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Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on
Ashtekar’s connection variables. The primary advantage for using this connection formulation in
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity.
Our numerical code demonstrates gravitational wave propagation in plane-symmetric spacetimes,
and we compare the accuracy of the simulation by monitoring the violation of the constraints.
By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

PACS numbers: 0420C, 0425, 0425D

1. Introduction

Numerical relativity—solving the Einstein equation numerically—is now an essential field in
gravity research. As is well known, critical collapse in gravity systems was first discovered by
numerical simulation [1]. The current mainstream of numerical relativity is to demonstrate the
final phase of compact binary objects related to gravitational wave observations†, and these
efforts are now again shedding light on the mathematical structure of the Einstein equations.

Up to a couple of years ago, the standard Arnowitt–Deser–Misner (ADM) decomposition
of the Einstein equation was taken as the standard formulation for numerical relativists.
Difficulties in accurate/stable long-term evolutions were supposed to be overcome by choosing
proper gauge conditions and boundary conditions. Recently, however, several numerical
experiments show that the standard ADM is not the best formulation for numerics, and finding
a better formulation has become one of the main research topics‡.

† The latest reviews are available in [2].
‡ Note that we are only concerned with the free evolution system of the initial data; that is, we only solve the constraint
equations on the initial hypersurface. The accuracy and/or stability of the system is normally observed by monitoring
the violation of constraints during the free evolution.
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One direction in the community is to apply a conformally decoupled and trace-free
reformulation of the ADM system which was first used by Nakamura et al [3]. The usefulness
of this reformulation were confirmed by another groups to show long-term stable numerical
evolution. [4, 5]. Although there is an effort to show why this reformulation is better than
ADM [6], we do not yet know whether this method is robust for all situations.

Another alternative approach to ADM is to formulate the Einstein equations to reveal
hyperbolicity†. A certain kind of hyperbolicity of the dynamical equations is essential to
analyse their propagation features mathematically, and is known to be useful in numerical
approximations (we explain these points in section 2). The propagation of the original ADM
constraint equations obeys well posed behaviour [8], but the dynamical equations of the ADM
system are not a hyperbolic system at all (and these facts can also be applied to the conformally
decoupled version). Several hyperbolic formulations have been proposed to re-express the
Einstein equation, with different levels: weakly, strongly and symmetric hyperbolic systems
(we will discuss this in detail in section 2). Several numerical tests were also performed in
this direction, and we can see advantages in numerical stability over the original ADM system
(e.g. tests [9] of Bona–Massó’s symmetrizable form [10], tests [11] of Choquet-Bruhat and
York (95)s symmetrizable form [12]), but the appearance of coordinate shocks has also been
reported [13] in the system of [9]. A symmetric hyperbolic system of [14], on the other
hand, has been studied numerically within the context of the ‘conformal Einstein’ approach
[15].

The following questions, therefore, naturally present themselves (cf [16]).

(a) Does hyperbolicity actually contribute to the numerical accuracy/stability?
(b) If so, which level of hyperbolic formulation is practically useful for numerical

applications? (or does the symmetric hyperbolicity solve all the difficulties?)
(c) Are there any other approaches to improve the accuracy/stability of the system?

In this paper, we try to answer these questions with our simple numerical experiments.
Such comparisons are appropriate when the fundamental equations are cast in the same
interface, and that is possible at this moment only using Ashtekar’s connection variables
[17, 18]. More precisely, the authors’ recent studies showed the following:

(a) the original set of dynamical equations proposed by Ashtekar already forms a weakly
hyperbolic system [19];

(b) by requiring additional gauge conditions or adding constraints to the dynamical equations,
we can obtain a strongly hyperbolic system [19];

(c) by requiring additional gauge conditions and adding constraints to the dynamical
equations, we can obtain a symmetric hyperbolic system [19, 20]; and finally

(d) based on the above symmetric hyperbolic system, we can construct a set of dynamical
systems which is robust against perturbative errors for constraints and reality conditions
[21] (also known as a λ-system [22]).

Based on the above results (a)–(c), we developed a numerical code which handles
gravitational wave propagation in the plane-symmetric spacetime. We performed the time
evolutions using the above three levels of Ashtekar’s dynamical equations together with
the standard ADM equation. We compare these for accuracy and stability by monitoring
the violation of the constraints. We also show the demonstrations of our λ-system (above
(d)) in a subsequent paper (paper II) [41], together with new proposal for controlling the
stability.

† Recent reviews are given in, for example, [7].
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It is worth remarking that this study is the first one which shows full numerical simulations
of Lorentzian spacetime using Ashtekar’s connection variables. This research direction was
suggested [23] soon after Ashtekar completed his formulation, but has not yet been completed.
Historically, an application to numerical relativity of the connection formulation was also
suggested [18, 24] using the Capovilla–Dell–Jacobson version of the connection variables
[25], which produce a direct relation to the Newman–Penrose �s. However, here we apply
Ashtekar’s original formulation, because we know how to treat its reality conditions in detail
[26, 27], and how they form hyperbolicities. We will also describe the basic numerical
procedures in this paper.

The outline of this paper is as follows. In the next section, we review the mathematical
background of the hyperbolic formulation briefly and present our fundamental dynamical
equations. In section 3, we describe our numerical procedures. Our experiments are presented
in sections 4 and 5, and we summarize them in section 6. Appendix A shows Ashtekar’s basic
equations in our notation, and we also present our experiments based on the Maxwell equation
in appendix B. We also introduce briefly the discussion in our paper II in appendix C.

2. Hyperbolic formulations

2.1. Definitions, properties, mathematical backgrounds

We say that the system is a first-order (quasi-linear) partial differential equation system, if a
certain set of (complex-valued) variables uα (α = 1, . . . , n) forms

∂tuα = Mlβ
α(u) ∂luβ + Nα(u), (1)

where M (the characteristic matrix) and N are functions of u but do not include any derivatives
of u. If the characteristic matrix is a Hermitian matrix, then we say that (1) is a symmetric
hyperbolic system.

Writing the system in a hyperbolic form is the essential step in proving the system is well
posed. Here, well posedness of the system means (a) existence (of at least one solution u),
(b) uniqueness (i.e. at most solutions) and (c) stability (or continuous dependence of solutions
{u} on the Cauchy data). The Cauchy problem under weak hyperbolicity is not, in general,
C∞ well posed. The symmetric hyperbolic system gives us the energy integral inequalities
which are the primary tools for studying the stability of the system. Well posedness of the
symmetric hyperbolic is guaranteed if the characteristic matrix is independent of u, while if
it depends on u we have only a limited proof for the well posedness. From the mathematical
point of view, proving well posedness with less strict conditions is an old but active research
problem.

