S 2k0k2 22ik j

2~1/2!ik i 0 D S (1)Ĥ
(1)M̂j

D ,

~4.23!

and the eigenvalues of the coefficient matrix are

L l5„0,0,k0k26Ak2~211k0
2k2!…. ~4.24!

That is, the amplification factors become~0, 0, two negative
real values! for the choice of relatively small negativek0.

We also confirmed that this system works as desired.
give a numerical example in the Appendix.

2. Adjusting the Hamiltonian constraint system

Our final example is a combination of the one in Se
IV B and that above, that is,

Pi j 5k0ag i j , ~4.25!

Ri j 5k1ag i j , ~4.26!

all other multipliers being zero in Eqs.~4.1! and~4.2!. Simi-
lar to the previous one, the Fourier-transformed constra
propagation equation is

] tS (1)Ĥ
(1)M̂i

D 5S 2k0k2 22ik i

2~1/2!ik i22k1ik i 0 D S (1)Ĥ
(1)M̂j

D ,

~4.27!

which gives the eigenvalues

L l5„0,0,k0k26Ak2~211k0k224k1!…. ~4.28!

We can expect a similar asymptotical stable evolution
choosingk0 andk1, so as to make the eigenvalues~0, 0, two
negative real values!.

V. CONFORMAL-TRACELESS ADM SYSTEMS

The so-called ‘‘conformally decoupled traceless AD
formulation’’ was first developed by the Kyoto group@15#.
After the rediscovery that this formulation is more stab
than the standard ADM formula by Baumgarte and Shap
@16#, several groups began to use the CT-ADM formulati
for their numerical codes and reported an advantage in
bility @17,18#. Along with this conformal decomposition
several hyperbolic formulations have also been propo
@19–21#, but they have not yet been applied to numeric
simulations.

However, it is not yet clear why the CT-ADM formula
tion gives better stability than the ADM formulation. Th
Potsdam group@22# found that the eigenvalues of the CT
ADM evolution equationshave fewer ‘‘zero eigenvalues’
than those of the ADM system, and they conjectured t
instability can be caused by ‘‘zero eigenvalues’’ that viola
the ‘‘gauge mode.’’ Miller@23# applied von Neumann’s sta
bility analysis to plane wave propagation and reported t
the CT-ADM formulation has a wider range of paramete
that give us stable evolution. These studies provide sup
for the CT-ADM formulation in some sense, but on th
9-5
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other hand, it is also shown that an example of an ill-po
solution in the CT-ADM formulation exists~as well in the
ADM formulation! @24#.

Here, we apply our constraint propagation analysis to
CT-ADM system.

A. CT-ADM equations

Since one reported feature of the CT-ADM formulation
the use of the momentum constraint on the RHS of the e
lution equations@22#, we here present the set of CT-ADM
equations carefully for such a replacement of the constr
terms.

The widely used notation@15,16# is to use the variables
(f,g̃ i j ,K,Ãi j ,G̃ i) instead of the standard ADM variable
(g i j ,Ki j ), where

g̃ i j 5e24fg i j , ~5.1!

Ãi j 5e24f~Ki j 2~1/3!g i j K !, ~5.2!

G̃ i5G̃ jk
i g̃ jk, ~5.3!

and we impose detg̃ i j 51 during the evolutions. The set o
evolution equations becomes

~] t2Lb!f5~21/6!aK, ~5.4!

~] t2Lb!g̃ i j 522aÃi j , ~5.5!

~] t2Lb!K5a~12k1!R(3)1a~12k1!K21ak1Ãi j Ã
i j

1~1/3!ak1K22g i j ~¹ i¹ ja!, ~5.6!

~] t2Lb!Ãi j 52e24f~¹ i¹ ja!TF1e24faRi j
(3)

2e24fa~1/3!g i j ~12k3!R(3)

1a~KÃi j 22ÃikÃj
k!1e24fa~1/3!g i j k3

3@2ÃklÃ
kl1~2/3!K2#, ~5.7!
12401
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] tG̃
i522~] ja!Ãi j 2~4/3!k2a~] jK !g̃ i j

112k2aÃj i ~] jf!22aÃk
j ~] j g̃

ik!

22k2aG̃ l j
k Ãk

j g̃ i l 22~12k2!a~] j Ãkl!g̃
ikg̃ j l

12a~12k2!Ãj
i G̃ j2] j„b

k]kg̃
i j 2g̃k j~]kb

i !

2g̃ki~]kb
j !1~2/3!g̃ i j ~]kb

k!…, ~5.8!

whereLb is the Lie derivative along the shift vectorb i , and
R(3) is the three-metric scalar curvature. Here we introduc
parametersk which show where we replace the terms wi
constraints. For example (k1 ,k2 ,k3)5(0,0,0) is the case o
no replacement@the standard ADM equations expressed u
ing Eqs.~5.1!–~5.3!#, while Baumgarte and Shapiro@16# use
(k1 ,k2 ,k3)5(1,1,0).

