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We study charged brane-world black holes in the model of Randall and Sundrum in which our universe is
viewed as a domain wall in asymptotically anti–de Sitter space. Such black holes can carry two types of
‘‘charge,’’ one arising from the bulk Weyl tensor and one from a gauge field trapped on the wall. We use a
combination of analytical and numerical techniques to study how these black holes behave in the bulk. It has
been shown that a Reissner-Nordstro¨m geometry is induced on the wall when only Weyl charge is present.
However, we show that such solutions exhibit pathological features in the bulk. For more general charged
black holes, our results suggest that the extent of the horizon in the fifth dimension is usually less than for an
uncharged black hole that has the same mass or the same horizon radius on the wall.
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I. INTRODUCTION

In many of the brane-world scenarios, the matter fie
which we observe are trapped on the brane@1–4# ~see also
@5# for older proposals!. If matter trapped on a brane unde
goes gravitational collapse then a black hole will form. Su
a black hole will have a horizon that extends into the dim
sions transverse to the brane: it will be a higher dimensio
object.

Within the context of the second Randall-Sundrum~RS!
scenario@4#, it is important that the induced metric on th
domain wall1 is, to a good approximation, the solution pr
dicted by standard general relativity in four dimensions. O
erwise the usual astrophysical properties of black holes
stars would not be recovered.

In a recent paper@6#, the gravitational collapse ofun-
charged, non-rotating matter in the second model of RS w
investigated. There it was proposed that what would app
to be a four-dimensional black hole from the point of view
an observer in the brane-world, is really a five-dimensio
‘‘black cigar,’’ which extends into the extra fifth dimension

*Email address: chamblin@ctpblack.mit.edu
†Email address: H.Reall@damtp.cam.ac.uk
‡Email address: shinkai@gravity.phys.psu.edu
§Email address: siromizu@utap.phys.s.u-tokyo.ac.jp
1In this paper, we use the terms ‘‘domain wall’’ and ‘‘brane

interchangeably.
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If this cigar extends all the way down to the anti-de Sit
~AdS! horizon, then we recover the metric for a black stri
in AdS. However, such a black string is unstable near
AdS horizon. This instability, known as the ‘‘Gregory
Laflamme’’ instability @7#, implies that the string will frag-
ment in the region near the AdS horizon. However, the
lution is stable far from the AdS horizon. Thus, one m
conclude that the late time solution describes an object
looks like the black string far from the AdS horizon~so the
metric on the domain wall is close to Schwarzschild! but has
a horizon that closes off before reaching the AdS horizon
similar effect occurs when there is more than one extra
mension transverse to the brane@8#. These conclusions ar
supported by an exact calculation for a three dimensional
model @9#.

In this paper, we consider black holes charged un
gauge fields which aretrapped on the brane. The flux lines
of such gauge fields can pierce the horizon only where
actually intersects the brane. The bulk theory is the sam
for the uncharged case so one might expect that the b
cigar solution would still describe the bulk metric of such
charged brane-world black hole. The effect of the cha
might simply be to modify the position of the brane in th
bulk spacetime. If this were the case, then we might be a
to repeat the analysis of@6# by starting with the black string
metric and solving the Israel equations appropriate for
presence of a gauge field on the brane. However, in the
pendix we prove that this is not possible. It is still conce
able that the bulk metric is the same as that of the bl
©2001 The American Physical Society15-1
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CHAMBLIN, REALL, SHINKAI, AND SHIROMIZU PHYSICAL REVIEW D 63 064015
cigar, but unfortunately the form of the cigar metric is n
known. We are therefore forced to study charged bra
world black holes numerically.

A recent paper@10# has claimed to give a solution de
scribing a non-charged black hole in the RS scenario.
using the brane-world Einstein equations derived in@11#, it
was shown that a Reissner-Nordstrom~RN! geometry could
arise on the domain wall provided that the bulk Weyl ten
take a particular form at the wall. We regard this solution
unsatisfactory for two reasons. First, there is no Maxw
field on the domain wall so the black hole cannot be regar
as charged.2 Secondly, only the induced metric on the d
main wall was given—the bulk metric was not discuss
The solution is simply a solution to the Hamiltonian co
straint of general relativity and gives appropriate initial da
for evolution into the bulk. Until this evolution is performe
and boundary conditions in the bulk are imposed, it is
clear what this solution represents. For example, it mi
give rise to some pathology such as a naked curvature
gularity. We would then not regard it as a brane-world bla
hole, which should have a regular horizon@6,9#. One aim of
the present paper is to evolve the initial data of@10# in order
to understand what this ‘‘solution’’ really describes.