We can define another hyperbolic system between the weakly and symmetric levels. For
example, we say we have a strongly hyperbolic (or diagonalizable hyperbolic [19]) system, if
the characteristic matrix is diagonalizable and has all real eigenvalues. The inclusion relation
is, then,

symmetric hyperbolic ∈ strongly hyperbolic ∈ weakly hyperbolic, (2)

(which means the symmetric hyperbolicity requires stronger conditions to be satisfied than the
others). We do not repeat each level’s features here (see section 2 of [19]). However, at the
strongly hyperbolic level, we can prove the finiteness of the energy norm if the characteristic
matrix is independent of u (cf [16]), which is one step further than a weakly hyperbolic
form.
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From the point of view of numerical applications, to write down the fundamental equation
in an explicitly hyperbolic form is quite attractive, not only for its mathematically well posed
features. It is well known that a certain flux-conservative hyperbolic system of equations
is taken as an essential formulation in the computational Newtonian hydrodynamics [28].
There is also an effort to implement the boundary condition by using the characteristic speed
(eigenvalues) of the system [29].

2.2. Hyperbolic formulations of the Einstein equation

As was discussed by Geroch [30], most physical systems can be expressed as symmetric
hyperbolic systems. However, the standard ADM system does not form a first-order hyperbolic
system. This can be seen immediately from the fact that the ADM dynamical equations,

∂tγij = −2NKij + ∇jNi + ∇iNj , (3)

∂tKij = N((3)Rij + trKKij )− 2NKimK
m
j − ∇i∇jN

+(∇jN
m)Kmi + (∇iN

m)Kmj + Nm∇mKij , (4)

have Ricci curvature (3)Rij which involves second derivatives of the 3-metric γij by definition.
(The notation here is the standard one. Kij is the extrinsic curvature, N and Ni are the lapse
and shift vector, respectively. ∇ denotes a covariant derivative on the 3-surface.) For our later
convenience, we also write down the ADM constraint equations,

CADM
H := (3)R + (trK)2 −KijK

ij ≈ 0, (5)

CADMi
M := ∇j (K

ij − γ ij trK) ≈ 0, (6)

which are called the Hamiltonian and momentum constraint equations, respectively.
So far, several first-order hyperbolic systems of the Einstein equation have been proposed;

some of them are symmetrizable (strongly hyperbolic) [9, 10] or symmetric hyperbolic
systems [12, 14, 31, 32]. There are many variations in the methods for constructing higher
hyperbolic systems, but the number of fundamental dynamical variables is always larger
than that of ADM (see a brief example by Anderson–York (1999) in [12]). Several
numerical tests are reported (as we referred to in the introduction) using a particular
hyperbolic formulation, but no numerical comparisons between these formulations are
reported†.

Using Ashtekar’s formulation, we can compare three levels of hyperbolicity in the same
interface (same fundamental variables) as we describe next.

2.3. Hyperbolic formulations in the Ashtekar formulations

Here we present our fundamental dynamical equations. Our notation and a more detailed
review are presented in appendix A, but we repeat them here if necessary.

The new basic variables are the densitized inverse triad, Ẽi
a , and the SO(3, C) self-dual

connection, Aa
i , where the indices i, j, . . . indicate the 3-spacetime, and a, b, . . . are for SO(3)

space. The total four-dimensional spacetime is described together with the gauge variables

† Recently, we heard that Bardeen and Buchman are preparing a numerical comparison between the formulations
of Bona–Massó and Anderson–York [33]. (After we submitted this paper, we noticed that Hern [42] compares
numerically different levels of hyperbolicity based on the Frittelli–Reula system [32] applying it to Gowdy spacetime.
There he obtains a similar conclusion to ours.)
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N
˜
, Ni,Aa

0, which we call the densitized lapse function, shift vector and the triad lapse function.
The system has three constraint equations,

CASH
H := (i/2)εabc Ẽ

i
aẼ

j

bF
c
ij ≈ 0, (7)

CASH
Mi := −Fa

ij Ẽ
j
a ≈ 0, (8)

CASH
Ga := Di Ẽ

i
a ≈ 0, (9)

which are called the Hamiltonian, momentum and Gauss constraint equations, respectively.
The dynamical equations for a set of (Ẽi

a,Aa
i ) are

∂t Ẽ
i
a = −iDj (ε

cb
aN˜

Ẽj
c Ẽ

i
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0εab
c Ẽi

c, (10)

∂tAa
i = −iεabcN˜

Ẽ
j

bF
c
ij + NjF a

ji + DiAa
0, (11)

where Fa
ij := 2∂[iAa

j ] − iεabc Ab
i Ac

j is the curvature 2-form.
We have to consider the reality conditions when we use this formalism to describe the

classical Lorentzian spacetime. As we review in appendix A.2, the metric will remain on its
real-valued constraint surface during time evolution automatically if we prepare initial data
which satisfy the reality condition. More practically, we also require that the triad be real-
valued. However, again this reality condition appears as a gauge restriction on Aa

0, (A11),
which can be imposed at every time step. In our actual simulation, we prepare our initial data
using the standard ADM approach, so that we have no difficulties in maintaining these reality
conditions.

The set of dynamical equations (10) and (11) (hereafter we call these the original equations)
does have a weakly hyperbolic form [19], so that we regard the mathematical structure of
the original equations as one step advanced from the standard ADM. Furthermore, we can
construct higher levels of hyperbolic systems by restricting the gauge condition and/or by
adding constraint terms, CASH

H , CASH
Mi and CASH

Ga , to the original equations [19]. We extract only
the final expressions here.

In order to obtain a symmetric hyperbolic system†, we add constraint terms to the right-
hand side of (10) and (11). The adjusted dynamical equations,

∂t Ẽ
i
a = −iDj (ε

cb
aN˜

Ẽj
c Ẽ

i
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0εab
c Ẽi

c + P i
ab CASH

G
b, (12)

where

P i
ab ≡ Niδab + iN

˜
εab

cẼi
c,

∂tAa
i = −iεabcN˜

Ẽ
j

bF
c
ij + NjF a

ji + DiAa
0 + Qa

i CASH
H + Ri

ja CASH
Mj , (13)

where

Qa
i ≡ e−2N

˜
Ẽa
i , Ri

ja ≡ ie−2N
˜
εacbẼ

b
i Ẽ

j
c

form a symmetric hyperbolicity if we further require the gauge conditions,

Aa
0 = Aa

i N
i, ∂iN = 0. (14)

We note that the adjusted coefficients, P i
ab,Q

a
i , Ri

ja , for constructing the symmetric
hyperbolic system are uniquely determined, and there are no other additional terms (say,
no CASH

H , CASH
M for ∂t Ẽi

a , no CASH
G for ∂tAa

i ) [19]. The gauge conditions, (14), are consequences
of the consistency with (triad) reality conditions.

† Iriondo et al [34] presented a symmetric hyperbolic expression in a different form. The differences between ours
and theirs are discussed in [19, 20]
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Table 1. List of systems that we compare in this paper.