The constraint equations in the CT-ADM system can
expressed as

H5e24fR̃(3)28e24fg̃ i j ~] i] jf!28e24fg̃ i j ~] if!~] jf!

18e24f~] if!G̃ i1~2/3!K22Ãi j Ã
i j , ~5.9!

Mi5~] j Ãki!g̃
k j2~2/3!~] iK !2Ãj i G̃

j16~] jf!Ãi
j2G̃ j i

k Ãk
j ,

~5.10!

G i5G̃ i1] j g̃
j i . ~5.11!

HereH,M are the Hamiltonian and momentum constrain
and the third one,G, is a consistency relation due to th
algebraic definition of Eq.~5.3!.
g

B. Constraint propagation equations of the CT-ADM formulation

Similar to the ADM cases, we here show the propagation equations for Eqs.~5.9!–~5.11!. The expressions are given usin
Eqs. ~3.5! and ~3.6!, but we have to be careful to keep using the new variableG i wherever it appears. Following@16#, we

expressR̃i j
(3) as

R̃i j
(3)52~1/2!g̃ lm~] l]mg̃ i j !1~1/2!g̃ki] j G̃

k1~1/2!g̃k j] i G̃
k1~1/2!G̃kG̃ ( i j )k1g̃ lmG̃ l i

k G̃ jkm1g̃ lmG̃ l j
k G̃ ikm1g̃ lmG̃ im

k G̃kl j .
~5.12!

The constraint propagation equations, then, are obtained by straightforward calculations as

] tH5b j~] jH!22ae24fg̃ i j ~] iMj !12aKH22ae24f~] i g̃
i j !Mj24ae24f~] if!g̃ i j Mj24e24fg̃ i j ~] ja!Mi

12k2e24f~] ia!g̃ i j Mj12k2e24fa~] i g̃
i j !Mj12k2e24fag̃ i j ~] iMj !116k2ae24f~] if!g̃ i j Mj2~4/3!k1aKH,

~5.13!
9-6
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] tMi52~1/2!a~] iH!1b j~] jMi !1aKMi2~] ia!H24b j~] if!Mj1bkg̃ j l ~] i g̃ lk!Mj1~] ibk!e
24fg̃k jMj

1~1/3!~2k11k3!~] ia!H1~1/3!~2k11k3!a~] iH!22k2aÃi
jMj2~1/3!k3aG j g̃ j i H12k3a~] if!H, ~5.14!

] tG i52Ãj
i G j12k2ag̃ i j Mj . ~5.15!

These form a first-order system, and the characteristic part can be extracted as

] tS H
Mi

G i
D >S b l 2~211k2!ag l j 0

@~2/3!k11~1/3!k32~1/2!#ad i
l b ld i

j 0

0 0 0
D ] lS H

Mj

G j
D , ~5.16!

whose characteristic speeds are

l l5„0,0,0,b l ,b l ,b l6aAg l l ~12k2!@12~4/3!k12~2/3!k3#… ~no sum overl !. ~5.17!

By analyzing the reality of the eigenvalues, the diagonalizability of the characteristic matrix, and the possibility of a sym
characteristic matrix, we can classify the hyperbolicity of the system~5.16! as

weakly hyperbolic⇔~12k2!@12~4/3!k12~2/3!k3#>0, ~5.18!

strongly hyperbolic⇔~12k2!5@12~4/3!k12~2/3!k3#50,

or ~12k2!@12~4/3!k12~2/3!k3#.0, ~5.19!

symmetric hyperbolic⇔~211k2!5@12~4/3!k12~2/3!k3#. ~5.20!

That is, for the nonadjusted system (k1 ,k2 ,k3)5(0,0,0), constraint propagation forms a strongly hyperbolic system, while
Baumgarte-Shapiro form gives only weak hyperbolicity.~We note that the first-order version of the CT-ADM system
Frittelli and Reula@20# has also well-posed constraint propagation equations.!

C. Amplification factors on a Minkowskii background

For a Minkowskii background, the constraint propagation equations at linear order become

] tS (1)Ĥ
(1)M̂i

(1)Ĝi
D 5S 0 2~k221!ik j 0

@~2/3!k11~1/3!k32~1/2!# ik i 0 0

0 2k2d i j 0
D S (1)Ĥ

(1)M̂j

(1)Ĝj
D . ~5.21!

The constraint amplification factor becomes

L l5„0,0,0,0,0,6A2k2~12k2!@12~4/3!k12~2/3!k3#…. ~5.22!
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That is,L l are either zero, purely imaginary, or6 real num-
bers. For the nonadjusted system they are zero and pu
imaginary @that is, the same as Eq.~3.11!#, while the
Baumgarte-Shapiro form gives us all zero eigenvalu
Therefore, from our point of view, these two are not ve
different in their characterization of constraint propagatio

VI. CONCLUDING REMARKS

We have reviewed ADM systems from the point of vie
of the adjustment of the dynamical equations by constr
terms. We have shown that characteristic speeds and am
fication factors of the constraint propagation change due
their adjustments. We compared the equations for the AD
12401
ely

s.

t
li-

to
,

adjusted ADM, and conformal traceless ADM~CT-ADM!
systems, and tried to find a system that is robust for violat
of the constraints, which we can call an ‘‘asymptotica
constrained’’ system.