The second aim of this paper is to study brane-wo
black holes that are charged with respect to a Maxwell fi
on the brane. We start by solving the Hamiltonian constra
on the brane to give an induced metric that is close to,
not exactly, Reissner-Nordstrom. The ‘‘charge’’ of@10#
arises as an integration constant in the metric. We t
evolve this ‘‘initial’’ data away from the domain wall in
order to study the resulting bulk spacetime. Our solution
the Hamiltonian constraint is based on a metric ansatz th
almost certainly not obeyed by the true solution describin
charged brane-world black hole. However, we expect
ansatz to be sufficiently close to the true solution that us
results can be obtained without a knowledge of the ex
metric, just as in@6#.

Our results suggest that it is more natural to take
‘‘charge squared’’ parameter of@10# to be negative than
positive since the latter gives an apparent horizon that gr
relative to the black string as one moves away from
brane. For black holes charged with respect to a Maxw
field, we find that the horizon shrinks in the fifth dimensio
In both cases~and for black holes carrying both charges!, we
obtain a numerical upper bound on the length of the hori
in the fifth dimension. We find that increasing either type
charge tends to decrease this length, even if the horizon
dius on the brane is held fixed.

It is worth emphasizing that this paper is quite distin
from recent papers which have appeared on the subjec
charged black holes in brane-world scenarios@13–15#. This
is because these papers all study the effects ofbulk charges
on the brane-world geometry, whereas our analysis d
with gauge degrees of freedom that are truly localized on

2In the AdS conformal field theory~CFT! interpretation@12# of
the RS model, this black hole must be charged with respect
U(1) subgroup of the dual CFT.
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brane. One consistent interpretation of the RN solution
@10# would be as the induced metric on the brane in
~bulk! charged black string solution of@14,15#. However, in
this paper we will study whether sense can be made of
solution without introducing bulk gauge fields.

Related numerical work on uncharged brane-world bla
holes has recently appeared in@16#. The difference between
that paper and the present work is that we will prescr
‘‘initial’’ data on the brane and evolve it in the spacelik
direction transverse to the brane, whereas in@16#, initial data
was prescribed on a spacelike hypersurface and evolved
timelike direction.

The outline of this paper is as follows. First, we set up t
basic notation and formalism for a covariant treatment of
second brane-world scenario of Randall and Sundrum. N
we solve the Hamiltonian constraint for ‘‘initial’’ data on th
brane and obtain a RN solution with small corrections. W
then numerically evolve the solution into the bulk subject
the constraint that the metric solve the vacuum Einst
equations with a negative cosmological constant. Finally
discuss the properties of the resulting bulk spacetime.

II. FORMULATION AND STRATEGY

A. Covariant formulation of brane-world gravity

We shall be discussing a thin domain wall in a five d
mensional bulk spacetime. We shall assume that the sp
time is symmetric under reflections in the wall. Th
5-dimensional Einstein equation is

(5)Rmn2
1

2
(5)gmn

~5!R5k5
2 (5)Tmn , ~2.1!

where k5
258pG5 and G5 is the five dimensional Newton

constant. The energy-momentum tensor has the form

(5)Tmn52L5
~5!gmn1d~x!@2lhmn1Tmn#. ~2.2!

In the above, the brane is assumed to be located atx50
wherex is a Gaussian normal coordinate to the domain w
x50 is the fixed point of theZ2 reflection symmetry.L and
l denote the bulk cosmological constant and the dom
wall tension respectively.hmn is the induced metric on the
wall, given byhmn5 (5)gmn2nmnn wherenm is the unit nor-
mal to the wall. The effect of the singular source atx50 is
described by Israel’s junction condition@17#

Kmnux5052
1

6
k5

2lhmn2
1

2
k5

2S Tmn2
1

3
hmnTD . ~2.3!

Here, Kmn denotes the extrinsic curvature of the doma
wall, defined byKmn5hm

r hn
s¹rns . In Eq. ~2.3!, we are cal-

culating the extrinsic curvature on the side of the dom
wall that the normal pointinto. This is because we want t
evolve initial date prescribed on the wall in the direction
this normal. Using the Gauss equation and the junction c
dition, we recover the Einstein equation on the brane@11#:

(4)Gmn52L4hmn18pG4Tmn1k5
4pmn2Emn , ~2.4!

a
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where

L45
1

2
k5

2S L51
1

6
k5

2l2D ~2.5!

G45
k5

4l

48p
~2.6!

pmn5
1

12
TTmn2

1

4
TmaTn

a

1
1

8
hmnTabTab2

1

24
hmnT2 ~2.7!

and Emn is the ‘‘electric’’ part of the 5-dimensional Wey
tensor:

Emn5 (5)Cmanbnanb . ~2.8!

