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Hyperbolic formulations of the equations of motion are essential technique for proving
the well-posedness of the Cauchy problem of a system, and are also helpful for implement-
ing stable long time evolution in numerical applications. We, here, present three kinds
of hyperbolic systems in the Ashtekar formulation of general relativity for Lorentzian
vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II) diagonalizable hyper-
bolic, and (III) symmetric hyperbolic systems, with each their eigenvalues. We demon-
strate that Ashtekar’s original equations form a weakly hyperbolic system. We discuss
how gauge conditions and reality conditions are constrained during each step toward
constructing a symmetric hyperbolic system.

1. Introduction

Developing hyperbolic formulations of the Einstein equation is growing into an im-

portant research areas in general relativity.1 These formulations are used in the

analytic proof of the existence, uniqueness and stability (well-posedness) of the

solutions of the Einstein equation.2 So far, several first order hyperbolic formula-

tions have been proposed; some of them are flux conservative,3 some of them are

symmetrizable or symmetric hyperbolic systems.4–11 The recent interest in hyper-

bolic formulations arises from their application to numerical relativity. One of the

most useful features is the existence of characteristic speeds in hyperbolic systems.

We expect more stable evolutions and expect implements boundary conditions in

their numerical simulation. Some numerical tests have been reported along this

direction.12–14
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Ashtekar’s formulation of general relativity15 has many advantages. By using his

special pair of variables, the constraint equations which appear in the theory become

low-order polynomials, and the theory has the correct form for gauge theoretical

interpretation. These features suggest the possibility for developing a nonpertur-

bative quantum description of gravity. Classical applications of the Ashtekar’s for-

mulation have also been discussed by several authors. For example, we16 discussed

the reality conditions for the metric and triad and proposed a new set of variables

for Lorentzian dynamics. We17 also showed an example of passing a degenerate

point in 3-space by locally relaxing the reality condition. Although there is always

a problem of reality conditions in applying Ashtekar formulation to dynamics, we

think that this new approach is quite attractive, and broadens our possibilities to

attack dynamical issues.

A symmetric hyperbolic formulation of Ashtekar’s variables was first developed

by Iriondo, Leguizamón and Reula (ILR).18 They use anti-Hermiticity of the prin-

cipal symbol for defining their symmetric system. Unfortunately, in their first short

paper,18 they did not discuss the consistency of their system with the reality condi-

tions, which are crucial in the study of the Lorentzian dynamics using the Ashtekar

variables. We considered this point in Ref. 19, and found that there are strict

reality constraints (alternatively they can be interpreted as gauge conditions). Note

that we primarily use the Hermiticity of the characteristic matrix to define a sym-

metric hyperbolic system, which we think the more conventional notation. The

difference between these definitions of symmetric hyperbolicity is commented in

Appendix C.

The dynamical equations in the Ashtekar formulation of general relativity are

themselves quite close to providing a hyperbolic formulation. As we will show in

Sec. 4, the original set of equations of motion is a first-order (weakly) hyperbolic

system. One of the purposes of this paper is to develop several hyperbolic sys-

tems based on the Ashtekar formulation for Lorentzian vacuum spacetime, and

discuss how gauge conditions and reality conditions are to be implemented. We

categorize hyperbolic systems into three classes: (I) weakly hyperbolic (system

has all real eigenvalues), (II) diagonalizable hyperbolic (characteristic matrix is

diagonalizable), and (III) symmetric hyperbolic system. These three classes have

the relation (III) ∈ (II) ∈ (I), and are defined in detail in Sec. 2. As far as we know,

only a symmetric hyperbolic systems provide a fully well-posed initial value for-

mulation of partial differential equations systems. However, there are two reasons

to consider the two other classes of hyperbolic systems, (I) and (II). First, as we

found in our previous short paper,19 the symmetric hyperbolic system we obtained

using Ashtekar’s variables has strict restrictions on the gauge conditions, while the

original Ashtekar equations constitute a weakly hyperbolic system. We are inter-

ested in these differences, and show how additional constraints appear during the

steps toward constructing a symmetric hyperbolic system. Second, many numerical

experiments show that there are several advantages if we apply a certain form of
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hyperbolic formulation. Therefore, we think that presenting these three hyperbolic

systems is valuable to stimulate the studies in this field. To aid in possibly applying

these systems in numerical applications, we present characteristic speeds of each

system we construct.

ILR, in their second paper,20 expand their previous discussion18 concerning

reality conditions during evolution. They demand that the metric is real-valued

(metric reality condition), and use the freedom of internal rotation during the time

evolution to set up their soldering form so that it forms an anti-Hermitian prin-

ciple symbol, which is their basis to characterize the system symmetric. However,

we adopt the view that re-defining inner product of the fundamental variables in-

troduces additional complications. In our procedure, we first fix the inner product

to construct a symmetric hyperbolic system. As we will describe in Sec. 5, our

symmetric hyperbolic system then requires a reality condition on the triad (triad

reality condition), and in order to be consistent with its secondary condition we

need to impose further gauge conditions. The lack of these constraints in ILR, we

believe, comes from their incomplete treatment of a new gauge freedom, so-called

triad lapse Aa0 (discussed in Sec. 3), for dynamical evolutions in the Ashtekar for-

mulation. In Appendix C, we show that ILR’s proposal to use internal rotation

to re-set triad reality does not work if we adopt our conventional definition of

hyperbolicity.

The layout of this paper is as follows: In Sec. 2, we define the three kinds of

hyperbolic systems which are considered in this paper. In Sec. 3, we briefly review

Ashtekar’s formulation and the way of handling reality conditions. The following

Secs. 4 and 5 are devoted to constructing hyperbolic systems. Summary and dis-

cussion are in Sec. 6. Appendix A supplements our proof of the uniqueness of our

symmetric hyperbolic system. Appendices B and C are comments on ILR’s treat-

ment of the reality conditions.

2. Three Definitions of Hyperbolic Systems

We start by defining the hyperbolic systems which are used in this paper.

Definition 2.1. We assume a certain set of (complex) variables uα (α = 1, . . . , n)

forms a first-order (quasi-linear) partial differential equation system,

∂tuα = J lβα(u)∂luβ +Kα(u) , (2.1)

where J (the characteristic matrix) and K are functions of u but do not include

any derivatives of u. We say that the system (2.1) is:

(I) weakly hyperbolic, if all the eigenvalues of the characteristic matrix are real.21

(II) diagonalizable hyperbolic, if the characteristic matrix is diagonalizable and

has all real eigenvalues.22

(III) symmetric hyperbolic, if the characteristic matrix is a Hermitian matrix.7,23
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Here we state each definition more concretely. We treat J lβα as a n × n matrix

when the l-index is fixed. The following properties of these matrices are for every

basis of l-index.

We say λl is an eigenvalue of J lβα when the characteristic equation, det(J lβα−
λlδβα) = 0, is satisfied. The eigenvectors, pα, are given by solving J lαβp

lβ = λlplα.