We conjectured that if the amplification factors~eigenval-
ues of the coefficient matrix of the Fourier-transformed co
straint propagation equations! are negative or purely imagi
nary, then the system has better asymptotically constra
features than a system where they are not. According to
conjecture, the standard ADM system is expected to h
better stability than the original ADM system~no growing
mode in amplification factors!. Detweiler’s modified ADM
system, which is one particular choice of adjustment, d
nitely has good properties in that there are no growing mo
9-7
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in the amplification factors. We also showed that this can
obtained by a simpler choice of adjustment multipliers.

We also studied the CT-ADM system which is popu
with numerical relativists nowadays. However, from o
point of view, we do not see any particular advantages
the CT-ADM system over the standard ADM system.

The reader might ask why we can break the time-reve
invariant feature of the evolution equations by a particu

FIG. 1. Demonstration of the Detweiler’s modified ADM sy
tem on Minkowskii background spacetime~the system of Sec
IV C!. The L2 norm of the constraints is plotted as a function
time. Artificial error was added att50.25. HereL is the parameter
used in Eqs.~4.12!–~4.14!. We see that the evolution is asympto
cally constrained for smallL.0.

FIG. 2. Demonstration of the simplified Detweiler’s modifie
ADM system on Minkowskii background spacetime~the system of
Sec. IV D 1!. For comparison with Fig. 1, we setL52k0, where
k0 is the parameter used in Eq.~4.22!. We see the evolution is
asymptotically constrained for smallL.0.
12401
e

r

al
r

choice of adjusting multipliers against the fact that the ‘‘Ei
stein equations’’ are time-reversal invariant. This quest
can be answered by the following. If we take a time-rever
transformation (] t→2] t), the Hamiltonian constraint and
the evolution equations ofKi j keep their signatures, while
the momentum constraints and the evolution equations ofg i j
change their signatures. Therefore if we adjust theg i j equa-
tions using the Hamiltonian constraint and/orKi j equations
using the momentum constraints~supposing the multiplier
has1 parity!, then we can break the time-reversal invaria
feature of the ‘‘ADM equations.’’ In fact, the examples w
obtained all obey this rule. The CT-ADM formulation keep
its signature against the adjustments we made, so tha
cannot find any additional advantage from this analysis.

Considering the constraint propagation equations is a k
of substitutional approach for numerical integrations of t
dynamical equations. However, this might be one of
main directions for our future research, as Friedrich a
Nagy @25# impose a zero speed of the constraint propaga
as the first principle when they considered the initial boun
ary value problem of the Einstein equations@26#.

We are now applying our discussion to more gene
spacetimes and trying to find guidelines for choosing app
priate gauge conditions from analysis of the constra
propagation equations. These efforts will be reported e
where@27#.
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APPENDIX: NUMERICAL DEMONSTRATIONS OF
ADJUSTED ADM SYSTEMS

We here show two numerical demonstrations of the
justed ADM systems that were discussed in Sec. IV C~Det-
weiler’s modified ADM system! and Sec. IV D 1~simplified
version!.

Detweiler’s adjustment, Eqs.~4.12!–~4.14!, can be pa-
rametrized by a constantL, and our prediction from the am
plification factor on the Minkowskii background is that th
system will be asymptotically constrained for small positi
L. Figure 1 is a demonstration of this system. We evolv
Minkowskii spacetime numerically in a plane-symmetr
spacetime and added artificial error in the middle of the e
lution. Our numerical integration uses the Brailovska
scheme, which was described in detail in our previous pa
@6#. The code passes convergence tests and the plots ar
401 gridpoints in the rangex5@0,10#, and we fix the time
grid Dt50.2Dx. The error was introduced as a pinpoi
kick, in the form ofDgyy51023 at x55.0 andt50.25. We
monitor how theL2 norm of the constraints (H 21M x

2)
9-8
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behaves. From Fig. 1, we see that a small positiveL reduces
theL2 norm in time, which is the asymptotically constrain
feature we expected. The case of slightly largerL will make
the system unstable. This is the same feature we have se
the numerical demonstration of thel system or adjusted
Maxwell system and Ashtekar system@11#; for that case the
upper bound of the multiplier can be explained by vio
l

y,

.

n-

12401
in

-

tion of the Courant-Friedrich-Lewy condition, while in thi
system we cannot calculate the exact characteristics sinc
system is not first order.

Similarly, we plotted in Fig. 2 the case of a simplifie
version~the system of Sec. IV D 1!. We see the desired fea
ture again by changing the parameterk0 that appears in Eq
~4.22!.
ill

-
hys.
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