We shall now specialize to the RS model. This has

L552
6

k5
2l 2

, l5
6

k5
2l

, ~2.9!

which implies

L450, G45
G5

l
. ~2.10!

The matter on the domain wall will be assumed to be
Maxwell field. This impliesT50, so we can rewrite the
Einstein equation as

(4)Rmn58pG4Tmn2
k5

4

4
TmrTn

r2Emn . ~2.11!

The Israel equation gives the extrinsic curvature of the w

Kmnux5052
1

l
hmn2

k5
2

2
Tmn . ~2.12!

B. Strategy

We adopt the following procedure: We take a certa
charged black hole geometry for the brane. When we so
for the bulk, we Wick rotate twice. This gives a Kaluz
Klein bubble spacetime@21,22# from which we obtain
boundary conditions at the condition on the bubble surfa
Wick rotating back gives boundary conditions at the bu
horizon for our problem. The Kaluza-Klein bubble spacetim
is reviewed in Appendix B.

C. Metric and field equations

We assume that the induced metric on the brane takes
form

ds252U~r !dt21
dr2

U~r !
1r 2dV2

2 , ~2.13!
06401
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25du21sin2udw2. Note that this is aguess. It is

unlikely that the exact metric describing a brane-world bla
hole would have precisely this form—in general one wou
expect the coefficients ofdt2 and dr2 to be independen
~when the coefficient ofdV2

2 is fixed asr 2). However, we
know that the induced metric describing a charged black h
should be close to Reissner-Nordstrom, whichcanbe written
in this form, so our ansatz is probably quite a good gue
We expect that deviations from the exact metric will gi
rise to pathologies when this initial data is evolved into t
bulk. Even so, the analysis of@6# shows that it is possible to
extract quite a lot of information from a pathological sol
tion. The functionU(r ) will be determined from the Hamil-
tonian constraint equation below. The bulk metric is assum
to take the form

ds25N~x,r !2dx22e2a(x,r )U~r !dt21
e2b(x,r )dr2

U~r !

1e2c(x,r )r 2dV2
2 . ~2.14!

N is the lapse function which describes the embedding
ometry of the hypersurface spanned by (t,r ,u,w) during the
evolution in the bulk spacetime.

The extrinsic curvature of a hypersurface of constanx
~with unit normaln5Ndx) is given by

Kt
t5

ȧ

N
, Kr

r5
ḃ

N
and Ku

u5Kw
w5

ċ

N
, ~2.15!

where a dot denotes]x . The spacetime is described by th
evolution equation,

K̇n
m5NS (4)Rn

m2KKn
m1

4

l 2
dn

mD 2DmDnN, ~2.16!

the Hamiltonian constraint equation,

(4)R2K21KmnKmn52
12

l 2
, ~2.17!

and the momentum constraint equation,

DmKn
m2DnK50. ~2.18!

Here (4)Rn
m and (4)R are the Ricci tensor and Ricci scalar o

hypersurfaces of constantx.

III. BRANE AND BULK GEOMETRY

A. Brane geometry: Charged black hole ‘‘initial data’’

The action for the Maxwell field on the brane is taken
be

S52
1

16pG4
E d4xA2hFmnFmn, ~3.1!

giving energy-momentum tensor
5-3
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Tmn5
1

4pG4
S FmrFn

r2
1

4
hmnFrsFrsD . ~3.2!

The field strengthF is related to a potentialA by F5dA.
The equations of motion are satisfied if we takeA
52F(r )dt with F(r )5Q/r . This gives

Tmn5
1

8pG4

Q2

r 4
diag~U,2U21,r 2,r 2 sin2ut !. ~3.3!

This can be substituted into the right hand side of the Is
equation~2.12! to give an expression for the extrinsic curv
ture. This can then be substituted into the Hamiltonian eq
tion ~2.17!, along with our metric ansatz to give an equati
for U(r ). Solving this equation gives3

U~r !512
2G4M

r
1

b1Q2

r 2
1

l 2Q4

20r 6
, ~3.4!

whereM andb are arbitrary constants of integration. Subs
tuting into the Einstein equation on the domain wall give

2Emn5S b

r 4
1

l 2Q4

2r 8 D diag~U,2U21,r 2,r 2 sin2u!.

~3.5!

It is interesting to compare2Emn with 8pG4Tmn since these
quantities appear on an equal footing in the effective Eins
equation~2.4!. It is clear that the constant of integrationb is
in some sense analogous toQ2, which is why the authors o
@10# obtained a RN solution. However, since their soluti
did not have a Maxwell field, it cannot really be regarded
a charged black hole in the usual sense. Rather it ca
‘‘tidal’’ charge associated with the bulk Weyl tensor.b
might be regarded as afive dimensional mass parameter.