The weakly hyperbolic system, (I), is obtained when J l has real spectrum for

every l, that is, when this characteristic equation can be divided by n real first-

degree factors. For any single equation system, the Cauchy problem under weak

hyperbolicity is not, in general, C∞ well-posed, while it is solvable in the class of

the real analytic functions and in some suitable Gevrey classes, provided that the

coefficients of the principal part are sufficiently smooth.

The diagonalizable hyperbolic system, (II), is obtained when J is real

diagonalizable, that is, when there exists complex regular matrix P l such that

((P l)−1)αγJ
lγ
δP

lδ
β is real diagonal matrix for every l. We can construct char-

acteristic curves if the system is in this class. This system is often used as a model

in the studies of well-posedness in coupled linear hyperbolic system. (This is the

same as strongly hyperbolic system as defined by some authors,24,25 but we use

the word diagonalizable since there exist other definitions for strongly hyperbolic

systems.27)

In order to define the symmetric hyperbolic system, (III), we need to declare

an inner product 〈u|u〉 to judge whether J lβα is Hermitian. In other words, we are

required to define the way of lowering the index α of uα. We say J lβα is Hermitian

with respect to this index rule, when J lβα = J̄ lαβ for every l, where the overhead

bar denotes complex conjugate.

Any Hermitian matrix is real diagonalizable, so that (III) ∈ (II) ∈ (I). There are

other definitions of hyperbolicity; such as strictly hyperbolic or effectively hyperbolic,

if all eigenvalues of the characteristic matrix are real and distinct (and nonzero for

the latter). These definitions are stronger than (II), but exhibit no inclusion relation

with (III). In this paper, however, we only consider (I)–(III) above.

The symmetric system gives us the energy integral inequalities, which are the

primary tools for studying well-posedness of the system. As was discussed by

Geroch,26 most physical systems can be expressed as symmetric hyperbolic systems.

3. Ashtekar Formulation

3.1. Variables and equations

The key feature of Ashtekar’s formulation of general relativity15 is the introduction

of a self-dual connection as one of the basic dynamical variables. Let us write the

metric gµν using the tetrad EIµ, with EIµ satisfying the gauge condition E0
a = 0.

Define its inverse, EµI , by gµν = EIµE
J
ν ηIJ and EµI := EJν g

µνηIJ , where we use µ,

ν = 0, . . . , 3 and i, j = 1, . . . , 3 as spacetime indices, while I, J = (0), . . . , (3) and a,

b = (1), . . . , (3) are SO(1, 3), SO(3) indices respectively. We raise and lower µ, ν, . . .

by gµν and gµν (the Lorentzian metric); I, J, . . . by ηIJ = diag(−1, 1, 1, 1) and ηIJ ;
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i, j, . . . by γij and γij (the 3-metric); a, b, . . . by δab and δab. We also use volume

forms εabc: εabcε
abc = 3!. We define SO(3, C) self-dual and antiself-dual connections

±Aaµ := ω0a
µ ∓

(
i

2

)
εabcω

bc
µ , (3.1)

where ωIJµ is a spin connection 1-form (Ricci connection), ωIJµ := EIν∇µEJν .
Ashtekar’s plan is to use only a self-dual part of the connection +Aaµ and to use its

spatial part +Aai as a dynamical variable. Hereafter, we simply denote +Aaµ as Aaµ.

The lapse function, N , and shift vector, N i, both of which we treat as real-

valued functions, are expressed as Eµ0 = (1/N,−N i/N). This allows us to think

of Eµ0 as a normal vector field to Σ spanned by the condition t = x0 = const.,

which plays the same role as that of Arnowitt–Deser–Misner (ADM) formulation.

Ashtekar treated the set (Ẽia, Aai ) as basic dynamical variables, where Ẽia is an

inverse of the densitized triad defined by

Ẽia := eEia , (3.2)

where e := detEai is a density. This pair forms the canonical set.

In the case of pure gravitational spacetime, the Hilbert action takes the form

S =

∫
d4x

[(
∂tAai )Ẽia +

(
i

2

)
˜
NẼiaẼ

j
bF

c
ijε

ab
c − e2Λ

˜
N −N iF aijẼ

j
a +Aa0DiẼia

]
,

(3.3)

where
˜
N := e−1N , F aµν := (dAa)µν − (i/2)εabc(Ab ∧ Ac)µν = ∂µAaν − ∂νAaµ −

iεabcAbµAcν is the curvature 2-form, Λ is the cosmological constant, DiẼja :=

∂iẼ
j
a − iεab

cAbi Ẽjc , and e2 = det Ẽia = (detEai )2 is defined to be det Ẽia =

(1/6)εabc
˜
εijkẼ

i
aẼ

j
b Ẽ

k
c , where εijk := εabcE

a
i E

b
jE

c
k and

˜
εijk := e−1εijk [When

(i, j, k) = (1, 2, 3), we have εijk = e,
˜
εijk = 1, εijk = e−1, and ε̃ijk = 1.].

Varying the action with respect to the non-dynamical variables
˜
N , N i and Aa0

yields the constraint equations,

CH :=

(
i

2

)
εabcẼ

i
aẼ

j
bF

c
ij − Λ det Ẽ ≈ 0 , (3.4)

CMi := −F aijẼja ≈ 0 , (3.5)

CGa := DiẼia ≈ 0 . (3.6)

The equations of motion for the dynamical variables (Ẽia and Aai ) are

∂tẼ
i
a = −iDj

(
εcba

˜
NẼjc Ẽ

i
b

)
+ 2Dj(N [jẼi]a ) + iAb0εabcẼic , (3.7)

∂tAai = −iεabc
˜
NẼjbF

c
ij +N jF aji +DiAa0 + Λ

˜
NẼai , (3.8)

where DjXji
a := ∂jX

ji
a − iεabcAbjXji

c , for Xij
a +Xji

a = 0.
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In order to construct metric variables from the variables (Ẽia,Aai ,
˜
N,N i), we

first prepare tetrad EµI as Eµ0 =
(
1/e

˜
N,−N i/e

˜
N
)

and Eµa = (0, Ẽia/e). Using

them, we obtain metric gµν such that

gµν := EµI E
ν
Jη

IJ . (3.9)

3.2. Reality conditions

The metric (3.9), in general, is not real-valued in the Ashtekar formulation. To

ensure that the metric is real-valued, we need to impose real lapse and shift vectors

together with two conditions (the metric reality condition);

Im(ẼiaẼ
ja) = 0 , (3.10)

Re
(
εabcẼka Ẽ

(i
b DkẼj)c

)
= 0 , (3.11)

where the latter comes from the secondary condition of reality of the metric

Im{∂t(ẼiaẼja)} = 0,28 and we assume det Ẽ > 0 (see Ref. 16). These metric reality

conditions, (3.10) and (3.11), are automatically preserved during the evolution if

the variables satisfy the conditions on the initial data.28,16

For later convenience, we also prepare stronger reality conditions. These condi-

tions are

Im(Ẽia) = 0 , and (3.12)

Im(∂tẼ
i
a) = 0 , (3.13)

and we call them the “primary triad reality condition” and the “secondary triad

reality condition,” respectively. Using the equations of motion of Ẽia, the gauge

constraint (3.4)–(3.6), the metric reality conditions (3.10), (3.11) and the primary

condition (3.12), we see that (3.13) is equivalent to16

Re(Aa0) = ∂i(
˜
N)Ẽia +

1

2e
Ebi

˜
NẼja∂jẼ

i
b +N i Re(Aai ) , (3.14)

or with undensitized variables,

Re(Aa0) = ∂i(N)Eia +N i Re(Aai ) . (3.15)

From this expression we see that the secondary triad reality condition restricts the

three components of “triad lapse” vector Aa0. Therefore (3.14) is not a restriction

on the dynamical variables (Ẽia and Aai ) but on the slicing, which we should impose

on each hypersurface. Thus the secondary triad reality condition does not restrict

the dynamical variables any further than the secondary metric condition does.

