Controlling Constraint Violations

— Asymptotically Constrained Systems via Constraint Propagation Analysis —

Hisaaki Shinkai Comp. Sci. Div., RIKEN Institute, Japan hshinkai@postman.riken.go.jp

based on works with Gen Yoneda, Dept. Math. Sci, Waseda Univ., Japan

Outline

Why mathematically equivalent eqs produce different numerical stability?

- Three approaches: (1) ADM/BSSN, (2) hyperbolic form. (3) attractor systems
- Proposals : A unified treatment as Adjusted Systems

Refs

review articlegr-qc/0209111 (Nova Science Publ.)for Ashtekar form.PRD 60 (1999) 101502, CQG 17 (2000) 4799, CQG 18 (2001) 441for ADM form.PRD 63 (2001) 124019, CQG 19 (2002) 1027, gr-qc/0306xxxfor BSSN form.PRD 66 (2002) 124003generalCQG 20 (2003) L31

at Gravitation: A Decennial Perspective, Penn State, 2003 June.

Plan of the talk

Control Constraints: H. Shinkai

(*)

(*)

(*)

(*)

1. Introduction: Formulation problem and Three approaches

- (0) Arnowitt-Deser-Misner
- (1) Baumgarte-Shapiro-Shibata-Nakamura formulation
- (2) Hyperbolic formulations
- (3) Attractor systems
- 2. "Adjusted Systems"

Asymptotically constrained system by adjusting evolution eqs. General discussion on Constraint Propagation analysis

Adjusted ADM systems

CP Eigenvalues in Flat / Schwarzschild background

Numerical Examples

N + 1-dim version

Adjusted BSSN systems

CP Eigenvalues in Flat background Numerical Examples

3. Summary and Future Issues

strategy 0 The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

	Maxwell eqs.	ADM Einstein eq.
constraints	div $\mathbf{E} = 4\pi\rho$	$^{(3)}R + (\mathrm{tr}K)^2 - K_{ij}K^{ij} = 2\kappa\rho_H + 2\Lambda$
	div $\mathbf{B} = 0$	$D_j K^j_{\ i} - D_i \text{tr} K = \kappa J_i$
evolution eqs.	$\frac{1}{c}\partial_t \mathbf{E} = rot \ \mathbf{B} - \frac{4\pi}{c}\mathbf{j}$ $\frac{1}{c}\partial_t \mathbf{B} = -rot \ \mathbf{E}$	$\begin{aligned} \partial_t \gamma_{ij} &= -2NK_{ij} + D_j N_i + D_i N_j, \\ \partial_t K_{ij} &= N({}^{(3)}R_{ij} + \operatorname{tr} K K_{ij}) - 2NK_{il} K^l_{\ j} - D_i D_j N \\ &+ (D_j N^m) K_{mi} + (D_i N^m) K_{mj} + N^m D_m K_{ij} - N \gamma_{ij} \Lambda \\ &- \kappa \alpha \{ S_{ij} + \frac{1}{2} \gamma_{ij} (\rho_H - \operatorname{tr} S) \} \end{aligned}$

Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

Many (too many) trials and errors, not yet a definit recipe.

Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

Many (too many) trials and errors, not yet a definit recipe.

- strategy 0: Arnowitt-Deser-Misner formulation
- strategy 1: Shibata-Nakamura's (Baumgarte-Shapiro's) modifications to the standard ADM
- strategy 2: Apply a formulation which reveals a hyperbolicity explicitly
- strategy 3: Formulate a system which is "asymptotically constrained" against a violation of constraints

By adding constraints in RHS, we can kill error-growing modes \Rightarrow How can we understand the features systematically?