We shall only consider initial data that corresponds to
object with an event horizon~in the four dimensional sense!
on the domain wall. In some cases there may be more
one horizon. We shall user 1 to denote the position of the
outermost horizon, i.e., the largest solution ofU(r )50. This
has to be found numerically except whenQ50.

Our ‘‘initial data’’ is given by

3It is interesting to compare this form forU(r ) with the behavior
expected from the linear perturbation analysis of the second
model@4,18–20#. In linearized theory,U(r )512f(r ) wheref(r )
is the Newtonian potential. Forr @ l , the leading order correction
to f(r ) are expected to be proportional toG4Ml 2/r 3 and l 2Q2/r 4.
Such terms are not present in our expression forU(r ). However,
we shall be interested in black holes for whichG4M@ l , so these
correction terms will be small compared with terms like (G4M /r )3

and (G4MQ/r 2)2, which would be neglected in linearized theor
In other words, the RS correction are dominated by post-Newton
corrections@20# so it is not appropriate to compareU(r ) with the
linearized results beyond leading order.
06401
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x50

5
ḃ

N
U

x50

52
1

l
1

l

2

Q2

r 4
, ~3.6!

ċ

N
U

x50

52
1

l
2

l

2

Q2

r 4
, ~3.7!

a~x50,r !5b~0,r !5c~0,r !50. ~3.8!

We shall study the following cases:
(i) No electromagnetic charge, i.e.,Q50. In this case, the

induced metric on the domain wall is exactly RN@10#. The
horizon radius is

r 15M1AM22b. ~3.9!

The induced metric has a regular horizon ifb<M2. Note
that there is nothing to stop us choosingb to be negative,
which emphasizes the difference between the solution of@10#
and a charged black hole. If we takeb to be negative then
the induced metric has only one horizon, instead of the t
horizons of a non-extreme RN black hole.

(ii) No tidal charge, i.e., b50. In this case, the induce
metric on the domain wall is Reissner-Nordstrom with a c
rection term. Note that2Emn is non-zero but is of order
1/r 8, which suggests that the total ‘‘tidal energy’’ on the wa
is zero.

We shall also consider the general case:(iii) Both charges
non-zero, i.e., bÞ0, QÞ0.

B. Bulk geometry

The bulk geometry is obtained by integrating Eqs.~2.15!
and ~2.16! in the x-direction numerically. We use the stan
dard ‘‘free-evolution’’ method, that is we do not solve th
constraint equations~2.17! and ~2.18! during the evolution,
but instead use them to monitor the accuracy of the sim
tion.

We obtain the solution numerically in the regionr 1,r
,r e with r e;5r 1 . Boundary conditions atr 5r 1 are speci-
fied by first Wick rotatingx5 iT, t5 i t, which takes the
metric to a Kaluza-Klein bubble metric~see Appendix B!.
Therefore we can apply the numerical techniques that
used in the study of Kaluza-Klein bubbles@24#, although the
physics of Kaluza-Klein bubbles is unrelated to the phys
of black holes. It was shown in the Appendix of@24# that at
the inner boundaryr 5r 1 , a and b evolve synchronously,
that is,a(T,r 1)5b(T,r 1). Analytically continuing back to
our original spacetime yields the boundary conditi
a(x,r 1)5b(x,r 1). The evolution equation for the trace o
Kmn and the momentum constraint are also used atr 5r 1 .
At the outer boundaryr 5r e , we assume the components
the extrinsic curvature@Eq. ~2.15!# fall off like 21/l
1O(r 24) @cf. Eq. ~3.7!#. We apply the geodesic gauge co
dition ~slicing condition!, N51.

We use the Crank-Nicholson integrating scheme with t
iterations@25#. The numerical code passed convergence te
and the results shown in this paper are all obtained to acc
able accuracy.

S

n
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We were only able to solve numerically in a region ne
the domain wall with a maximum value forx of O(1). This
is because the volume element of surfaces of constanx
decreases exponentially as one moves away from the w
just as in pure AdS. The evolution was stopped whenA2g
became too small to monitor accurately.

We are interested in how charge affects the shape of
horizon, in particular how far it extends into the fifth dime
sion. This will be measured by the ratio of the physical s
of the apparent horizonr 1ec(x,r 1), to that of a black string
@6# with the same horizon radiusr 1 on the wall.4 The size of
the black string apparent horizon in the bulk isr 1e2x/ l , so
the ratio is

R~x!5ec(x,r 1)1x/ l . ~3.10!