System Variables Equations of motion Remark

ADM (γij ,Kij ) (3), (4) ‘Standard ADM’

I Ashtekar (weakly hyp.) (Ẽi
a,Aa

i ) (10), (11) (original) ‘Original Ashtekar’

II Ashtekar (strongly hyp.) (Ẽi
a,Aa

i ) (12), (13) (adjusted) (15) required

III Ashtekar (symmetric hyp.) (Ẽi
a,Aa

i ) (12), (13) (adjusted) (14) required

(In section 5) Ashtekar (adjusted) (Ẽi
a,Aa

i ) (31), (32) (adjusted with κ)

We can also construct a strongly (or diagonalizable) hyperbolic system by restricting to
a gauge Nl �= 0,±N

√
γ ll (where γ ll is the 3-metric and we do not sum indices here) for the

original equations (10) and (11). Or we can also construct from the adjusted equations, (12)
and (13), together with the gauge condition

Aa
0 = Aa

i N
i. (15)

As for the strongly hyperbolic system, hereafter we take the latter expression.
In table 1, we have summarized the equations to be used throughout the remainder of this

paper.

3. Numerical method

3.1. Overview

We coded up the program so as to compare the evolutions of spacetime with different sets of
dynamical equations but with the common conditions: the same initial data, the same boundary
conditions, the same slicing condition and the same evolution scheme.

We consider the plane-symmetric vacuum spacetime without a cosmological constant.
This spacetime has the true freedom of gravitational waves of two polarized (+ and ×) modes.
We apply the periodic boundary conditions to remove any difficulties caused by the numerical
treatment of the boundary conditions. The initial data are given by solving constraint equations
in ADM variables, using the standard conformal approach by O’Murchadha and York [35].
When we use Ashtekar’s variables for evolution, we transform the ADM initial data in terms
of Ashtekar’s variables. The results are analysed by monitoring the violation of the constraint
equations which are expressed using the same (or transformed if necessary) variables.

We describe our procedures in the following subsections in detail.

3.2. Metric and the initial data construction

We consider the plane-symmetric metric,

ds2 = (−N2 + NxN
x) dt2 + 2Nx dx dt + γxx dx2 + γyy dy2 + γzz dz2 + 2γyz dy dz (16)

where the components are the function of N(x, t), Nx(x, t), γxx(x, t), γyy(x, t), γzz(x, t),
γyz(x, t). N and Nx are called the lapse function and the shift vector.

We prepare our initial data by solving the ADM constraint equations, (5) and (6), using the
conformal approach [35]. Since we consider only the vacuum spacetime, the input quantities
are the initial guess of the 3-metric γ̂ij , the trace part of the extrinsic curvature trK , and the
transverse traceless part of the extrinsic curvature ÂT T . For simplicity, we impose ÂT T = 0
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and trK = K0 (constant). The Hamiltonian constraint then becomes an equation for the
conformal factor, ψ :

8.̂ψ := 8
1√
γ̂
∂i(γ̂

ij
√
γ̂ ∂jψ) = R̂ψ + 2

3 (K0)
2ψ5, (17)

where γ̂ = det γ̂ij . The momentum constraint is automatically satisfied by assumption. The
initial dynamical quantities γij , Kij are given by the conformal transformation,

γij = ψ4γ̂ij , Kij = 1
3ψ

4γ̂ijK0. (18)

We solve (17) under the periodic boundary conditions using the incomplete Cholesky
conjugate gradient (ICCG) method.

We should remark here that we have to assume non-zero K0 for a model of gravitational
pulse waves under the periodic boundary conditions in this plane-symmetric spacetime. This
can be seen as follows. Suppose we set K0 = 0. From (17), we obtain

∂xψ = 1√
γ gxx

∫ √
γRψ dx. (19)

If we set the boundary as x = [A,B] and impose the periodic boundary conditions, then
equation (19) becomes

∂xψ |x=A − ∂xψ |x=B =
(

1√
γ gxx

)
x=A=B

∫ A

B

√
γRψ dx. (20)

However, when there exists a gravitational wave pulse which produces R �= 0 in the region,
this equation gives ∂xψ |x=A = ∂xψ |x=B , which is inconsistent with the periodic boundary
conditions. Therefore, we need to assume non-zero K0 in order to compensate the curvature
which is produced by the pulse waves.

Actually, the trace of the extrinsic curvature appears only in the quadratic form, so we
can interpret that our (background) spacetime is either expanding, K0 < 0, or contracting,
K0 > 0. However, this fact indicates that there is no known exact solution to compare with.
If the background spacetime is allowed to be flat (K0 = 0), then we know there is a series of
exact solutions which describes a collision of plane gravitational waves which were originally
found by Szekerez and Khan–Penrose [36]. The formation of a curvature singularity after such
colliding waves is known to be generic, but that is not generalized to the expanding background
(as discussed using numerical simulations [37, 38]).

We can set two different modes of gravitational waves. One is the +-mode waves, which
is given by setting a conformal guess metric as (in a matrix form)

γ̂ij =




1 0 0

sym. 1 + a exp(−b(x − c)2) 0

sym. sym. 1 − a exp(−b(x − c)2)


 (21)

where a, b, c are parameters. The other is the ×-mode waves, given by

γ̂ij =




1 0 0

sym. 1 a exp(−b(x − c)2)

sym. sym. 1


 (22)

where a, b, c are parameters again. In both cases we expect nonlinear behaviour when the
wave’s curvature becomes quite large compared with the background. In the collision of a
+-mode wave and a ×-mode wave, we also expect to see the mode-mixing phenomena which
is known as the gravitational Faraday effect. These effects are confirmed in our numerical
simulations.
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3.3. Transformation of variables: from ADM to Ashtekar

We need to transform the dynamical variables on the initial data when we evolve them in the
connection variables. We list the procedure to obtain (Ẽi

a,Aa
i ) from (γij , Kij ). This procedure

is also used when we evaluate the constraints, CASH
H , CASH

Mi , CASH
Ga for the data evolved using

ADM variables.
From the 3-metric γij to Ẽi

a:

(a) Define the triad Ea
i corresponding to the 3-metric γij . We take

Ea
i =



E1
x E1

y E1
z

E2
x E2

y E2
z

E3
x E3

y E3
z


 =




√
γxx 0 0

0 e22 e23

0 e32 e33


, (23)

and set simply e23 = e32. The relation between the metric and the triad becomes

e2
22 + e2

33 = γyy, e2
23 + e2

33 = γzz, (e22 + e33)e23 = γyz. (24)

For the case of +-mode waves, we define naturally, e22 = √
γyy, e33 = √

γzz, e23 = 0.
For ×-mode waves, we also take a natural set of definitions, e22 = e33 = [(γyy +
(γ 2
yy − γ 2

yz)
1/2)/2]1/2 and e23 = γyz/2e22 which are given by solving e2

22 + e2
33 = γyy

and 2e22e23 = γyz.
(b) Obtain the inverse triad Ei

a from triad Ea
i .