gr-qc/0209111

		formulations	numerical applications						
(0) The standard ADM formulation									
	ADM	1962 Arnowitt-Deser-Misner [12, 78]	\Rightarrow many						
(1) The BSSN formulation									
	BSSN	1987 Nakamura et al [62, 63, 72]	\Rightarrow 1987 Nakamura et al [62, 63]						
			\Rightarrow 1995 Shibata-Nakamura [72]						
			$\Rightarrow 2002$ Shibata-Uryu [73] etc						
		1999 Baumgarte-Shapiro [15]	\Rightarrow 1999 Baumgarte-Shapiro [15]						
			$\Rightarrow 2000$ Alcubierre et al [5, 7]						
			$\Rightarrow 2001$ Alcubierre et al [6] etc						
		1999 Alcubierre et al [8]							
		1999 Frittelli-Reula [41]							
		2002 Laguna-Shoemaker [54]	$\Rightarrow 2002$ Laguna-Shoemaker [54]						
(2) The hy	perbolic form	ulations							
	BM	1989 Bona-Massó $[17, 18, 19]$	\Rightarrow 1995 Bona et al [19, 20, 21]						
			\Rightarrow 1997 Alcubierre, Massó [2, 4]						
		1997 Bona et al [20]	$\Rightarrow 2002$ Bardeen-Buchman [16]						
		1999 Arbona et al $[11]$							
	CB-Y	1995 Choquet-Bruhat and York [31]	\Rightarrow 1997 Scheel et al [69]						
		1995 Abrahams et al $[1]$	\Rightarrow 1998 Scheel et al [70]						
		1999 Anderson-York [10]	$\Rightarrow 2002$ Bardeen-Buchman [16]						
	FR	1996 Frittelli-Reula [40]	$\Rightarrow 2000 \text{ Hern } [43]$						
		1996 Stewart [79]							
	KST	2001 Kidder-Scheel-Teukolsky [51]	$\Rightarrow 2001$ Kidder-Scheel-Teukolsky [51]						
			$\Rightarrow 2002$ Calabrese et al [26]						
			$\Rightarrow 2002$ Lindblom-Scheel [57]						
		2002 Sarbach-Tiglio [68]							
	CFE	1981 Friedrich[35]	\Rightarrow 1998 Frauendiener [34]						
			\Rightarrow 1999 Hübner [45]						
	tetrad	1995 vanPutten-Eardley[84]	\Rightarrow 1997 vanPutten [85]						
	Ashtekar	1986 Ashtekar [13]	$\Rightarrow 2000$ Shinkai-Yoneda [75]						
		1997 Iriondo et al [47]							
		1999 Yoneda-Shinkai [90, 91]	\Rightarrow 2000 Shinkai-Yoneda [75, 92]						
(3) Asymp	ototically const	trained formulations							
λ -system	to FR	1999 Brodbeck et al $[23]$	$\Rightarrow 2001$ Siebel-Hübner [77]						
	to Ashtekar	1999 Shinkai-Yoneda [74]	$\Rightarrow 2001$ Yoneda-Shinkai [92]						
adjusted	to ADM	1987 Detweiler [32]	$\Rightarrow 2001$ Yoneda-Shinkai [93]						
	to ADM	2001 Shinkai-Yoneda [93, 76]	$\Rightarrow 2002$ Mexico NR Workshop [58]						
	to BSSN	2002 Yoneda-Shinkai [94]	$\Rightarrow 2002$ Mexico NR Workshop [58]						
			\Rightarrow 2002 Yo-Baumgarte-Shapiro [88]						

2000s

strategy 1 Shibata-Nakamura's (Baumgarte-Shapiro's) modifications to the standard ADM

- define new variables ($\phi, \tilde{\gamma}_{ij}, K, \tilde{A}_{ij}, \tilde{\Gamma}^i$), instead of the ADM's (γ_{ij}, K_{ij}) where

$$\tilde{\gamma}_{ij} \equiv e^{-4\phi} \gamma_{ij}, \qquad \tilde{A}_{ij} \equiv e^{-4\phi} (K_{ij} - (1/3)\gamma_{ij}K), \qquad \tilde{\Gamma}^i \equiv \tilde{\Gamma}^i_{jk} \tilde{\gamma}^{jk},$$

use momentum constraint in Γ^i -eq., and impose $det \tilde{\gamma}_{ij} = 1$ during the evolutions.