We remark that the only apparent horizon that appears
ing the x-evolution is atr 5r 1 . Here we define apparen
horizon as the outermost region of negative expansion of
outgoing null geodesic congruences, where we define
expansion rate,u1 , as

u15 (3)¹asa1 (3)K2sasb (3)Kab , ~3.11!

wheresa5(1/Agrr )] r is an outwards pointing unit vector i
the 3-dimensional metric. We checked Eq.~3.11! during the
evolution and confirmed its positivity forr .r 1 .

Our initial conditions give the behavior of the ratioR(x)
near the brane:

Ṙ~x!ux5052
l

2

Q2

r 1
4

<0, ~3.12!

and

R̈~x!ux505
3Q21b

r 1
4

2
l 2Q4

2r 1
8

. ~3.13!

For model ~i! (Q50), Ṙ(x)ux5050, but R̈(x)ux50

5b/r 1
4 . This givesR̈(x)ux50,0 for the case withb,0,

which indicates that the ratio decreases, whileR̈(x)ux50
.0 for the case withb.0, which indicates that the ratio
increases. We have plotted the numerical results for this r
in Figs.1~a! and 1~b! ~henceforth we shall setl 5G451 and
assumeM@1, as appropriate for an astrophysical bla
hole.!. Figures 1~a! and 1~b! suggests that a negative valu
for b is the natural choice since the apparent horizon gro
~relative to the black string! in the fifth dimension whenb is
positive.

For model~ii ! (b50), Ṙ(x)ux50,0 and the ratio always
decreases@see Fig. 1~c!#. Model ~iii ! (QÞ0 and bÞ0) is
non-trivial. We present numerical results in Fig. 2. The p

4The reason for measuring the size of the horizon relative to
of the black string is because we want to distinguish the closing
of the horizon from the exponential collapse of hypersurfaces
constantx arising from the AdS nature of the geometry.
06401
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is for M55, Q53 andb50,65,610,615, whereb515 is
close to the extreme5 case for this choice ofQ. The qualita-
tive features are combinations of the plots in Fig. 1. Note t
b seems to have the greatest effect on the bulk evolut
Again, the case with negativeb appears to be the natura
choice since positiveb gives a growing horizon.

C. Bulk geometry: extent of the horizon

In this section, we shall estimate how far the horizon e
tends into the fifth dimension by combining analytical a
numerical work. Following the conjugate points theore
@26#, we shall show that for a charged black hole, the trace
the extrinsic curvature diverges at a finite distance from
brane. The trace of the evolutional equation is given by

K̇5 (4)R2K21
16

l 2
52KmnKmn1

4

l 2
, ~3.14!

where we used the Hamiltonian constraint in the second l
Now definekmn as

Kn
m5:2

1

l
hn

m1kn
m . ~3.15!

The trace part ofkmn , k5km
m , is expected to measure th

volume expansion relative to the AdS ‘‘background’’ geom
etry. In term ofkmn , Eq. ~3.14! can be written as

k̇2
2

l
k1

1

4
k252 k̃mnk̃mn<0, ~3.16!

where k̃mn is the traceless part ofkmn . On the brane the
‘‘initial’’ condition is

kmnubrane5 k̃mnubrane524pG5Tmn , ~3.17!

which implies

kubrane50. ~3.18!

For the case withQÞ0,

k̃mnk̃mn.0, ~3.19!

so

k̇ubrane,0. ~3.20!

This implies that there is ax5x0 such that

k5k0,0. ~3.21!

From Eq.~3.16!, one obtains

11
8

l uku
<S 11

8

l uk0u De2(x02x)/ l , ~3.22!
at
ff
f

5By extreme, we mean thatU(r ) has a double root atr 5r 1 .
5-5
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FIG. 1. Ratio of the physical size of apparent horizon to size of black string apparent horizon,R(x) @cf. Eq. ~3.10!#, plotted as a function
of x. Figure ~a! is for model ~i!. Lines are ofb50,60.2M2,60.5M2,60.9M2 and 6M2, whereM510.0. We see that the qualitativ
behavior ofR(x) depends on the sign ofb. Figure~b! is for the extremal case of model~i!, b5M2 with different values ofM. Results are
also plotted forb52M2. Figure~c! is for model~ii ! for which R(x) is monotonically decreasing.
e

a

n

as

-
be
from which it follows thatk diverges beforex5xcrit , where

xcrit5x01
l

2
logS 11

8

l uk0u D . ~3.23!

The divergence ink implies thatK also diverges. Nearx
5xcrit , uku behaves like

k<2
4

xcrit2x
. ~3.24!