Throughout this paper, we basically impose metric reality condition. We assume

that initial data of (Ẽia,Aai ) for evolution are solved so as to satisfy all three con-

straint equations and metric reality condition (3.10) and (3.11). Practically, this is

obtained, for example, by solving ADM constraints and by transforming a set of

initial data to Ashtekar’s notation.



February 28, 2000 16:35 WSPC/142-IJMPD 0070

Constructing Hyperbolic Systems in the Ashtekar Formulation of General Relativity 19

3.3. Characteristic matrix

We shall see how the definitions of hyperbolic systems in Sec. 2 can be applied

for Ashtekar’s equations of motion (3.7) and (3.8). Since both dynamical variables,

Ẽia and Aai , have 9 components each (spatial index: i = 1, 2, 3 and SO(3) index:

a = (1), (2), (3)), the combined set of variables, uα = (Ẽia,Aai ), has 18 components.

Ashtekar’s formulation itself is in the first-order (quasilinear) form in the sense of

(2.1), but is not in a symmetric hyperbolic form.

We start by writing the principal part of the Ashtekar’s evolution equations as

∂t

[
Ẽia

Aai

]
∼=
[
Ala

bi
j Blab

ij

Clabij Dla
bi
j

]
∂l

[
Ẽjb

Abj

]
, (3.16)

where ∼= means that we have extracted only the terms which appear in the prin-

cipal part of the system. We name these components as A, B, C and D for later

convenience.

The characteristic equation becomes

det

(
Ala

bi
j − λlδbaδij Blab

ij

Clabij Dla
bi
j − λlδab δ

j
i

)
= 0 . (3.17)

If Blab
ij and Clabij vanish, then the characteristic matrix is diagonalizable if A and

D are diagonalizable, since the spectrum of the characteristic matrix is composed

of those of A and D. The eigenvectors for every l-index,
(
plia, q

la
i

)
, are given by(

Ala
bi
j Blab

ij

Clabij Dla
bi
j

)(
pljb

qlbj

)
= λl

(
plia

qlai

)
for every l . (3.18)

The lowering rule for the α of uα follows those of the spacetime or internal

indices. The corresponding inner product takes the form 〈u|u〉 := uαū
α. According

to this rule, we say the characteristic matrix is a Hermitian when

0 = Alabij − Ālbaji , (3.19)

0 = Dlabij − D̄lbaji , (3.20)

0 = Blabij − C̄lbaji . (3.21)

4. Constructing Hyperbolic Systems with Original

Equations of Motion

In this section, we consider which form of hyperbolicity applies to the original

equations of motion, (3.7) and (3.8), under the metric reality condition (Sec. 4.1)

or under the triad reality condition (Sec. 4.2).
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4.1. Under metric reality condition (system Ia and IIa)

As the first approach, we take the equations of motion (3.7) and (3.8) with metric

reality conditions (3.10) and (3.11). The principal term of (3.7) and (3.8) become

∂tẼ
i
a = −iDj(εcba

˜
NẼjc Ẽ

i
b) + 2Dj

(
N [jẼi]a

)
+ iAb0εabcẼic

∼= −iεcba
˜
N(∂jẼ

j
c )Ẽib − iεcba

˜
NẼjc (∂jẼ

i
b) +Dj(N jẼia)−Dj(N iẼja)

∼=
[
− iεbca

˜
NδljẼ

i
c − iεcba

˜
NẼlcδ

i
j +N lδijδ

b
a −N iδljδ

b
a

]
(∂lẼ

j
b ) ,

∂tAai = −iεabc
˜
NẼjbF

c
ij +N jF aji +DiAa0 + Λ

˜
NẼai

∼= −iεabc
˜
NẼjb (∂iAcj − ∂jAci ) +N j(∂jAai − ∂iAaj )

∼=
[

+ iεab
c

˜
NẼjcδ

l
i − iεabc

˜
NẼlcδ

j
i +N lδab δ

j
i −N jδab δ

l
i

]
(∂lAbj) .

The principal terms in the notation of (3.16) become

Alabij = −i
˜
NεabcẼicγ

lj + i
˜
NεabcẼlcγ

ij +N lδabγij −N iδabγlj , (4.1)

Blabij = Clabij = 0 , (4.2)

Dlabij = +i
˜
NεabcẼjcγ

li − i
˜
NεabcẼlcγ

ij +N lδabγij −N jδabγli . (4.3)

We get the 18 eigenvalues of the characteristic matrix, all of which are independent

of the choice of triad:

0 (multiplicity = 6) , N l (4) , N l ±N
√
γll (4 each) ,

where we do not take the sum in γll (and we maintain this notation hereafter

for eigenvalues and related discussions). Therefore we can say that this system is

weakly hyperbolic, of type (I).

We note that this system is not type (II) in general, because this is not diago-

nalizable, for example, when N l = 0. We classify this system as type (I), and call

this system Ia, hereafter.

The necessary and sufficient conditions to make this system diagonalizable,

type (II), are that the gauge conditions

N l 6= 0 nor ±N
√
γll , and γll > 0 , (4.4)

where the last one is the positive definiteness of γll. This can be proved as follows.

Suppose that (4.4) is satisfied. Then 0, N l, N l ±
√
γll are four distinct eigenvalues

and we see rank(J l) = 12, rank(J l −N lI) = 14, rank(J l − (N l ±N
√
γll)I) = 14.

Therefore the characteristic matrix is diagonalizable. Conversely suppose that N l =

0 or N l = ±N
√
γll, then we see the characteristic matrix is not diagonalizable in

each case.
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The components of the characteristic matrix are the same as system Ia, so all

eigenvalues are equivalent with system Ia. We can also show that this system is

not Hermitian hyperbolic. Therefore we classify the system [Ia + (4.4)] to real

diagonalizable hyperbolic, type (II), and call this set as system IIa. However, we

will show in the next section that real diagonalizable hyperbolic system can also

be constructed with less strict gauge conditions by modifying right-hand-side of

equations of motion (system IIb).