(c) Calculate the density, e, as e = detEa
i .

(d) Obtain the densitized triad, Ẽi
a = eEi

a .

From 3-metric (γij , Kij ) to Aa
i :

(a) Prepare the triad Ea
i and its inverse Ei

a .
(b) Calculate the connection 1-form ωbci = Ebµ∇iE

c
µ. This is expressed only using partial

derivatives as†

ωbci = Ejb∂[iE
c
j ] − EidE

kbEjc∂[kE
d
j ] + Ejc∂[jE

b
i]. (25)

(c) Aa
i = −KijE

ja − 1
2 iεabcωbci .

3.4. Transformation of variables: from Ashtekar to ADM

In contrast to the previous transformation, we also need to obtain (γij ,Kij ) from (Ẽi
a,Aa

i )
when we evaluate the metric output or ADM constraints when we evolve the spacetime using
connection variables. This process is only required at evaluation times, i.e. not required at
every time step (unless we use the gauge condition which is primarily defined using ADM
quantities).

From the densitized inverse triad Ẽi
a to the 3-metric γij :

† This is from the definitions, ωbci := Ejb∇iE
c
j and ωabc := Ejaωbcj , and a relation

3ω[abc] − 2ω[bc]a = ωa[bc] + ωb[ca] + ωc[ab] − ωabc + ωcba = ωabc.

Using the densitized triad, equation (25) can also be expressed as

ωbci = 2

e2
Ẽjb(∂[i Ẽ

c
j ]) +

1

e4
ẼjbẼc

i Ẽ
a
k (∂j Ẽ

k
a ) +

1

4e4
ẼiaẼ

kbẼj
c (∂j Ẽ

a
k ), taking [bc].
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(a) Calculate the density e as e = (det Ẽi
a)

1/2.

(b) Get the inverse 3-metric as γ ij = Ẽi
aẼ

j
a /e

2.

(c) Obtain γij .

From (Ẽi
a,Aa

i ) to the extrinsic curvature Kij :

(a) Prepare the un-densitized inverse triad, Ei
a = Ẽi

a/e.

(b) Prepare the triad Ea
i .

(c) Calculate the connection 1-form εabcω
bc
i .

(d) Calculate Za
i , which is defined as† Za

i := −Aa
i + 1

2 iεabcωbci (= KijE
ja), and obtain

Kij = Za
i Eja .

3.5. Gauge conditions

We evolve the initial data with different evolution equations and compare its accuracy/stability.
As we summarized in table 1, we will compare time evolutions between ADM and Ashtekar
(of the original system I) in section 4.1, and three of Ashtekar’s systems (I, II and III: weakly,
strongly and symmetric) in section 4.2. We, then, consider an alternative system (an adjusted
κ system) in section 5.

Here we comment again on our choice of the slicing (gauge) condition. As for the primary
tests of this subject, we apply the simplest slicing conditions we can take. That is,

(1) the simplest geodesic slicing condition for the lapse function;

(2) the simplest zero shift vector Nx = 0; and

(3) the natural choice of triad lapse function Aa
0 = Aa

i N
i (= 0 if Nx = 0, which is suggested

from (14) or (15)).

However, in the Ashtekar formalism, the densitized lapse functionN
˜

is the fundamental gauge
quantity (rather than N ). Therefore, we try two conditions for the lapse:

(1a) the standard geodesic slicing condition N = 1, which will be transformed to N
˜

= 1/e
when we apply this condition in Ashtekar’s evolution system; and

(1b) the densitized geodesic slicing condition N
˜

= 1, which will be transformed to N = e

when we evolve the system using ADM equations.

In practice, such a transformation using the density e will not guarantee that the Courant
condition holds if we fix the time evolution step .t‡. Therefore, we need to rescale the
transformed lapse (N

˜
in (1a), N in (1b)) so that it has a maximum value of unity, in order to

keep our evolution system stable.
If we apply the standard geodesic slice, then we can compare the weakly hyperbolic system

with the symmetric hyperbolic one. Similarly, if we apply the densitized geodesic slice, then
we can compare the (original) weakly hyperbolic system with the strongly hyperbolic one.

† This is from the original definition of Aa
i , Aa

i := ω0a
i − (i/2)εabc ωbci .

‡ Here we remind the reader of the stability condition,N.t � .x for a standard forward-time centred-space (FTCS)
scheme for a simple wave equation, in a (.t , .x)-spaced numerical grid. Note that this condition will be changed
due to the choice of the evolution scheme and the equations of the system.
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3.6. Time integrating scheme

We applied two second-order evolution schemes, and confirmed that they give us nearly
identical results.

One is the so-called iterative Crank–Nicholson scheme (cf [39]), which is now becoming
the standard in the numerical relativity community. Suppose we have a dynamical equation in
the form

∂tu(x, t) = f (u(x, t), ∂xu(x, t)). (26)

Then the scheme for updating u at a point x from t to t + .t consists of the following steps.

(a) Use data on t = t for the right-hand side and update u(x, t) for the.t step as ũ(x, t +.t),

ũ(x, t + .t)− u(x, t)

.t
= f (u(x, t), ∂xu(x, t)). (27)

(b) Take the average of u(x, t) and ũ(x, t + .t), and let it represent a half-step value (say
v(x, t + .t/2)).

(c) Update u(x, t) for the.t step again using û(x, t +.t/2) in the argument of the right-hand
side,

ũ(x, t + .t)− u(x, t)

.t
= f (û(x, t + .t/2), ∂xû(x, t + .t/2)). (28)

(d) Perform the above steps (b) and (c) once again (we assume a two-iteration Crank–
Nicholson scheme), and take ũ(x, t + .t) to be the evolved quantity.

The other scheme we applied is the Brailovskaya integration scheme, which is a second-
order predictor–corrector method [40] and is rather easy to code. The first step (predictor step)
is the same as (27), and the second step (corrector step) simply switches the right-hand side
using the updated ũ(x, t + .t) to be

u(x, t + .t)− u(x, t)

.t
= f (ũ(x, t + .t), ∂xũ(x, t + .t)). (29)

Note that all derivatives here on the right-hand side are assumed to use a central difference.
The latter scheme is quite simple, but gives us reasonably accurate and stable evolutions

for our problems. We confirmed that both give us nearly identical evolutions (which will be
shown in figure 2(b)), but the Brailovskaya method requires less computational time.

3.7. Checking the constraints

We compare the violation of the constraint equations during the time evolution. We have
ADM constraint equations, CADM

H and CADM
Mi (equations (5) and (6)), and also Ashtekar’s

constraint equations, CASH
H , CASH

Mi and CASH
Ga (equations (7)–(9), respectively). By means of

the transformation between (γij , Kij ) and (Ẽi
a,Aa

i ), we can evaluate ADM constraints even if
we evolved the system using Ashtekar’s variables and vice versa.