- The set of evolution equations become

$$\begin{aligned} (\partial_t - \mathcal{L}_{\beta})\phi &= -(1/6)\alpha K, \\ (\partial_t - \mathcal{L}_{\beta})\tilde{\gamma}_{ij} &= -2\alpha \tilde{A}_{ij}, \\ (\partial_t - \mathcal{L}_{\beta})K &= \alpha \tilde{A}_{ij}\tilde{A}^{ij} + (1/3)\alpha K^2 - \gamma^{ij}(\nabla_i \nabla_j \alpha), \\ (\partial_t - \mathcal{L}_{\beta})\tilde{A}_{ij} &= -e^{-4\phi}(\nabla_i \nabla_j \alpha)^{TF} + e^{-4\phi}\alpha R^{(3)}_{ij} - e^{-4\phi}\alpha(1/3)\gamma_{ij}R^{(3)} + \alpha(K\tilde{A}_{ij} - 2\tilde{A}_{ik}\tilde{A}^k{}_j) \\ \partial_t \tilde{\Gamma}^i &= -2(\partial_j \alpha)\tilde{A}^{ij} - (4/3)\alpha(\partial_j K)\tilde{\gamma}^{ij} + 12\alpha \tilde{A}^{ji}(\partial_j \phi) - 2\alpha \tilde{A}_k{}^j(\partial_j \tilde{\gamma}^{ik}) - 2\alpha \tilde{\Gamma}^k{}_{lj}\tilde{A}^j{}_k\tilde{\gamma}^{il} \\ &- \partial_j \left(\beta^k \partial_k \tilde{\gamma}^{ij} - \tilde{\gamma}^{kj}(\partial_k \beta^i) - \tilde{\gamma}^{ki}(\partial_k \beta^j) + (2/3)\tilde{\gamma}^{ij}(\partial_k \beta^k)\right) \end{aligned}$$

$$\begin{aligned} R_{ij} &= \partial_k \Gamma_{ij}^k - \partial_i \Gamma_{kj}^k + \Gamma_{ij}^m \Gamma_{mk}^k - \Gamma_{kj}^m \Gamma_{mi}^k =: \tilde{R}_{ij} + R_{ij}^\phi \\ R_{ij}^\phi &= -2\tilde{D}_i \tilde{D}_j \phi - 2\tilde{g}_{ij} \tilde{D}^l \tilde{D}_l \phi + 4(\tilde{D}_i \phi)(\tilde{D}_j \phi) - 4\tilde{g}_{ij} (\tilde{D}^l \phi)(\tilde{D}_l \phi) \\ \tilde{R}_{ij} &= -(1/2)\tilde{g}^{lm} \partial_{lm} \tilde{g}_{ij} + \tilde{g}_{k(i} \partial_{j)} \tilde{\Gamma}^k + \tilde{\Gamma}^k \tilde{\Gamma}_{(ij)k} + 2\tilde{g}^{lm} \tilde{\Gamma}_{l(i}^k \tilde{\Gamma}_{j)km} + \tilde{g} lm \tilde{\Gamma}_{im}^k \tilde{\Gamma}_{klj} \end{aligned}$$

No explicit explanations why this formulation works better.
 AEI group (2000): the replacement by momentum constraint is essential.

strategy 2 Apply a formulation which reveals a hyperbolicity explicitly.

For a first order partial differential equations on a vector u,

- Wellposed behaviour

symmetric hyperbolic system \implies WELL-POSED, $||u(t)|| \le e^{\kappa t} ||u(0)||$

Symmetric hyp

- Better boundary treatments $\Leftarrow \exists$ characteristic field.
- known numerical techniques in Newtonian hydrodynamics.

strategy 3 Formulate a system which is "asymptotically constrained" against a violation of constraints "Asymptotically Constrained System" – Constraint Surface as an Attractor

method 1: λ -system (Brodbeck et al, 2000)

- Add aritificial force to reduce the violation of constraints
- To be guaranteed if we apply the idea to a symmetric hyperbolic system.

method 2: Adjusted system (HS-Yoneda, 2000, 2001)

- We can control the violation of constraints by adjusting constraints to EoM.
- Eigenvalue analysis of constraint propagation equations may prodict the violation of error.
- This idea is applicable even if the system is not symmetric hyperbolic. \Rightarrow

for the ADM/BSSN formulation, too!!