4.2. Under triad reality condition (system Ib)

Next, we consider systems of the original equations of motion, (3.7) and (3.8),

with the triad reality condition. Since this reality condition requires the additional

(3.14) or (3.15) as the secondary condition (that is, to preserve the reality of triad

during time evolution), in order to be consistent with this requirement and to

avoid the system becoming second order in fundamental variables, we need to set

∂iN = 0. This fixes the real part of the triad lapse gauge as Re(Aa0) = Re(AaiN i).

We naturally define its imaginary part as Im(Aa0) = Im(AaiN i). Thus the triad

lapse is fixed as Aa0 = AaiN i. This gauge restriction does not affect principal part

of the evolution equation for Ẽia, but requires us to add the term

DiAa0 ∼= ∂iAa0 = ∂i(AajN j) ∼= N j(∂iAaj ) = N jδab δ
l
i(∂lAbj)

to the right-hand-side of the equation of Aai . That is, we need to add N jδab δ
l
i to

Dla
bi
j in (4.3),

Dlabij = iεabc

˜
NẼjcγ

li − iεabc
˜
NẼlcγ

ji +N lδabγji .

The other components of the characteristic matrix remain the same [(4.1) and (4.2)].

We find that the set of eigenvalues of this system is

0 (multiplicity = 3) , N l (7) , N l ±N
√
γll (4 each) .

Therefore the system is again, type (I). This system is not real diagonalizable

becauseDl is not. So we classify this system as type (I) and call this set as system Ib.

We note that this system is not real diagonalizable for any choice of gauge. Therefore

we cannot construct a system of type (II) using the same technique of constructing

system IIa. However, as we will show in the next section, the system becomes

diagonalizable (and symmetric) hyperbolic under the triad reality condition if we

modify the equations of motion.

5. Constructing a Symmetric Hyperbolic System

From the analysis of the previous section, we found that the original set of equa-

tions of motion in the Ashtekar formulation constitute a weakly hyperbolic system,

type (I), or a diagonalizable hyperbolic system, type (II), under appropriate gauge

conditions, but we also found that we could not obtain a symmetric hyperbolic

system, type (III). In this section, we show that type (III) is obtained if we modify
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the equations of motion. We begin by describing our approach without considering

reality conditions, but we will soon show that the triad reality condition is required

for making the characteristic matrix Hermitian.

We first prepare the constraints (3.4)–(3.6) as

CH ∼= iεabcẼ
i
aẼ

j
b∂iAcj = iεdcbẼ

l
dẼ

j
c (∂lAbj)

= −iεbcdẼjc Ẽld(∂lAbj) , (5.1)

CMk = −F akjẼja ∼= −(∂kAaj − ∂jAak)Ẽja

=
[
− δlkẼjb + δjkẼ

l
b

]
(∂lAbj) , (5.2)

CGa = DiẼia ∼= ∂lẼ
l
a . (5.3)

We apply the same technique as used by ILR to modify the equation of motion of

Ẽia and Aai ; by adding the constraints which weakly produce CH ≈ 0, CMk ≈ 0,

and CGa ≈ 0. (Indeed, this technique has also been used for constructing symmetric

hyperbolic systems for the original Einstein equations.9,11) We also assume the triad

lapse Aa0 is

∂iAa0 ∼= T labij∂lẼ
j
b + Slabi

j∂lAbj , (5.4)

where T and S are parameters which do not include derivatives of the fundamental

variables. This assumption is general for our purpose of studying the principal part

of the system.

One natural way to construct a symmetric hyperbolic system is to keep B =

C = 0 and modify the A and D terms in (3.16), so that we modify (3.7) using

CG, and modify (3.8) using CH and CM . That is, we add the following terms to the

equations of motion:

modifying term for ∂tẼ
i
a

= P iabCbG ∼= P ia
b∂jẼ

j
b = (P ia

bδlj)(∂lẼ
j
b ) , (5.5)

modifying term for ∂tAai
= DiAa0 +Qai CH +Ri

jaCMj

∼= T labij∂lẼ
j
b + Slabi

j∂lAbj − iQai εbcdẼjc Ẽld(∂lAbj)

+Ri
ka[−δlkẼjb + δjkẼ

l
b]∂lAbj

∼=
[
Slabi

j − iQai εbcdẼjc Ẽld −RilaẼjb +Ri
jaẼlb

]
(∂lAbj) + T labij∂lẼ

j
b , (5.6)

where P , Q, and R are parameters and will be fixed later. In Appendix A.2, we

show that the modifications to the off-diagonal blocks B and C, i.e. modifying (3.7)

using CH and CM and modify (3.8) using CG, will not affect the final conclusion

at all. Note that we truncated Aa0 in (5.5), while it remains in (5.6), since only
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the derivative of Aa0 effects the principal part of the system. The terms in (3.16)

become

Alabij = −iεbca
˜
NγljẼic − iεcba

˜
NẼlcγ

ij

+N lγijδab −N iγljδab + P iabγlj , (5.7)

Blabij = 0 , (5.8)

Clabij = T labij , (5.9)

Dlabij = iεabc

˜
NẼjcγ

li − iεabc
˜
NẼlcγ

ji

+N lδabγji −N jδabγli + Slabij

− iQaiεbcdẼjc Ẽld −RilaẼjb +RijaẼlb . (5.10)

The condition (3.21) immediately shows T labij = 0. The condition (3.19) is

written as

0 = −iεabc
˜
NγljẼic + iεabc

˜
Nγli ¯̃E

j

c − 2εabc
˜
Nγij Im(Ẽlc)

−N iγljδab +N jγliδab + P iabγlj − P̄ jbaγli := †labij . (5.11)

By contracting †labij , we get Re(εabc †labik γli−2εabc †kabij γij) = 20
˜
N Im(Ẽkc ). This

suggests that we should impose Im(Ẽlc) = 0, in order to get †labij = 0. This means

that the triad reality condition is required for making the characteristic matrix

Hermitian.

5.1. Under triad reality condition (system IIIa)

In this subsection, we assume the triad reality condition hereafter. In order to be

consistent with the secondary triad reality condition (3.15) during time evolution,

and in order to avoid the system becoming second order, we need to specify the

lapse function as ∂iN = 0. This lapse condition reduces to

Re(Aa0) = N i Re(Aai ) , (5.12)

∂i Re(Aa0) ∼= N j∂i Re(Aaj ) . (5.13)

By comparing these with the real and imaginary components of (5.4), i.e.,

∂i Re(Aa0) ∼= Re(Slabi
j)∂l Re(Abj)− Im(Slabi

j)∂l Im(Abj) , (5.14)

∂i Im(Aa0) ∼= Im(Slabi
j)∂l Re(Abj) + Re(Slabi

j)∂l Im(Abj) , (5.15)

we obtain

Re(Slabi
j) = N jδliδ

a
b and Im(Slabi

j) = 0 .