We measure the violation of a constraint by its

(a) maximum, maxx |C(x)|,
(b) L1 norm,

(∑nx
x=1 C(x))/nx , and

(c) L2 norm,
(∑nx

x=1 |C(x)|2/nx
)1/2

,
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Figure 1. Examples of the convergence tests. (a) Convergence of the initial data solver
(Hamiltonian constraint (17) solver). We plot the residual of the conformal factor, L2 norm of
|(ψn − ψn−1)/ψn|2, when it converges, where n is the iteration number in the ICCG routine. The
horizontal value is the amplitude of the gravitational wave (a in equation (21)) where we assume
+-mode single-pulse wave and fix b = 2.0, c = 0.0 in equation (21), andK0 = −0.025. According
to the resolutions (grid points = 101, . . . , 801 for the range of x = [−5,+5]), we see second-order
convergence. (b) Convergence behaviour of ADM evolution code. L2 norms of CADM

H is plotted for
the above initial data for the amplitude a = 0.2. We applied geodesic slicing condition (N = 1).
(c) Convergence behaviour of Ashtekar evolution code. L2 norms of CASH

H is plotted for the above
initial data for the amplitude a = 0.2. We applied geodesic slicing condition (N = 1). We can see
clearly that the error norms in evolutions will decrease in high-resolution cases.

where nx is the number of grid points. When we compare them during the evolution, we
measure them at the same proper time, τ , for the two different evolution systems. The proper
time is defined locally as dτ = N dt , which is also dτ = eN

˜
dt , but here we apply its averaged

value on the whole t = constant surface, (say 〈N〉 = (1/nx)
∑nx

x=1 N ),

τ =
∫ t

0
〈N〉 dt, or τ =

∫ t

0
〈eN

˜
〉 dt, (30)

to characterize the ‘time’ of evolution.
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Figure 1. Continued.

The numerical code passed convergence tests, and the results shown in this paper are
all obtained with acceptable accuracy. In figure 1, we show a result of convergence tests.
We show the convergence behaviour of our initial data solver in figure 1(a), together with
the convergence behaviour of the evolution codes both for ADM and Ashtekar variables in
figures 1(b) and (c). We plotted the residual of the Hamiltonian constraint solver when it was
minimized, and the L2 norm of CADM

H and CASH
H for the evolution of a +-mode single-pulse

wave (the model is described in the next section). We can see that all errors are diminished by
finer resolutions. The order of the convergence† is 1.98 to 2.01 for the initial data solver, and
at best 1.96 (e.g. at τ = 0.5) for the evolution code.

All the results we present in this paper are obtained using 401 grid points for the range
x = [−5,+5]; that is gravitational waves traverse the entire numerical region in proper
time 10 if the background expansion K0 is close to zero. We use the Courant number
ν = .t/.x = 0.2.

We coded all our fundamental quantities (metric, gauge variables, etc) as complex, but
we observed that the evolution from our initial data never violate its metric reality conditions.
Due to the gauge condition for Aa

0 (A11), we also confirmed that our evolutions preserve the
triad reality condition.

4. Experiments 1: differences between hyperbolicities

In this section, we examine the accuracy/stability of the numerical evolutions by comparing the
different hyperbolic systems. We begin by showing how the evolution of Ashtekar’s equations
look, comparing with those of the ADM equations.

4.1. ADM versus Ashtekar

We start by describing our model—plane-wave propagation in an expanding/collapsing
spacetime. We prepare the initial data with one or two gravitational pulse waves in our
numerical region. The pulses then start propagating in both ±x directions at the speed of light,
and appear on the other side of the numerical region due to the periodic boundary condition.

† Here we used the definition of the order of convergence following Bona et al [29].
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Figure 2. Images of gravitational wave propagation and comparisons of dynamical behaviour of
Ashtekar’s variables and ADM variables. We applied the same initial data of two +-mode pulse
waves (a = 0.2, b = 2.0, c = ±2.5 in equation (21) and K0 = −0.025), and the same slicing
condition, the standard geodesic slicing condition (N = 1). (a) Image of the 3-metric component
gyy of a function of proper time τ and coordinate x. This behaviour can be seen identically both
in ADM and Ashtekar evolutions, and both with the Brailovskaya and Crank–Nicholson time-
integration scheme. Part (b) explains this fact by comparing the snapshot of gyy at the same proper
time slice (τ = 10), where four lines at τ = 10 are looked at identically. Parts (c) and (d) are of the
real part of the densitized triad Ẽy

2 , and the real part of the connection A2
y , respectively, obtained

from the evolution of the Ashtekar variables.

When the pulses collide, then the amplitude seems simply to double, as they are superposed,
and the pulses keep travelling in their original propagation direction. That is, we observe
something like solitonic wave pulse propagation.

As we mentioned in section 3.2, we have to assume our background not to be flat, therefore
there are no exact solutions. The reader might think that if we set | trK| to be small and pulse
wave shapes to be quite sharp then our simulations will be close to the analytic colliding
plane-wave solutions which produce the curvature singularity. However, from the numerical
side, these two requirements are contradictory (e.g. sharp wave input produces large curvature
which should be compensated by | trK| in order to construct our initial data). Thus it is not
so surprising that our waves propagate like solitons, not forming a singularity.

In figure 2(a), we plot an image of wave propagation (a metric component gyy) up to
τ = 10, of +-mode pulse waves initially located at x = ±2.5. We took a small negative K0,
so that the background spacetime is slowly expanding.

Figure 2(b), then, tells us that our ADM evolution code and Ashtekar’s variable code give
us identical evolutions. We plotted a snapshot of gyy on the initial data (which is common to
all models here), and its snapshot at τ = 10.0. The fact that all four lines (ADM/Ashtekar, of
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Figure 3. Comparisons of the constraint violation of Ashtekar’s equation with that of ADM. (a)
L2 norm of Ashtekar’s Hamiltonian constraint equation, CASH

H as a function of averaged proper
time. (b) L2 norm of the ADM Hamiltonian constraint equation, CADM

H as a function of averaged
proper time. The plots are of the same parameters as those of figure 2.

their Brailovskaya/Crank–Nicholson evolution schemes) overlapped clearly indicates that we
are showing exact evolutions.

We also plotted a typical evolution of the fundamental dynamical quantities Ẽy

2 and A2
y in

figures 2(c) and (d).
Next we compare constraint violations by Ashtekar’s equation with that of ADM. In

figure 3, we plot the L2 norm of CASH
H and CADM

H . We see that ADM evolution shows less
violation in measuring CADM

H , and the Ashtekar evolution shows less violation in measuring
CASH
H . The magnitudes of these violations are similar. Thus, we believe that these violations are

within the numerical truncation errors in the process of numerical transformation of variables
(ADM to Ashtekar/ Ashtekar to ADM), and therefore it is not appropriate to conclude here
which formulation is better.