Idea of λ -system

Brodbeck, Frittelli, Hübner and Reula, JMP40(99)909

We expect a system that is robust for controlling the violation of constraints ${\bf Recipe}$

- 1. Prepare a symmetric hyperbolic evolution system $\partial_t u = J \partial_i u + K$
- 2. Introduce λ as an indicator of violation of constraint which obeys dissipative eqs. of motion
- 3. Take a set of (u, λ) as dynamical variables
- 4. Modify evolution eqs so as to form a symmetric hyperbolic system

Remarks

- BFHR used a sym. hyp. formulation by Frittelli-Reula [PRL76(96)4667]
- The version for the Ashtekar formulation by HS-Yoneda [PRD60(99)101502] for controlling the constraints or reality conditions or both.
- Succeeded in evolution of GW in planar spacetime using Ashtekar vars. [CQG18(2001)441]
- Do the recovered solutions represent true evolution? by Siebel-Hübner [PRD64(2001)024021]

 $\partial_t \lambda = \alpha C - \beta \lambda$ $(\alpha \neq 0, \beta > 0)$ $\partial_t \begin{pmatrix} u \\ \lambda \end{pmatrix} \simeq \begin{pmatrix} A & 0 \\ F & 0 \end{pmatrix} \partial_i \begin{pmatrix} u \\ \lambda \end{pmatrix}$ $\partial_t \begin{pmatrix} u \\ \lambda \end{pmatrix} = \begin{pmatrix} A & \bar{F} \\ F & 0 \end{pmatrix} \partial_i \begin{pmatrix} u \\ \lambda \end{pmatrix}$

Idea of "Adjusted system" and Our Conjecture

CQG18 (2001) 441, PRD 63 (2001) 120419, CQG 19 (2002) 1027

General Procedure

- 1. prepare a set of evolution eqs.
- 2. add constraints in RHS
- 3. choose appropriate $F(C^a, \partial_b C^a, \cdots)$ to make the system stable evolution

How to specify $F(C^a, \partial_b C^a, \cdots)$?

- 4. prepare constraint propagation eqs.
- 5. and its adjusted version

 $\partial_t C^a = g(C^a, \partial_b C^a, \cdots)$

$$\partial_t C^a = g(C^a, \partial_b C^a, \cdots) + G(C^a, \partial_b C^a, \cdots)$$

6. Fourier transform and evaluate eigenvalues $\partial_t \hat{C}^k = \underline{A}(\hat{C}^a) \hat{C}^k$

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation eqs. If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more stable.

$$\partial_t u^a = f(u^a, \partial_b u^a, \cdots)$$

$$\partial_t u^a = f(u^a, \partial_b u^a, \cdots) + F(C^a, \partial_b C^a, \cdots)$$

The Adjusted system (essentials):

Purpose:	Control the violation of constraints by reformulating the system so as to have a constrained surface an attractor.
Procedure:	Add constraints to evolution eqs, and adjust its multipliers.
Theoretical support:	Eigenvalue analysis of the constraint propagation equations.
Advantages:	Available even if the base system is not a symmetric hyperbolic.
Advantages:	Keep the number of the variable same with the original system.

Conjecture on Constraint Amplification Factors (CAFs):

$$\partial_t \begin{pmatrix} \hat{C}_1 \\ \vdots \\ \hat{C}_N \end{pmatrix} = \begin{pmatrix} \text{Constraint} \\ \text{Propagation} \\ \text{Matrix} \end{pmatrix} \begin{pmatrix} \hat{C}_1 \\ \vdots \\ \hat{C}_N \end{pmatrix},$$

Eigenvalues = CAFs

- We see more stable evolution, if CAFs have
- (A) negative real-part (the constraints are forced to be diminished), or
- (B) non-zero imaginary-part (the constraints are propagating away).