Thus S is determined as

Slabi
j = N jδli δ

a
b . (5.16)
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This value of S, and T = 0, determine the form of the triad lapse as

Aa0 = AaiN i + nondynamical terms . (5.17)

ILR do not discuss consistency of their system with the reality condition (especially

with the secondary reality condition). However, since ILR assume Aa0 = AaiN i, we

think that ILR also need to impose a similar restricted lapse condition in order to

preserve reality of their system.

By decomposing †, that is (3.19), into its real and imaginary parts, we get

0 = −N iγljδab +N jγliδba + γlj Re(P )iab − γli Re(P )jba ,

0 = −εbca
˜
NγljẼic − εacb

˜
NγliẼjc + γlj Im(P )iab + γli Im(P )jba .

By multiplying γli to these and taking symmetric and antisymmetric components

on the indices ab, we have

0 = 2N jδ(ba) + Re(P )j(ab) − 3 Re(P )j(ba) = 2N jδba − 2 Re(P )j(ab) ,

0 = 2N jδ[ba] + Re(P )j[ab] − 3 Re(P )j[ba] = 4 Re(P )j[ab] ,

0 = Im(P )j(ab) + 3 Im(P )j(ba) = 4 Im(P )j(ab) ,

0 = −2εacb
˜
NẼjc + Im(P )j[ab] + 3 Im(P )j[ba] = −2εacb

˜
NẼjc − 2 Im(P )j[ab] .

These imply

P iab = N iδab + i
˜
NεabcẼic . (5.18)

Our task is finished when we specify the parameters Q and R. By substituting

(5.16) into (5.10), the condition (3.20) becomes

0 = iεabc

˜
NẼjcγ

li + iεbac

˜
NẼicγ

lj − iQaiεbcdẼjc Ẽld − iQ̄bjεacdẼicẼld
−RilaẼjb + RijaẼlb + R̄jlbẼia − R̄jibẼla . (5.19)

We found that a combination of the choice

Qai = e−2

˜
NẼia , and Rila = ie−2

˜
NεacdẼidẼ

l
c , (5.20)

satisfies the condition (5.19). We show in Appendix A.1 that this pair of Q and R

satisfies (5.19) and that this choice is unique.

The final equations of motion are

Alabij = iεabc

˜
NẼlcγ

ij +N lγijδab , (5.21)

Blabij = Clabij = 0 , (5.22)

Dlabij = i
˜
N(εabcẼjcγ

li − εabcẼlcγji

− e−2ẼiaεbcdẼjc Ẽ
l
d − e−2εacdẼidẼ

l
cẼ

jb

+ e−2εacdẼidẼ
j
c Ẽ

lb) +N lδabγij . (5.23)



February 28, 2000 16:35 WSPC/142-IJMPD 0070

Constructing Hyperbolic Systems in the Ashtekar Formulation of General Relativity 25

To summarize, we obtain a symmetric hyperbolic system, type (III) by modifying

the equations of motion, restricting the gauge to: Aa0 = AaiN i, ∂iN = 0, and

assuming the triad reality condition. We name this set system IIIa. The eigenvalues

of this system are

N l (multiplicity = 6) , N l ±
√
γllN (5 each) and N l ± 3

√
γllN (1 each) .

(5.24)

These speeds are again independent of the choice of (real) triad.

5.2. Under metric reality condition (system IIb)

Using this technique, we can also construct another example of diagonalizable

hyperbolic system. Since the parameters S and T specify triad lapse, a gauge vari-

able for time evolutions, it is possible to change our interpretation that we take the

evolution of the system within the metric reality condition. Of course, the charac-

teristic matrix is no longer Hermitian. From the fact that we do not use the triad

reality condition in the process of modifying the characteristic matrix using param-

eters (5.18) and (5.20) nor in the process of deriving the eigenvalues, this system

has the same components in its characteristic matrix and has the same eigenvalues.

The process of examining diagonalizability is independent of the reality conditions.

Therefore this system is classified as a diagonalizable hyperbolic system, type (II).

To summarize, we gain another diagonalizable hyperbolic system by modifying

the equations of motion using terms from constraint equations, with characteristic

matrix (5.21)–(5.23) under metric reality condition. The eigenvalues are (5.24), and

this system is restricted only by a condition on triad lapse, Aa0 = AaiN i, and not

on lapse and shift vector like system IIa. We call this system system IIb.

6. Discussion

We have constructed several hyperbolic systems based on the Ashtekar formulation

of general relativity, together with discussions of the required gauge conditions and

reality conditions. We summarize their features in Table 1.

Table 1. List of obtained hyperbolic systems. The system I , II and III denote weakly hyperbolic,
diagonalizable hyperbolic and symmetric hyperbolic systems, respectively.

System Equations of Reality Gauge conditions First All real Diagonalizable Sym.

motion condition required order eigenvals matrix

Ia original metric — yes yes no no

Ib original triad Aa0 = AaiNi, ∂iN = 0 yes yes no no

IIa original metric N l 6= 0, ±N
√
γll (γll 6= 0) yes yes yes no

IIb modified metric Aa0 = AaiNi yes yes yes no

IIIa modified triad Aa0 = AaiNi, ∂iN = 0 yes yes yes yes
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The original dynamical equations in the Ashtekar formulation are classified as a

weakly hyperbolic system. If we further assume a set of gauge conditions or reality

conditions or both, then the system can be either a diagonalizable or a symmetric

hyperbolic system. We think such a restriction process helps in understanding the

structure of this dynamical system, and also that of the original Einstein equa-

tions. From the point of view of numerical applications, weakly and diagonalizable

hyperbolic systems are still good candidates to describe the spacetime dynamics

since they have much more gauge freedom than the obtained symmetric hyperbolic

system.

The symmetric hyperbolic system we obtained, is constructed by modifying the

right-hand-side of the dynamical equations using appropriate combinations of the

constraint equations. This is a modification of somewhat popular technique used

also by Iriondo, Leguizamón and Reula. We exhibited the process of determining

coefficients, showing how uniquely they are determined (cf. Appendix A). In result,

this symmetric hyperbolic formulation requires a triad reality condition, which we

suspect that Iriondo et al implicitly assumed in their system. As we demonstrated

in Sec. 5, in order to keep the system first order, and to be consistent with the

secondary triad reality condition, the lapse function is strongly restricted in form;

it must be constant. The shift vectors and triad lapse Aa0 should have the relation

(5.17). This can be interpreted as the shift being free and the triad lapse determined.

This gauge restriction sounds tight, but this arises from our general assumption of

(5.4). ILR propose to use the internal rotation to reduce this reality constraint,

however this proposal does not work in our notation (see Appendices B and C).

There might be a possibility to improve the situation by renormalizing the shift

and triad lapse terms into the left-hand-side of the equations of motion like the

case of general relativity.9 Or this might be because our system is constituted by

Ashtekar’s original variables. We are now trying to relax this gauge restriction

and/or to simplify the characteristic speeds by other gauge choices and also by

introducing new dynamical variables. This effort will be reported elsewhere.
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Appendix A. Detail Processes of Deriving the Symmetric

Hyperbolic System IIIa

In this Appendix, we show several detail calculations for obtaining the symmetric

hyperbolic system IIIa.
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Appendix A.1. Determining Q and R

We show here that the choice Q and R of (5.20) satisfies (5.19). That is, the final

D in (5.23) satisfies (3.20), and that this choice Q and R is unique.