As the reader may guess, the violations of constraints reduce if the background spacetime
is expanding (K0 < 0). Therefore, we will use the collapsing background spacetime (K0 > 0)
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Figure 4. Comparisons of the strongly hyperbolic system (Ashtekar II) with the weakly hyperbolic
system (Ashtekar original) (N˜ = 1 slice). Panels (a) are of +-mode waves (a = 0.2, b =
2.0, c = ±2.5 in equation (21), while (b)s are of ×-mode waves (a = 0.1, b = 2.0, c = ±2.5
in equation (22), in a background spacetime with K0 = 0.025). We plot the L2 norm of the
Hamiltonian and momentum constraints, CASH

H and CASH
M , for each case. We see from all of them

that a strongly hyperbolic system improves the violation of the constraints.

hereafter for presentations, with the expectation of having more nonlinear effects; however, this
direction also stops the evolution after the finite time (e.g. for flat initial data withK0 = +0.025,
the spacetime will collapse to zero volume at around t = 60).

4.2. Comparison between hyperbolicities

Here we present our comparisons of the accuracy and/or stability between the different
hyperbolicities. Since all examples we show in this section are not for the case of unstable
evolution (no exponential growth of the constraint violation), our experiments can be said to
be comparisons of the accuracy of the evolution, conservatively.

We first compare the (original) weakly hyperbolic system (system I in table 1) with the
strongly hyperbolic system (system II in table 1). This comparison can be made under the
densitized geodesic slicing condition, N

˜
= 1. We prepare two initial gravitational pulses

(both +–+ or ×–× modes) and take our background spacetime to be collapsing (K0 > 0). In
figure 4, we show the constraint errors, CASH

H and CASH
M . In both two situations, we observe

that the strongly hyperbolic system has slightly improved the violation of the constraints, but
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Figure 5. Comparisons of the symmetric hyperbolic system (Ashtekar III) with the weakly
hyperbolic system (Ashtekar original) (N = 1 slice), in the same way as in figure 4. We applied
the same parameters as those of figure 4. Figures (a1) and (a2) are of +-mode wave propagation
and the L2 norm of CASH

H and CASH
M , respectively. Figures (b1) and (b2) are of ×-mode wave

propagation and the L2 norm of CASH
H and CASH

M , respectively. We see from all of them that a
symmetric hyperbolic system improves the violation of the constraints.

we cannot see the orders of magnitude differences.
Similarly, we next compare the (original) weakly hyperbolic system (system I in table 1)

with the symmetric hyperbolic system (system III in table 1). This comparison can be made
under the standard geodesic slicing condition, N = 1. We repeat the same experiments as
above and show plots in figure 5. We again see that the symmetric hyperbolic system slightly
improves the situation, but not so drastically.

From both figures 4 and 5, we see that the strongly and symmetric hyperbolic systems
produce less violation of constraints than the original weakly hyperbolic system. Therefore,
one conclusion is that adjusting the equation of motion with constraint terms does definitely
make the system accurate. However, the constraint violation remains the same order of
magnitude.

From each figure, we may conclude that a higher-level hyperbolic system gives us slightly
more accurate evolutions. However, if we evaluate the magnitude of the L2 norms, then
we also conclude that there is no measurable differences between strongly and symmetric
hyperbolicities. This last fact will be supported more affirmatively in the next experiment.
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5. Experiments 2: another way to control the accuracy/stability

The results we have presented in the previous section indicate that both strongly and symmetric
hyperbolic systems show better performance than the original weakly hyperbolic system.
These systems are obtained by adding constraint terms (or ‘adjusted’ terms) to the right-hand
side of the original equations, (10) and (11). In this section, we report on simple experiments
in changing the magnitude of the multipliers of such adjusted terms.

We consider the following system, where the equations of motion are adjusted in the same
way as before, but with a real-valued constant multiplier κ:

∂t Ẽ
i
a = −iDj (ε

cb
aN˜

Ẽj
c Ẽ

i
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0εab
c Ẽi

c + κP i
ab CASH

G
b, (31)

where P i
ab ≡ Niδab + iN

˜
εab

cẼi
c,

∂tAa
i = −iεabcN˜

Ẽ
j

bF
c
ij + NjF a

ji + DiAa
0 + κQa

i CASH
H + κRi

ja CASH
Mj , (32)

where Qa
i ≡ e−2N

˜
Ẽa
i , Ri

ja ≡ ie−2N
˜
εacbẼ

b
i Ẽ

j
c .

The set of equations (31) and (32) becomes the original weakly hyperbolic system if κ = 0,
becomes the symmetric hyperbolic system if κ = 1 andN = constant, and remains a strongly
hyperbolic system for other choices of κ except κ = 1

2 which only forms a weakly hyperbolic
system. We again remark that the coefficients for constructing the symmetric hyperbolic
system are uniquely determined.

We tried the same evolutions as in the previous section for different value of κ . In figure 6,
we plot the L2 norm of the Hamiltonian and momentum constraint equations, CASH

H and CASH
M .

We checked first that κ = 0 and 1 produce the same results as those of weakly and symmetric
hyperbolic systems. What is interesting is the case of κ = 2 and 3. These κs produce
better performance than the symmetric hyperbolic system, although these cases are of strongly
hyperbolic levels. Therefore, as far as monitoring the violation of the constraints is concerned,
we may say that the symmetric hyperbolic form is not always the best. We note that the
negative κ will produce unstable evolution as we plotted, while too a large positive κ will also
result in unstable evolution in the end (see the κ = 3 lines).

We also tried similar experiments with the vacuum Maxwell equation. The original
Maxwell equation has a symmetric hyperbolicity, and additional constraint terms (with
multiplier κ) reduce the hyperbolicity to the strong or weak level. We show the details and a
figure in appendix B, but in short there may be no measurable differences between strongly
and symmetric hyperbolicities.

These experiments in changing κ are now reported in our paper II [41] more extensively.
There, we propose a plausible explanation as to why such adjusted terms work for stabilizing
the system. We introduce the idea in appendix C. Briefly, we will conjecture a criterion using
the eigenvalues of the ‘adjusted version’ of the constraint propagation equations. This analysis
may explain the appearance of phase differences between two systems, which is observed in
figures 4–6.

6. Discussion

Motivated by many recent proposals for hyperbolic formulations of the Einstein equation, we
studied numerically these accuracy/stability properties with the purpose of comparing three
mathematical levels of hyperbolicity: weakly hyperbolic, strongly hyperbolic and symmetric
hyperbolic systems. We apply Ashtekar’s connection formulation, because this is the only
known system in which we can compare three hyperbolic levels with the same interface.
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Figure 6. Comparisons of the ‘adjusted’ system with the different multiplier, κ , in equations (31)
and (32). The model uses +-mode pulse waves (a = 0.1, b = 2.0, c = ±2.5) in equation (21) in a
backgroundK0 = −0.025. Plots are of the L2 norm of the Hamiltonian and momentum constraint
equations, CASH

H and CASH
M ((a) and (b), respectively). We see some κ produce a better performance

than the symmetric hyperbolic system.