Example: the Maxwell equations

Yoneda HS, CQG 18 (2001) 441

Maxwell evolution equations.

$$\begin{array}{lll} \partial_t E_i &=& c\epsilon_i{}^{jk}\partial_j B_k + P_i\,C_E + Q_i\,C_B,\\ \partial_t B_i &=& -c\epsilon_i{}^{jk}\partial_j E_k + R_i\,C_E + S_i\,C_B,\\ C_E &=& \partial_i E^i \approx 0, \quad C_B = \partial_i B^i \approx 0, \end{array} \begin{cases} \text{sym. hyp} &\Leftrightarrow & P_i = Q_i = R_i = S_i = 0,\\ \text{strongly hyp} &\Leftrightarrow & (P_i - S_i)^2 + 4R_iQ_i > 0,\\ \text{weakly hyp} &\Leftrightarrow & (P_i - S_i)^2 + 4R_iQ_i \geq 0 \end{cases} \end{cases}$$

Constraint propagation equations

$$\begin{array}{lll} \partial_t C_E &=& (\partial_i P^i) C_E + P^i (\partial_i C_E) + (\partial_i Q^i) C_B + Q^i (\partial_i C_B), \\ \partial_t C_B &=& (\partial_i R^i) C_E + R^i (\partial_i C_E) + (\partial_i S^i) C_B + S^i (\partial_i C_B), \\ \begin{cases} \text{sym. hyp} &\Leftrightarrow & Q_i = R_i, \\ \text{strongly hyp} &\Leftrightarrow & (P_i - S_i)^2 + 4R_i Q_i > 0, \\ \text{weakly hyp} &\Leftrightarrow & (P_i - S_i)^2 + 4R_i Q_i \ge 0 \end{cases} \end{array}$$

CAFs?

$$\partial_t \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix} = \begin{pmatrix} \partial_i P^i + P^i k_i & \partial_i Q^i + Q^i k_i \\ \partial_i R^i + R^i k_i & \partial_i S^i + S^i k_i \end{pmatrix} \partial_l \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix} \approx \begin{pmatrix} P^i k_i & Q^i k_i \\ R^i k_i & S^i k_i \end{pmatrix} \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix} =: T \begin{pmatrix} \hat{C}_E \\ \hat{C}_B \end{pmatrix}$$

$$\Rightarrow \mathsf{CAFs} = (P^i k_i + S^i k_i \pm \sqrt{(P^i k_i + S^i k_i)^2 + 4(Q^i k_i R^j k_j - P^i k_i S^j k_j)})/2$$

Therefore CAFs become negative-real when

 $P^ik_i + S^ik_i < 0, \qquad \text{and} \qquad Q^ik_iR^jk_j - P^ik_iS^jk_j < 0$

Example: the Ashtekar equations

HS Yoneda, CQG 17 (2000) 4799

Adjusted dynamical equations:

$$\partial_{t}\tilde{E}_{a}^{i} = -i\mathcal{D}_{j}(\epsilon^{cb}{}_{a}N\tilde{E}_{c}^{j}\tilde{E}_{b}^{i}) + 2\mathcal{D}_{j}(N^{[j}\tilde{E}_{a}^{i]}) + i\mathcal{A}_{0}^{b}\epsilon_{ab}{}^{c}\tilde{E}_{c}^{i}\underbrace{+X_{a}^{i}\mathcal{C}_{H} + Y_{a}^{ij}\mathcal{C}_{Mj} + P_{a}^{ib}\mathcal{C}_{Gb}}_{adjust}$$
$$\partial_{t}\mathcal{A}_{i}^{a} = -i\epsilon^{ab}{}_{c}N\tilde{E}_{b}^{j}F_{ij}^{c} + N^{j}F_{ji}^{a} + \mathcal{D}_{i}\mathcal{A}_{0}^{a} + \Lambda N\tilde{E}_{i}^{a}\underbrace{+Q_{i}^{a}\mathcal{C}_{H} + R_{i}^{aj}\mathcal{C}_{Mj} + Z_{i}^{ab}\mathcal{C}_{Gb}}_{adjust}$$

Adjusted and linearized:

$$X = Y = Z = 0, \ P_b^{ia} = \kappa_1(iN^i\delta_b^a), \ Q_i^a = \kappa_2(e^{-2}N\tilde{E}_i^a), \ R^{aj}{}_i = \kappa_3(-ie^{-2}N\epsilon^{ac}{}_d\tilde{E}_i^d\tilde{E}_c^j)$$