First we show that D in (5.23) satisfies Hermiticity, (3.20). From the direct

calculation, we get

Dlabij − D̄lbaji = i
˜
N
(
εabcẼjcγ

li − εabcẼlcγji − e−2εbcdẼiaẼjc Ẽ
l
d

+ e−2εacdẼjbẼicẼ
l
d − e−2εacdẼlbẼicẼ

j
d

)
+ i

˜
N
(
εbacẼicγ

lj − εbacẼlcγij − e−2εacdẼjbẼicẼ
l
d

+ e−2εbcdẼiaẼjc Ẽ
l
d − e−2εbcdẼlaẼjc Ẽ

i
d

)
= i

˜
N
(
εabcẼjcγ

li − εabcẼicγlj − e−2εacdẼlbẼicẼ
j
d

− e−2εbcdẼlaẼjc Ẽ
i
d

)
=: i

˜
N †labij .

(This †labij definition is used only within this Appendix A.1.) Hermiticity, †labij = 0,

can be shown from the fact

2†l(ab)ij = −e−2εacdẼlbẼicẼ
j
d − e−2εacdẼlbẼjc Ẽ

i
d

− e−2εbcdẼlaẼjc Ẽ
i
d − e−2εbcdẼlaẼicẼ

j
d = 0 ,

and its antisymmetric part †l[ab]ij = 0, which is derived from

εabe†labij = εabeε
abcẼjcγ

li − εabeεabcẼicγlj

− e−2εabeε
acdẼlbẼicẼ

j
d − e−2εbeaε

bcdẼlaẼjc Ẽ
i
d

= 2Ẽjeγ
li − 2Ẽieγ

lj − e−2ẼlbẼibẼ
j
e + e−2ẼlbẼieẼ

j
b

− e−2ẼlaẼjeẼ
i
a + e−2ẼlaẼjaẼ

i
e

= 2Ẽjeγ
li − 2Ẽieγ

lj − Ẽjeγil + Ẽieγ
lj − Ẽjeγli + Ẽieγ

lj = 0 .

Next we show that the choice Q and R of (5.20) is unique in order to satisfy

(5.19). Suppose we have two pairs of (Q,R), say (Q1, R1) and (Q2, R2), as solutions

of (5.19). Then the pair (Q1−Q2, R1−R2) should satisfy a truncated part of (5.19),

‡labij := −iQaiεbcdẼjc Ẽld − iQ̄bjεacdẼicẼld −RilaẼjb

+RijaẼlb + R̄jlbẼia − R̄jibẼla = 0 . (A.1)

Now we show that the equation ‡labij = 0 has only the trivial solution Q = R = 0.

By preparing

‡labijγli = −iQaiεbcdẼjc Ẽdi −RilaγliẼjb +RijaẼbi ,

‡labijγliẼjb = −3e2Rilaγli + e2Rijaγij = −2e2Rijaγij ,
(A.2)
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we get Rijaγij = 0. By substituting this into (A.2), we can express R by Q as

Rija = ie−2QakεbcdẼjc ẼkdẼ
i
b = iQakε̃ijk . (A.3)

Therefore (A.1) becomes

‡labij = −iQaiεbcdẼjc Ẽld − iQ̄bjεacdẼicẼld − iQakε̃ilkẼjb

+ iQakε̃ijkẼ
lb − iQ̄bk ε̃jlkẼia + iQ̄bkε̃jikẼ

la .

From this equation, we get the following contracted relations:

e−2‡labij = −iQaiεbjl − iQ̄bjεail − iQakεilkEjb

+ iQakεijkE
lb − iQ̄bkεjlkEia + iQ̄bkεjikE

la ,

e−2 ‡labij Eia = −iQaaεbjl + 2iQakεa
[j
kE

l]b − 2iQ̄bkεjlk ,

e−2 ‡labij Eiaεljc = 2iQaaδ
b
c + 2iQbc − 2iQcb + 4iQ̄bc ,

e−2 ‡labij Eiaεljcδcb = 6iQaa + 4iQ̄aa = 10iRe(Qaa)− 2 Im(Qaa) ,

(A.4)

where Qab := QaiEbi and εbjl := εijlEbi . From the last one, we get Qaa = 0. By

substituting this into (A.4), we get

e−2 ‡labij Eiaεljc = 2iQbc − 2iQcb + 4iQ̄bc = 4iQ[bc] + 4iQ̄bc . (A.5)

The symmetric part of (A.5) indicates Q(bc) = 0, and

e−2 ‡labij EjaElb = 2iQbcεbc
i − 3iQ̄bcεbc

i = −Re(Qbcεbc
i) + 5i Im(Qbcεbc

i)

gives us Qbcεbc
i = Q[bc] = 0. Therefore Qbc = Qai = 0 is determined uniquely. From

(A.3), we also get Rija = 0.

Appendix A.2. Modifications to off-diagonal blocks

On the starting point of the modifications to the equations of motions (5.5) and

(5.6), we assumed that off-diagonal terms keep vanishing. In this subsection, we

show that the modifications to the off-diagonal blocks B and C in the matrix

notation of (3.16), i.e. modifying (3.7) using CH and CM and modify (3.8) using CG,

does not affect the final conclusion at all.

Suppose we have a symmetric hyperbolic system (5.21)–(5.23), and suppose we

additionally modify the equations of motion (3.7) and (3.8) as

modifying term for ∂tẼ
i
a = GiaCH +Hij

a CMj

∼= Gia(−iεbcdẼjc Ẽld)(∂lAbj) +Hik
a (−δlkẼ

j
b + δjkẼ

l
b)(∂lAbj)

= (−iGiaεbcdẼjc Ẽld −Hil
a Ẽ

j
b +Hij

a Ẽ
l
b)(∂lAbj) , (A.6)

modifying term for ∂tAai = IabiCGb ∼= (Iabiδ
l
j)(∂lẼ

j
b ) , (A.7)



February 28, 2000 16:35 WSPC/142-IJMPD 0070

Constructing Hyperbolic Systems in the Ashtekar Formulation of General Relativity 29

where Gia, Hij
a and Iabi are parameters to be determined. In the matrix notation,

these can be written as

Blab
ij = −iGiaεbcdẼjc Ẽld −Hil

a Ẽ
j
b +Hij

a Ẽ
l
b , (A.8)

Clabij = Iabiδ
l
j . (A.9)

The Hermitian condition (3.21) becomes

0 = −iGiaεbcdẼjc Ẽld −Hil
a Ẽ

j
b +Hij

a Ẽ
l
b − Ībajγli =: †labij . (A.10)

(We use this †labij definition only inside of Appendix A.2.)