Our numerical code demonstrates gravitational wave propagation in plane-symmetric
spacetime, and we compare the ‘accuracy’ and/or ‘stability’ by monitoring the violation of
the constraints. Actually, our experiments in section 4 were the comparisons of accuracy
in evolutions, while in section 5 we observed cases of unstable evolution. By comparing
with the results obtained from the weakly hyperbolic system, we observe that the strongly
and symmetric hyperbolic system show better properties with little differences between them.
Therefore, we may conclude that higher levels of hyperbolic formulations help the numerics
more, though the differences are small.

However, we also found that the symmetric hyperbolic system is not always the best
one for controlling accuracy or stability, by introducing a multiplier for adjusted terms in
the equations of motion. This result suggests that a certain kind of hyperbolicity is enough
to control the violation of the constraint equation. In our case it is the strongly hyperbolic



Hyperbolic formulations and numerical relativity 4817

level. This statement is supported by an experiment in the Maxwell system as we describe in
appendix B.

The remaining question is: why can we obtain better performance by adding constraint
terms in the dynamical equations? The added terms are basically error terms during the
evolution for the original dynamical equations. Nevertheless, these terms improve the accuracy
of the evolution. We now have a plausible way to explain the reason which is discussed in our
paper II [41] (a brief introduction is given in appendix C in this paper). There we evaluate
the eigenvalues of the adjusted version of the constraint propagation equations, and propose a
criteria for obtaining the stability of the system. In some cases, for example, the decay/growth
of the constraints can predict the signature of the eigenvalues of the adjusted version of the
constraint propagation equations. In [41], we will discuss this point in detail together with
a numerical demonstration of λ-systems [21, 22]. There we also show that some choices of
adjusted terms may produce an unstable evolution.

To conclude, we are glad to announce that Ashtekar’s connection variables have finally
been applied in numerical simulations. This new approach, we hope, will contribute to further
understanding of gravitational physics, and will open a new window for peeling off interesting
nonlinear natures together with a step towards a numerical treatment of quantum gravity.
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Appendix A. Ashtekar’s formulation of general relativity

We give a brief review of the Ashtekar formulation and the way to handle reality conditions.
This appendix describes our notation.

A.1. Variables and equations

The key feature of Ashtekar’s formulation of general relativity [17] is the introduction of a
self-dual connection as one of the basic dynamical variables. Let us write the metric gµν
using the tetrad EI

µ as gµν = EI
µE

J
ν ηIJ†. Define its inverse, Eµ

I , by Eµ

I := EJ
ν g

µνηIJ and
we impose E0

a = 0 as the gauge condition. We define SO(3, C) as self-dual and anti-self-
dual connections ±Aa

µ := ω0a
µ ∓ 1

2 iεabc ωbcµ , where ωIJµ is a spin connection 1-form (Ricci
connection), ωIJµ := EIν∇µE

J
ν . Ashtekar’s plan is to use only the self-dual part of the

connection +Aa
µ and to use its spatial part +Aa

i as a dynamical variable. Hereafter, we simply
denote +Aa

µ as Aa
µ.

The lapse function,N , and shift vector,Ni , both of which we treat as real-valued functions,
are expressed as Eµ

0 = (1/N,−Ni/N ). This allows us to think of Eµ

0 as a normal vector

† We useµ, ν = 0, . . . , 3 and i, j = 1, . . . , 3 as spacetime indices, while I, J = (0), . . . , (3) and a, b = (1), . . . , (3)
are SO(1, 3), SO(3) indices, respectively. We raise and lower µ, ν, . . . by gµν and gµν (the Lorentzian metric);
I, J, . . . by ηIJ = diag(−1, 1, 1, 1) and ηIJ ; i, j, . . . by γ ij and γij (the 3-metric); a, b, . . . by δab and δab . We also
use volume forms εabc: εabcεabc = 3!.
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field to ? spanned by the condition t = x0 = constant, which plays the same role as
that of the Arnowitt–Deser–Misner formulation. Ashtekar treated the set (Ẽi

a , Aa
i ) as basic

dynamical variables, where Ẽi
a is an inverse of the densitized triad defined by Ẽi

a := eEi
a,

where e := detEa
i is a density. This pair forms the canonical set.

In the case of pure gravitational spacetime, the Hilbert action takes the form

S =
∫

d4x
[
(∂tAa

i )Ẽ
i
a + 1

2 iN
˜
Ẽi
aẼ

j

bF
c
ij ε

ab
c − e2@N

˜
−NiF a

ij Ẽ
j
a + Aa

0 Di Ẽ
i
a

]
, (A1)

where N
˜

:= e−1N , Fa
µν := 2∂[µAa

ν] − iεabc Ab
µAc

ν is the curvature 2-form, @ is the

cosmological constant, Di Ẽ
j
a := ∂iẼ

j
a − iεabc Ab

i Ẽ
j
c , and e2 = det Ẽi

a = (detEa
i )

2 is defined
to be det Ẽi

a = 1
6ε

abcε
˜ ijk

Ẽi
aẼ

j

b Ẽ
k
c , where εijk := εabcE

a
i E

b
jE

c
k and ε

˜ ijk
:= e−1εijk†.

Varying the action with respect to the non-dynamical variables N
˜

, Ni and Aa
0 yields the

constraint equations,

CASH
H := 1

2 iεabc Ẽ
i
aẼ

j

bF
c
ij −@ det Ẽ ≈ 0, (A2)

CASH
Mi := −Fa

ij Ẽ
j
a ≈ 0, (A3)

CASH
Ga := Di Ẽ

i
a ≈ 0. (A4)

The equations of motion for the dynamical variables (Ẽi
a and Aa

i ) are

∂t Ẽ
i
a = −iDj

(
εcbaN˜

Ẽj
c Ẽ

i
b

)
+ 2Dj

(
N [j Ẽi]

a

)
+ iAb

0εab
c Ẽi

c, (A5)

∂tAa
i = −iεabcN˜

Ẽ
j

bF
c
ij + NjF a

ji + DiAa
0 + @N

˜
Ẽa
i , (A6)

where DjX
ji
a := ∂jX

ji
a − iεabcAb

jX
ji
c , for Xij

a + Xji
a = 0.

A.2. Reality conditions

In order to construct the metric from the variables (Ẽi
a,Aa

i , N˜
, Ni), we first prepare the tetrad

E
µ

I as Eµ

0 = (1/eN
˜
,−Ni/eN

˜
) and Eµ

a = (0, Ẽi
a/e). Using them, we obtain the metric gµν

such that gµν := E
µ

I E
ν
J η

IJ .

This metric, in general, is not real-valued in the Ashtekar formulation. To ensure that the
metric is real-valued, we need to impose real lapse and shift vectors together with two metric
reality conditions;

Im
(
Ẽi
aẼ

ja
) = 0, (A7)

Wij := Re
(
εabcẼk

aẼ
(i
b DkẼ

j)
c

) = 0, (A8)

where the latter comes from the secondary reality condition of the metric Im{∂t (Ẽi
aẼ

ja)} = 0
[26], and we assume det Ẽ > 0 (see [27]).