Fourier transform and extract 0th order of the characteristic matrix:

$$\partial_t \begin{pmatrix} \hat{\mathcal{C}}_H \\ \hat{\mathcal{C}}_{Mi} \\ \hat{\mathcal{C}}_{Ga} \end{pmatrix} = \begin{pmatrix} 0 & i(1+2\kappa_3)k_j & 0 \\ i(1-2\kappa_2)k_i & \kappa_3\epsilon^{kj}{}_ik_k & 0 \\ 0 & 2\kappa_3\delta_a^j & 0 \end{pmatrix} \begin{pmatrix} \hat{\mathcal{C}}_H \\ \hat{\mathcal{C}}_{Mj} \\ \hat{\mathcal{C}}_{Gb} \end{pmatrix}$$

Eigenvalues:

$$\left(0, 0, 0, \pm \kappa_3 \sqrt{-kx^2 - ky^2 - kz^2}, \pm \sqrt{(-1 + 2\kappa_2)(1 + 2\kappa_3)(kx^2 + ky^2 + kz^2)}\right)$$

In order to obtain non-positive real eigenvalues:

$$(-1+2\kappa_2)(1+2\kappa_3) < 0$$

A Classification of Constraint Propagations

(C1) Asymptotically constrained :

Violation of constraints decays (converges to zero).

(C2) Asymptotically bounded :

Violation of constraints is bounded at a certain value.

(C3) **Diverge** :

At least one constraint will diverge.

Note that $(C1) \subset (C2)$.

A Classification of Constraint Propagations (cont.)

CQG 20 (2003) L31

(C1) Asymptotically constrained :

Violation of constraints decays (converges to zero).

 \Leftrightarrow All the real parts of CAFs are negative.

(C2) Asymptotically bounded :

Violation of constraints is bounded at a certain value.

 \Leftrightarrow

(a) All the real parts of CAFs are not positive, and

(b1) the CP matrix $M^{\alpha}{}_{\beta}$ is diagonalizable, or

(b2) the real part of the degenerated CAFs is not zero.

(C3) Diverge :

At least one constraint will diverge.

A flowchart to classify the fate of constraint propagation.

Plan of the talk

Control Constraints: H. Shinkai

(*)

(*)

(*`

(*)

1. Introduction: Formulation problem and Three approaches

2. Attractor systems: "Adjusted Systems" Asymptotically constrained system by adjusting evolution eqs. General discussion on Constraint Propagation analysis

Adjusted ADM systems

CP Eigenvalues in Flat / Schwarzschild background Numerical Examples

N + 1-dim version

Adjusted BSSN systems

CP Eigenvalues in Flat background Numerical Examples

3. Summary and Future Issues

3 Adjusted ADM systems

We adjust the standard ADM system using constraints as:

$$\partial_t \gamma_{ij} = -2\alpha K_{ij} + \nabla_i \beta_j + \nabla_j \beta_i, \tag{1}$$

$$+P_{ij}\mathcal{H} + Q^{k}{}_{ij}\mathcal{M}_{k} + p^{k}{}_{ij}(\nabla_{k}\mathcal{H}) + q^{kl}{}_{ij}(\nabla_{k}\mathcal{M}_{l}), \qquad (2)$$

$$\partial_t K_{ij} = \alpha R_{ij}^{(3)} + \alpha K K_{ij} - 2\alpha K_{ik} K^k{}_j - \nabla_i \nabla_j \alpha + (\nabla_i \beta^k) K_{kj} + (\nabla_j \beta^k) K_{ki} + \beta^k \nabla_k K_{ij} (3) + R_{ij} \mathcal{H} + S^k{}_{ij} \mathcal{M}_k + r^k{}_{ij} (\nabla_k \mathcal{H}) + s^{kl}{}_{ij} (\nabla_k \mathcal{M}_l),$$
(4)

with constraint equations

$$\mathcal{H} := R^{(3)} + K^2 - K_{ij} K^{ij}, \tag{5}$$

$$\mathcal{M}_i := \nabla_j K^j{}_i - \nabla_i K. \tag{6}$$

We can write the adjusted constraint propagation equations as

$$\partial_t \mathcal{H} = (\text{original terms}) + H_1^{mn}[(2)] + H_2^{imn} \partial_i[(2)] + H_3^{ijmn} \partial_i \partial_j[(2)] + H_4^{mn}[(4)], \quad (7)$$

$$\partial_t \mathcal{M}_i = (\text{original terms}) + M_{1i}^{mn}[(2)] + M_{2i}^{jmn} \partial_j[(2)] + M_{3i}^{mn}[(4)] + M_{4i}^{jmn} \partial_j[(4)]. \quad (8)$$