If there exists a nontrivial combination of Gia, Hij
a and Iabi which satisfy this

relation, then it will constitute alternative symmetric hyperbolic system. However,

we see only the trivial solution is allowed for (A.10) as follows. From the relations

of †kabijγij + †labikγli = −4Ībak, we obtain Iabi = 0. With this Iabi = 0, we

obtain †labijẼbj = −2e2Hil
a , which determine Hij

a = 0. Similarly, from Iabi = 0 and

Hij
a = 0, we get †labij

˜
εjlkẼ

k
b = −6ie2Gia, which determine Gia = 0.

Appendix B. Internal Rotation and Ashtekar Equations

In this Appendix, we consider the effect of a SO(3) rotation on the triad, which

corresponds to a SU(2) rotation on the soldering form. The equations that we derive

here will be applied in the discussion in Appendix C.

Appendix B.1. Primary and secondary conditions of internal

rotation

The SO(3) internal transformation only affects inner space, and not the spacetime

quantities. Let us write U for such a rotation. U should satisfy the condition

UacU
bc = δab . (B.1)

This comes from the transformation of δab to δ∗ab := UacU
b
dδ
cd, which should

satisfy δ∗ab = δab. The determinant detU must be ±1, and we choose detU = 1 for

later convenience. The transformation δab → δ∗ab is naturally defined by δ∗ab :=

UacUb
dδcd. From (B.1), we get the fundamental relations: δ∗ab = δab, δ

∗
ab = δab,

and ε∗abc = εabc.

Now we define the transformation of the triad Eia and of the inverse triad Eai as

E∗ia := Ua
bEib , (B.2)

E∗ai := UabE
b
i . (B.3)

The 3-metric, γij , is preserved under this transformation, since γij = EiaE
ja =

E∗iaE
∗ja. We note that this secondary condition, ∂tγ

ij = ∂t(E
i
aE

ja) =

∂t(E
∗i
aE
∗ja), will not give us further conditions. This is equivalent with the time

derivative of (B.1).
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Appendix B.2. Internal rotation of Ashtekar variables

Using detU = 1, the transformation of the densitized triad becomes

Ẽ∗ia = Ua
bẼib , (B.4)

and straightforward calculation shows

A∗ai = UabAbi −
i

2
εabcUb

d(∂iU
c
d) , (B.5)

where we also note that ω∗0ai = Uabω
0b
i , and ω∗bci = Uae(ε

e
bcω

bc
i )− εabc(∂iU bd)U cd.

We remark that the second term in (B.5) arises because Aai includes the spatial

derivative of the triad. The relations of triad lapse and curvature 2-form become

A∗a0 = UabAb0 −
i

2
εabcUb

d(∂tU
c
d) , (B.6)

F ∗aij = UabF
b
ij , (B.7)

and constraints (3.4)–(3.6) are transformed into

C∗H = CH , (B.8)

C∗Mi = CMi , (B.9)

C∗Ga = Ua
bCGb . (B.10)

The Hilbert action (3.3) will be preserved (S∗ = S) under U , which is demonstrated

by the “cancellation relation”

(∂tA∗ai )Ẽ∗ia +A∗a0C∗Ga = (∂tAai )Ẽia +Aa0CGa . (B.11)

Therefore the equations of motion for Ẽ∗ia and A∗ai are equivalent with the original

ones, (3.7) and (3.8), putting a ∗ on all terms.

The secondary metric reality condition (3.11),W ij := Re(εabcẼ∗kaẼ
∗(i
b D∗kẼ∗

j)
c ),

retains its form,

W ∗ij = W ij ,

while the secondary triad reality condition (3.15), Y a := −Re(Aa0) + ∂i(N)Eia +

N i Re(Aai ), is transformed as

Y ∗a = Re(Uab)Y
b − i∂i(N) Re(Uab) Im(Eib)

+ Im(Uab)[Im(Ab0)− ∂i(N) Im(Eib)−N i Im(Abi )]

+
1

2
N iεabc Im(U bd)

(
∂i Im(U cd)

)
. (B.12)

This equation has many unexpected terms, even if we assume the triad reality,

Im(Eia) = 0, before the transformation.

To summarize, under triad transformations,Aai ,Aa0, and Y a are not transformed

covariantly, while the other variables are transformed covariantly.
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Appendix B.3. Make triad real using internal rotation

Suppose all the variables satisfy the metric reality conditions, that is, Ẽia satisfies

Im(ẼiaẼ
ja) = 0. Can we obtain the triad which satisfies the triad reality condition,

Im(Ẽ∗ia) = 0, by an internal rotation?

The answer is affirmative. However, such a rotation U must satisfy

0 = Im(Ẽ∗ia) = Im(Ua
bẼib) = Re(Ua

b) Im(Ẽib) + Im(Ua
b) Re(Ẽib) , (B.13)

and its secondary condition

0 = Im(∂tẼ
∗i
a) = Im[(∂tUa

b)Ẽib + Ua
b(∂tẼ

i
b)] . (B.14)

The application of this technique will be discussed in Sec. Appendix C.2. Before

ending this section, we remark two points. First, Aai is not transformed covariantly

by this rotation U . Second, when we consider the evolution of Ẽ∗ia, the evolution

should be consistent with the secondary triad reality condition (3.14).

Appendix C. Consideration of ILR’s Treatment of Reality

Conditions

The symmetric hyperbolic system (system IIIa) that we obtained in Sec. 5 is strictly

restricted by the triad reality condition. ILR (in their second paper20) propose to

use an internal rotation to de-constrain this situation. Here we comment on this

possibility.

Appendix C.1. Difference of definition of symmetric hyperbolic

system

First of all, we should point out again that there is a fundamental difference in the

definition used to characterize the system as symmetric. As we discussed in Sec. 2,

we define symmetry using the fact that the characteristic matrix is Hermitian, while

ILR18,20 define it when the principal symbol of the system iBlj
aka (iJ lβαkl in our

notation) is anti-Hermitian.

We suspect that these two definitions are equivalent when the vector ka (kl
in our notation) is arbitrary real. Actually, ILR have advanced a suggestion that

our definition and their ‘modern’ version are equivalent. The judgement which is

conventional or not, however, we would like to leave to the reader. Concerning our

definition of symmetric hyperbolicity, we think that the readers can quite easily

compare our system with other proposed symmetric hyperbolic systems in general

relativity: all eigenvalues (in the system we presented) are all real-valued, while

ILR’s are all pure imaginary. (Even if the distinction of real and pure imaginary is

ignored, the eigenvalues calculated by us (5.24) and by ILR are different.)

We note that, in addition, this fundamental difference will lead to different

conclusions regarding the treatment of the reality condition (see the proceeding

discussion).
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Appendix C.2. Can we obtain a symmetric hyperbolic system by

internal rotation?