The case withQ50 is more difficult to analyze becaus
k̇ubrane50. We can use Eq.~2.15! ~with N51) to give

kur 5r 1
52]xS a1c1

2x

l D , ~3.25!

where we have used the synchronous evolution bound
condition a5b at r 5r 1 . In Fig. 3, we have plotteda1c
06401
ry

12x/l at r 5r 1 . It is clear from this plot thatk becomes
negative in the bulk whenb,0. In fact k also becomes
negative whenb.0. Thus, even in theQ50 case, there
exists ax5x0 such thatk5k0,0. The above argument ca
then be used to show that whenQ50 and bÞ0, K must
diverge beforex5xcrit , wherexcrit is given by Eq.~3.23!.
We have therefore proved that ifQÞ0 or bÞ0 thenK di-
verges beforex5xcrit .

It follows from Eqs.~3.24! and ~3.25! that

~a1c!ur 5r 1
<2 log~xcrit2x!, ~3.26!

which implies thatA2g tends to zero at least as fast
(xcrit2x)4 asx→xcrit .

Conservatively, the divergence ofK indicates that the
geodesic slicing has broken down~when N51, ]x is the
tangent vector of spacelike geodesics!, in other words a caus
tic has occurred. The numerical study therefore cannot
5-6
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extended further using this slicing. This has, however
physical meaning because the apparent horizon is locate
constantr 5r 1 in the bulk. The horizon will encounter th
caustic before reaching the AdS Cauchy horizon. The cau
can therefore be viewed as the endpoint of the horizon,
the tip of the black cigar. Our analysis has only shown t
the geodesic slicing must break down at the caustic so
principle, this point may be regular, i.e., there may exis
coordinate chart that covers a neighborhood of this poi6

However, we do not regard this as very likely. Our guess
the induced metric on the domain wall is unlikely to be e
actly correct, so in general we would expect some pathol
such as a naked curvature singularity to appear in the b
We cannot check whether curvature invariants diverge ax
5xcrit since our numerical evolution cannot be extended
far asx5xcrit .

Whether the bulk solution is regular or not, Eq.~3.23!
gives us an upper bound on the extent of the horizon in
direction transverse to the domain wall, i.e., the length of
black cigar. We have plotted this upper bound in Fig. 4 t
ing the values forx0 andk0 at the endpoint of our numerica
evolution. The first graph shows howxcrit depends onQ and
b whenM is fixed. Note that whenQ5b50, the numerical
solution is simply the black string,7 which hasxcrit5`. In-
creasingQ clearly has the effect of decreasingxcrit , which
is not surprising since increasingQ also shrinks the horizon
radius on the domain wallr 1 . Perhaps more surprising i
that makingb more negative also appears to decreasexcrit

6It is not even clear from our analysis whether the caustic occ
at a single point or is spread over a region of spacetime.

7The reader may find this surprising since the black string is
stable@6#, and small numerical errors might be expected to ac
perturbations. However, the string is unstable tolong wavelength
perturbations, and the numerical errors will only be relevant at s
wavelengths.

FIG. 2. Ratio of physical size of apparent horizon to size
black string apparent horizon,R(x) @cf. Eq. ~3.10!#, for nonzeroQ
andb. We have setM55, Q53 andb50,65,610,615 for this
plot. The main features are a combination of plots in Fig. 1.
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even though thisincreasesthe horizon radius on the wal
@see Eq.~3.9!#. The solid curve on this diagram has bothM
andr 1 fixed. It is clear thatxcrit decreases along this curv
asQ or b increases.

The second graph of Fig. 4 plots the same curve~fixed M
and fixedr 1) for different values ofM. The trend seems to
be the same in each case.

The final graph of Fig. 4 is for fixedr 1 ~rather than fixed
M ). Increasingb appears to decreasexcrit whenQ is small
but has no significant effect whenQ is large. Whenb is
non-zero, increasingQ has the effect of initially slightly in-
creasingxcrit , but ultimately decreases it substantially. T
gross trend appears to be that increasing either type of ch
leads to a decrease in the length of the horizon.

In most of these graphs,xcrit,r 1 , so the extent of the
horizon in the fifth dimension is smaller than the horiz
radius on the domain wall, just as for the uncharged bla
cigar.

IV. SUMMARY AND DISCUSSION

In this paper we have studied charged black holes in
second RS model. We have seen that two types of charge
arise on the brane, one coming from the bulk Weyl ten
@10# and one from a Maxwell fieldtrapped on the brane.
Starting from an ansatz for the induced metric on the bra
we have solved the constraint equations of~411!-
dimensional gravity to find metrics describing charg
brane-world black holes. In the absence of Maxwell char
one can obtain a Reissner-Nordstrom solution@10#. If Max-
well charge is included then one can obtain a geometry
is Reissner-Nordstrom with small corrections.