Original ADM vs Standard ADM

Original ADM (ADM, 1962) the pair of (h_{ij}, π^{ij}) .

$$\mathcal{L} = \sqrt{-gR} = \sqrt{hN} [{}^{(3)}R - K^2 + K_{ij}K^{ij}], \qquad \pi^{ij} = \frac{\partial \mathcal{L}}{\partial \dot{h}_{ij}} = \sqrt{h}(K^{ij} - Kh^{ij}),$$

$$\mathcal{H} = \pi^{ij}\dot{h}_{ij} - \mathcal{L}$$

$$\begin{cases} \partial_t h_{ij} = \frac{\delta \mathcal{H}}{\delta \pi^{ij}} = 2\frac{N}{\sqrt{h}}(\pi_{ij} - \frac{1}{2}h_{ij}\pi) + 2D_{(i}N_{j)}, \\ \partial_t \pi^{ij} = -\frac{\delta \mathcal{H}}{\delta h_{ij}} = -\sqrt{h}N({}^{(3)}R^{ij} - \frac{1}{2}{}^{(3)}Rh^{ij}) + \frac{1}{2}\frac{N}{\sqrt{h}}h^{ij}(\pi_{mn}\pi^{mn} - \frac{1}{2}\pi^2) - 2\frac{N}{\sqrt{h}}(\pi^{in}\pi_n{}^j - \frac{1}{2}\pi\pi^{ij}) \\ +\sqrt{h}(D^iD^jN - h^{ij}D^mD_mN) + \sqrt{h}D_m(h^{-1/2}N^m\pi^{ij}) - 2\pi^{m(i}D_mN^{j)} \end{cases}$$

Standard ADM (York, 1979) the pair of (h_{ij}, K_{ij}) . $\begin{cases}
\partial_t h_{ij} = -2NK_{ij} + D_j N_i + D_i N_j, \\
\partial_t K_{ij} = N({}^{(3)}R_{ij} + KK_{ij}) - 2NK_{il}K_j^l - D_i D_j N + (D_j N^m)K_{mi} + (D_i N^m)K_{mj} + N^m D_m K_{ij}
\end{cases}$

In this converting process, \mathcal{H} was used. That is, the standard ADM is already adjusted.

Constraint propagation of ADM systems

(1) Original ADM vs Standard ADM

With the adjustment $R_{ij} = \kappa_1 \alpha \gamma_{ij}$ and other multiplier zero, where $\kappa_1 = \begin{cases} 0 & \text{the standard ADM} \\ -1/4 & \text{the original ADM} \end{cases}$

• The constraint propagation eqs keep the first-order form (cf Frittelli, PRD55(97)5992):

$$\partial_t \begin{pmatrix} \mathcal{H} \\ \mathcal{M}_i \end{pmatrix} \simeq \begin{pmatrix} \beta^l & -2\alpha\gamma^{jl} \\ -(1/2)\alpha\delta^l_i + R^l_i - \delta^l_i R & \beta^l\delta^j_i \end{pmatrix} \partial_l \begin{pmatrix} \mathcal{H} \\ \mathcal{M}_j \end{pmatrix}.$$
(1)

The eigenvalues of the characteristic matrix:

$$\begin{split} \lambda^l &= (\beta^l, \beta^l, \beta^l \pm \sqrt{\alpha^2 \gamma^{ll} (1 + 4\kappa_1)}) \\ \text{The hyperbolicity of (1):} &\begin{cases} \text{symmetric hyperbolic} & \text{when } \kappa_1 = 3/2 \\ \text{strongly hyperbolic} & \text{when } \alpha^2 \gamma^{ll} (1 + 4\kappa_1) > 0 \\ \text{weakly hyperbolic} & \text{when } \alpha^2 \gamma^{ll} (1 + 4\kappa_1) \geq 0 \end{cases} \end{split}$$