For later convenience, we also prepare stronger reality conditions, triad reality conditions.
The primary and secondary conditions are written, respectively, as

Ui
a := Im(Ẽi

a) = 0, (A9)

Im(∂t Ẽ
i
a) = 0. (A10)

Using the equations of motion of Ẽi
a , the gauge constraint (A4), the metric reality conditions

(A7), (A8) and the primary condition (A9), we see that (A10) is equivalent to [27]

Re(Aa
0) = ∂i(N˜

)Ẽia + (1/2e)Eb
i N˜

Ẽja∂j Ẽ
i
b + Ni Re(Aa

i ), (A11)

† When (i, j, k) = (1, 2, 3), we have εijk = e, ε
˜ ijk

= 1, εijk = e−1 and ε̃ijk = 1.
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or with undensitized variables,

Re(Aa
0) = ∂i(N)E

ia + Ni Re(Aa
i ). (A12)

From this expression we see that the secondary triad reality condition restricts the three
components of the ‘triad lapse’ vector Aa

0. Therefore, equation (A11) is not a restriction
on the dynamical variables (Ẽi

a and Aa
i ) but on the slicing, which we should impose on each

hypersurface.
Throughout the discussion in this paper, we assume that the initial data of (Ẽi

a,Aa
i ) for

evolution are solved so as to satisfy all three constraint equations and the metric reality condition
(A7) and (A8). Practically, this is obtained, for example, by solving ADM constraints and by
transforming a set of initial data to Ashtekar’s notation.

Appendix B. Experiments using the Maxwell equation

In this appendix, using the Maxwell equation of the vacuum field, we show that the symmetric
hyperbolic system does not change the stability feature drastically. The result here supports
the discussion in section 5. More detail analysis can be found in our paper II [41].

The Maxwell equation has two constraint equations,

CE := ∂iE
i ≈ 0, CB := ∂iB

i ≈ 0, (B1)

and two dynamical equations

∂tEi = cεi
jk∂jBk, ∂tBi = −cεijk∂jEk (B2)

for the field (Ei, Bi).
Suppose we have adjusted (B2) using the constraint terms, (B1), with a multiplier, κ ,

∂tEi = cεi
jk∂jBk + κiCE, ∂tBi = −cεijk∂jEk + κiCB (B3)

where κi = (κ, κ, κ) for simplicity. This matrix expression

∂t

(
Ei

Bi

)
∼=
(
δjlκi −cεij l
cεi

j l δjlκi

)
∂l

(
Ej

Bj

)
(B4)

 
 

Figure B1. Comparisons of the ‘adjusted’ system with the different multiplier, κ , in equation (B3).
Plots are of the L2 norm of the constraint equations, (B1).



4820 H Shinkai and G Yoneda

immediately tells us its hyperbolicity depending on κ as follows. The system, (B4), becomes
of symmetric hyperbolic form when κ = 0 (that is the original Maxwell equation), becomes
of weakly hyperbolic form when κ = ±c, and becomes strongly hyperbolic otherwise. The
eigenvalues of the dynamical equation can be written as (c, c,−c,−c, κ, κ).

We made a numerical code to demonstrate a propagation of plane electromagnetic wave,

Ei(x, t) =
(

0, 0,− 1√
2

sin

(
x + y√

2
− ct

))
, (B5)

Bi(x, t) =
(

−1

2
sin

(
x + y√

2
− ct

)
,

1

2
sin

(
x + y√

2
− ct

)
, 0

)
(B6)

in two-dimensional spacetime with periodic boundary condition. We use (B6) as our initial
data, and monitor its numerical error during its evolution by evaluating constraint equations
and by checking the error from the exact solution. The error itself is quite small, but
as we show in figure B1 we found the difference due to the multiplier of the adjusted
terms κ . We see that the symmetric hyperbolic equation shows the best performance for
the stability, but does not show very different performance from the strongly hyperbolic
system.

Appendix C. Why do adjusted equations have better performance?

Here, we try to explain briefly why the adjusted equations ((31) and (32) for Ashtekar’s
system, (B3) for Maxwell equations) reduce the violation of the constraints in the evolution.
The detailed explanations and numerical experiments are given in our paper II [41], and this
appendix describes the essential idea of the mechanism.

Suppose we have constraint equations, C1 ≈ 0, C2 ≈ 0, . . . , in a system. Normally,
we monitor the error of the evolution by evaluating these constraint equations on the each
constant-time hypersurface. Such monitoring, on the other hand, can also be performed by
checking the evolution equations of the constraint, which we denote as constraint propagation
equations (cf [8]). We, therefore, consider constraint propagation equation transformed in
Fourier components, Ĉ,

∂t




Ĉ1

Ĉ2

...


 = M




Ĉ1

Ĉ2

...


. (C1)

The idea here is to estimate the eigenvalues of the matrix, M , after we took its leading-
order quantity in linearization against a particular background. Clearly, if all of the real part of
the eigenvalues are negative, then all constraints decays to zero along the system’s evolution.
In our paper II [41], we show that such a case can be obtained by adding ‘adjusted terms’ both
for Ashtekar’s and Maxwell’s systems. There we also show examples of unstable evolution
by choosing adjusted terms which produce positive eigenvalues of M . The imaginary part of
the eigenvalues are also supposed to contribute to the appearance of the phase differences of
the system.

At this point, we can say that adjusted terms are responsible for obtaining the stable and/or
accurate evolution system, and this is a way to control the stability of the simulation, which
affects more than the system’s hyperbolicity.
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[10] Bona C and Massó J 1992 Phys. Rev. Lett. 68 1097
[11] Scheel M A, Baumgarte T W, Cook G B, Shapiro S L and Teukolsky S A 1997 D 56 6320

Scheel M A, Baumgarte T W, Cook G B, Shapiro S L and Teukolsky S A 1998 Phys. Rev. D 58 044020
[12] Choquet-Bruhat Y and York J W Jr 1995 C. R. Acad. Sci. Paris I 321 Série I, 1089

(Choquet-Bruhat Y and York J W Jr 1995 Preprint gr-qc/9506071)
Abrahams A, Anderson A, Choquet-Bruhat Y and York J W Jr 1995 Phys. Rev. Lett. 75 3377
Abrahams A, Anderson A, Choquet-Bruhat Y and York J W Jr 1996 C. R. Acad. Sci. Paris II 323 835
Abrahams A, Anderson A, Choquet-Bruhat Y and York J W Jr 1997 Class. Quantum Grav. 14 A9
Anderson A and York J W Jr 1999 Phys. Rev. Lett. 82 4384

[13] Alcubierre M 1997 Phys. Rev. D 55 5981
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