What ILR proposed is the following: Suppose the system satisfies the reality condi-

tion on the metric, but not on the triad. By using the freedom of making an internal

rotation, we can transform the soldering form to satisfy the triad reality condition,

in such a way it forms symmetric hyperbolic system. (In their terminologies, they

seek a “rotated” scalar product that is to find a more general symmetrizer.) There-

fore we can remove the additional constraints of the triad reality.

This procedure, however, includes changing inner product of dynamical vari-

ables, which might cause the topology of well-posedness of the initial value formu-

lation to change. Here, we examine whether such a re-definition of the inner product

is acceptable in our definition of symmetric hyperbolicity.

Suppose we have a system which satisfies the constraints, and the metric reality

condition, but not the triad reality conditions. As we commented in Sec. 3, met-

ric reality will be preserved automatically by the dynamical equations (3.16) and

(5.21)–(5.23). Now we apply a SO(3) rotation Eia → E∗ia := Ua
bEib to the system.

We summarized the transformations of Ashtekar’s variables and equations by U in

Appendix B. In the new variables (Ẽ∗ia,A∗ai ), transformed via U , the equations of

motions are written covariantly.

As discussed in Appendix B.3, it is possible to construct the real triad by using

U . However, we always should verify the triad reality condition, both its primary

condition (3.12), and its secondary condition (3.13). The latter is expressed as

(B.12) or (B.14). If we interpret this secondary condition as a restriction on the

gauge variables, lapseN , shift N i, and triad lapseAa0, then we only need to solve the

primary condition in order to obtain triad reality on 3-hypersurface. This is indeed

solvable. For example, ILR explain a way to get a real triad using orthonormality

of the basis in their Appendix A in Ref. 20.

Next, let us see whether a symmetric hyperbolic system is obtained by the new

pair of variables (Ẽ∗ia,A∗ai ). We define the equations of motion similarly as

∂t

[
Ẽ∗ia

A∗ai

]
=

[
A∗labij B∗labij

C∗labij D∗labij

]
∂l

[
Ẽ∗jb
A∗bj

]
+ terms with no ∂lẼ

∗j
b nor ∂lA∗ai . (C.1)

By applying the same modifications as those in Sec. 5, we get

A∗labij = iεabc

˜
NẼ∗lcγ

ij +N lγijδab , (C.2)

B∗labij = C∗labij = 0 , (C.3)

D∗labij = i
˜
N(εabcẼ∗jcγ

li − εabcẼ∗lcγji

− e−2Ẽ∗iaεbcdẼ∗jcẼ
∗l
d − e−2εacdẼ∗idẼ

∗l
cẼ
∗jb

+ e−2εacdẼ∗idẼ
∗j
cẼ
∗lb) +N lδabγij . (C.4)
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These equations are related to (5.21)–(5.23). We note that, in the modification here,

we added the terms (N iδab + i
˜
NεabcẼ∗ic)C∗Gb coming from the terms of the gauge

constraint. This corresponds to the relation A∗labij = UacU
b
dA

lcdij .

Equations (C.2)–(C.4) forms a Hermitian matrix in the principal part of (C.1),

but it contradicts the consistent evolution with triad reality. That is, for example,

the left-hand-side of dynamical equation ∂tẼ
∗i
a = · · · [upper half of (C.1)] is real-

valued since we impose Im(Ẽ∗ia) = 0, while in the right-hand-side includes complex

value in the nonprincipal part. To explain this in another words, the system (C.1)–

(C.4) will not preserve the triad reality. Therefore we again need to control gauge

variables through the secondary triad reality condition, and this discussion again

returns the same gauge restrictions with those in Sec. 5.

We also point out that the inner product of the fundamental variables in our

notation does not form Hermitian like in the case of ILR. The inner product before

the rotation U can be written

〈(Ẽia,Aai )|(Ẽia,Aai )〉 := δabγijẼ
i
a

¯̃
Ejb + δabγ

ijAai Ābj , (C.5)

which is common to ours and ILR’s, while after the rotation the inner product

becomes

〈(Ẽ∗ia,A∗ai )|(Ẽ∗ia,A∗ai )〉

= Uc
aŪ cbẼia

¯̃Ejb + Uc
aŪ cbγijAai Ābj

− i

2
γij
(
εagf Ū

gh(∂jŪ
f
h)UacAci + εaecU

ed(∂iU
c
d)Ūaf Āfj

)
− 1

4
Ue

d(∂iUcd)Ū
eh(∂jŪ

c
h) +

1

4
Ue

d(∂iUcd)Ū
ch(∂jŪ

e
h) , (C.6)

which is not Hermitian, and can not be used as the inner product of the original

variable (Ẽia,Aai ) as in the ILR’s proposal.

As the final remark, we would like to comment that both the variables to evolve

by the equations, and the variables used to confirm the Hermiticity of the system

should be common throughout all evolutions. Otherwise, we cannot apply the en-

ergy inequality for the evolution of that system. From this point of view, we think

it necessary to consider the secondary triad reality condition throughout evolution

of this system.

To summarize, we tried to follow ILR’s procedure to remove the restriction of the

triad reality condition in our system, which casts on our definition of symmetric

hyperbolicity, and which is based on the fixed inner product as of its Hermitian

form. We, however, see that ILR’s procedure does not work in our system since it

requires the restriction of the secondary reality conditions of the triad. Therefore

we conclude that we cannot de-constrain restrictions any further.
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14. C. Bona, J. Massó, E. Seidel and P. Walker, gr-qc/9804052.
15. A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev. D36, 1587 (1987); Lectures

on Non-Perturbative Canonical Gravity (World Scientific, Singapore, 1991).
16. G. Yoneda and H. Shinkai, Class. Quantum Grav. 13, 783 (1996).
17. G. Yoneda, H. Shinkai and A. Nakamichi, Phys. Rev. D56, 2086 (1997).
18. M. S. Iriondo, E. O. Leguizamón and O. A. Reula, Phys. Rev. Lett. 79, 4732 (1997).
19. G. Yoneda and H. Shinkai, Phys. Rev. Lett. 82, 263 (1999).
20. M. S. Iriondo, E. O. Leguizamón and O. A. Reula, Adv. Theor. Math. Phys. 2, 5

(1998).
21. See references in E. Jannelli, Commun Part. Diff. Eq. 14, 1617 (1989).
22. S. Mizohata, Mem. College Sci. Kyoto Univ. 32, 181 (1959).
23. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II (John Wiley &

Sons, New York, 1962).
24. J. M. Stewart, Class. Quantum Grav. 15, 2865 (1998).
25. B. Gustafsson, H-O. Kreiss and J. Oliger, Time Dependent Problems and Difference

Methods (John Wiley & Sons, New York, 1995)
26. R. Geroch, Partial Differential Equations in Physics, gr-qc/9602055.
27. S. Mizohata, Hyperbolic Equations and Related Topics (Academic Press, 1986).
28. A. Ashtekar, J. D. Romano and R. S. Tate, Phys. Rev. D40, 2572 (1989).
29. M. S. Iriondo, E. O. Leguizamón and O. A. Reula, gr-qc/9902012.