Using these induced metrics as ‘‘initial’’ data, we hav
solved the bulk field equations numerically. We have fou
that the RN solution of@10# has an apparent horizon tha
grows ~relative to the black string apparent horizon! in the
dimension transverse to the brane unless the ‘‘cha

rs

-
s

rt

FIG. 3. The quantitya1c12x/ l at r 5r 1 plotted for M55,
Q50 andb50,25,210,225 and250.

f
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FIG. 4. Critical valuexcrit @Eq. ~3.23!# plotted for non-zeroQ andb(<0) black holes.@above left# We have setM55 for this plot. Note
that for the uncharged case,xcrit5`. The solid curve is for the special cases withr 1510.0. @above right# Critical value xcrit for
combinations of parameters (Q,b) which produce a black hole withr 1510.0.M55.0,6.25,7.5,8.75 and 10.0 are chosen for these plots.
black dots denote the ends of the lines atb50 and the other ends projected onto thexcrit53 plane.@below# The same plot as for~b!, but
M is specified so as to fixr 1510 for given (Q,b).
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squared’’ parameterb is taken to be negative.8 It therefore
seems unlikely that this solution really corresponds to
charged brane-world black hole. Of course, if a bulk gau
field is included then the work of@10# ~with b.0) has a
natural interpretation as the induced metric on the brane a
ing from the charged black string solution of@14,15#.

If b,0 and/orQÞ0 then the horizon shrinks relative t
the black string horizon. For all cases~including b.0), we

8In @24#, the evolution of Kaluza-Klein bubbles was studied n
merically and it was found that even though negative mass bub
start off with accelerating expansion@23#, the acceleration ulti-
mately becomes negative. It is conceivable that something an
gous could happen here but we have found no evidence for
behavior.
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have found that the trace of the extrinsic curvature diver
at a finite distance from the brane, with the volume elem
of the spacetime tending to zero. Forb<0, we have inter-
preted this as the end point of the horizon of the black ho
Our results suggest that increasing the charges of a br
world black hole will decrease the length of its horizon in t
fifth dimension, even when the horizon radius on the bran
kept fixed. This implies that, by adjustingQ, one can change
the five dimensional horizon area while keeping the fo
dimensional horizon area fixed. One might think that th
would lead to a difference between the entropies calcula
from these horizon areas, which would be bad news
hopes of recovering general relativity as the effective fo
dimensional theory of gravity on the brane. However, t
exponential decrease in the volume element as one m
away from the brane implies that the dominant contribut

es

lo-
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to the five dimensional area comes from the region of
horizon that is closest to the brane@9#. Changes near the
other end of the horizon give only subleading corrections
the five dimensional area, allowing the four and five dime
sional entropies to agree at leading order.

We suspect that our solutions will generically have a c
vature singularity at the point where the trace of the extrin
curvature diverges. This is because it seems rather imp
able that our ansatz for the induced metric on the br
should turn out to be exactly right. However, we expect t
for each value ofQ there will be some value ofb for which
a small change in our initial data would smooth out th
singularity, leading to a regular geometry describing a bra
world black hole carrying Maxwell chargeQ. This smooth-
ing would probably not significantly affect the position of th
‘‘tip’’ of the horizon, for which we have obtained an uppe
bound on the distance from the brane. This is to be c
trasted with the uncharged case in which one takes the
duced metric on the brane to be Schwarzschild. Evolving
into the bulk gives the black string metric, for which th
singularity occurs at the AdS horizon, which is atinfinite
proper distance from the brane along spacelike geodesic
small perturbation of the metric on the brane takes one fr
the black string to the black cigar, which has a regular A
horizon and a black hole horizon with a tip at finite distan
from the brane.

For the black string, the stability analysis of@6# shows
that the horizon extends a distance of orderd5 l log(G4M/l)
into the fifth dimension, sod!r 1 . Our results give only an
upper bound ford in the charged case. It would be nice if th
stability analysis could be extended to the charged c
However, the instability only sets in when the proper rad
of the horizon becomes smaller than the anti–de Sitter len
scale and we were not able to extend our numerical evolu
this far. Our upper bound seems rather on the large s
since it appears to gived;r 1 for small Q andb. However,
for large Q and/or b, Fig. 4~c! shows thatd!r 1 , so our
upper bound is probably tighter in this case.

The main outstanding problem remains to find the ex
bulk metric that describes a brane-world black hole. T
was solved for uncharged black holes in the 3 dimensio
RS model by using the 4 dimensional AdS C-metric in t
bulk @9#. Unfortunately, the higher dimensional generaliz
tion of this metric is not known. It would be interesting
see whether charged black holes in the 3 dimensional
model could be constructed by using the same bulk as in@9#
but simply slicing along a different hypersurface. It wou
also be interesting to use the methods of@18–20# to find
linearized solutions describing spherical distributions of m
ter charged with respect to a brane-world gauge field.
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APPENDIX A: BRANE BENDING AND THE BLACK
STRING

One candidate for a black hole formed by gravitation
collapse of charged brane-world matter on a domain wal
AdS is the black string solution in AdS, which has the met

ds25
l 2

z2
@2U~r !dt21U~r !21dr21r 2dV2

21dz2#

~A1!

whereU(r )5122G4M /r . As discussed in@6#, surfaces of
constantz trivially satisfy the Israel matching conditions pro
vided that the tension satisfiesl566/k5

2l . Thus, we may
slice the spacetime along such a surface of constantz, and
match to a mirror image, in order to obtain the Schwar
child solution on the domain wall.

We now want to consider what happens when we all
the black hole to be electrically charged with respect to so
U(1) gauge field living on the brane. Thus, we must add
an extra term to the brane-world stress energy tensor of
form

Tmn5
1

4pG4
S FmrFn

r2
1

4
qmnFrsFrsD ~A2!

where the electric gauge potential has the form

A52F~r !dt ~A3!

so that

F5F8~r !dt`dr ~A4!

where 8 denotes differentiation with respect tor.
Now, as a first guess we might try to support this stre

energy on the brane by allowing the brane to bend in
black string background in such a way that the extrinsic c
vatures would still satisfy the Israel equations.

In other words, we allow the positionz of the brane to
depend on the radial directionr. Solving the Maxwell equa-
tions yields

F8~r !52
Q

r 2
~11z82U !1/2. ~A5!

To compute the extrinsic curvature of the timelike hypers
face swept out byz5z(r ), we introduce an orthonormal ba
sis which consists of a unit normal vector
5-9
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n5
e l

zA11Uz82
~dz2z8dr !, ~A6!

wheree561, a unit timelike tangent

u5
z

l
U21/2

]

]t
, ~A7!

and the spacelike tangents

t5
z

l
A U

11Uz82S z8
]

]z
1

]

]r D , ~A8!

ef5
z

lr sinu

]

]f
, ~A9!

eu5
z

lr

]

]u
. ~A10!

It follows that the non-vanishing components of the extrin
curvature in this basis are

Kuu5
e

lA11Uz82 S 11
1

2
U8zz8D , ~A11!

Kuu5Kff5
2e

lA11Uz82 S 11
U

r
zz8D , ~A12!

Ktt52
eU

l ~11Uz82!3/2S zz91z821U211
U8zz8

2U D .

~A13!

Under the assumption ofZ2 symmetry, the Israel equation
reduce to Eq.~2.12!. The three independent components
Kmn give three independent equations:

Ktt5
1

l
2

z4Q2

2l 3r 4

Kuu52
1

l
1

z4Q2

2l 3r 4
~A14!

Kuu5
1

l
1

z4Q2

2l 3r 4
.

B

li,

06401
c

f

It is straightforward to show that it is impossible to solv
these three equations simultaneously unless one takesQ50
and z5const, which is the uncharged solution of@6#. It is
therefore not possible to support the stress energy of a p
charge by simply allowing the brane to bend in the bla
string background. It follows that thebulk has to change
once the brane-world charge is introduced. In other wor
brane-world charge will induce changes in the bulk We
tensor, and this is exactly what we have found in our num
cal analysis.

APPENDIX B: KALUZA-KLEIN BUBBLE

The double Wick rotation(x→ i t ,t→ i t) of the metric of
Eq. ~2.13! gives us the Euclidean induced metric:

ds25U~r !dt21
dr2

U~r !
1r 2dV2

2 . ~B1!

The largestr 5r 1 such thatU(r 1)50 is interpreted as the
position of the bubble surface. Aroundr 5r 1 , the metric can
be expanded

ds2.U8~r 1!~r 2r 1!dt21
dr2

U8~r 1!~r 2r 1!
1r 1

2 dV2
2 .

~B2!

In term of the new coordinateRªAr 2r 1,

ds2.
4

U8~r 1!
FR2dS U8~r 1!t

2 D 2

1dR2G1r 1
2 dV2

2 .

~B3!

We can see easily that the metric will be regular if we a
sume that the t direction is periodic with period
4p/U8(r 1).

In the case ofU(r )512r 0
2/r 2 with l5L50, the exact

five dimensional solution for time-symmetric initial da
(Kmn50) is

ds5
252r 2dt21U~r !dt21U21~r !dr21r 2cosh2tdV2

2 .

~B4!

This is the Witten-bubble spacetime@21#. Another example
of initial data for a Kaluza-Klein bubble spacetime was giv
in Ref. @22# and its classical time evolution has been inve
tigated in Refs.@23,24#.
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