• On the Minkowskii background metric, the linear order terms of the Fourier-transformed constraint propagation equations gives the eigenvalues

$$\Lambda^{l} = (0, 0, \pm \sqrt{-k^{2}(1+4\kappa_{1})}).$$

That is, {(two 0s, two pure imaginary)for the standard ADMBETTER STABILITY(four 0s)for the original ADM

Example 1: standard ADM vs original ADM (in Schwarzschild coordinate)

Figure 1: Amplification factors (AFs, eigenvalues of homogenized constraint propagation equations) are shown for the standard Schwarzschild coordinate, with (a) no adjustments, i.e., standard ADM, (b) original ADM ($\kappa_F = -1/4$). The solid lines and the dotted lines with circles are real parts and imaginary parts, respectively. They are four lines each, but actually the two eigenvalues are zero for all cases. Plotting range is $2 < r \leq 20$ using Schwarzschild radial coordinate. We set k = 1, l = 2, and m = 2 throughout the article.

$$\partial_t \gamma_{ij} = -2\alpha K_{ij} + \nabla_i \beta_j + \nabla_j \beta_i,$$

$$\partial_t K_{ij} = \alpha R_{ij}^{(3)} + \alpha K K_{ij} - 2\alpha K_{ik} K^k{}_j - \nabla_i \nabla_j \alpha + (\nabla_i \beta^k) K_{kj} + (\nabla_j \beta^k) K_{ki} + \beta^k \nabla_k K_{ij} + \kappa_F \alpha \gamma_{ij} \mathcal{H},$$

Constraint propagation of ADM systems

(2) Detweiler's system

Detweiler's modification to ADM [PRD35(87)1095] can be realized in our notation as:

$$\begin{split} P_{ij} &= -L\alpha^{3}\gamma_{ij}, \\ R_{ij} &= L\alpha^{3}(K_{ij} - (1/3)K\gamma_{ij}), \\ S_{ij}^{k} &= L\alpha^{2}[3(\partial_{(i}\alpha)\delta_{j)}^{k} - (\partial_{l}\alpha)\gamma_{ij}\gamma^{kl}], \\ s_{ij}^{kl} &= L\alpha^{3}[2\delta_{(i}^{k}\delta_{j)}^{l} - (1/3)\gamma_{ij}\gamma^{kl}], \\ \end{split}$$
 and else zero, where L is a constant.

- This adjustment does not make constraint propagation equation in the first order form, so that we can not discuss the hyperbolicity nor the characteristic speed of the constraints.
- For the Minkowskii background spacetime, the adjusted constraint propagation equations with above choice of multiplier become

$$\partial_t \mathcal{H} = -2(\partial_j \mathcal{M}_j) + 4L(\partial_j \partial_j \mathcal{H}), \partial_t \mathcal{M}_i = -(1/2)(\partial_i \mathcal{H}) + (L/2)(\partial_k \partial_k \mathcal{M}_i) + (L/6)(\partial_i \partial_k \mathcal{M}_k).$$

Constraint Amp. Factors (the eigenvalues of their Fourier expression) are

$$\Lambda^{l} = (-(L/2)k^{2} (\text{multiplicity 2}), -(7L/3)k^{2} \pm (1/3)\sqrt{k^{2}(-9+25L^{2}k^{2})}.)$$

This indicates negative real eigenvalues if we chose small positive L.

<u>Detweiler's criteria</u> vs <u>Our criteria</u>

• Detweiler calculated the L2 norm of the constraints, C_{α} , over the 3-hypersurface and imposed its negative definiteness of its evolution,

Detweiler's criteria
$$\Leftrightarrow \partial_t \int \sum_{\alpha} C_{\alpha}^2 \, dV < 0,$$

This is rewritten by supposing the constraint propagation to be $\partial_t \hat{C}_{\alpha} = A_{\alpha}{}^{\beta} \hat{C}_{\beta}$ in the Fourier components,

$$\Leftrightarrow \quad \partial_t \int \sum_{\alpha} \hat{C}_{\alpha} \bar{\hat{C}}_{\alpha} \ dV = \int \sum_{\alpha} A_{\alpha}{}^{\beta} \hat{C}_{\beta} \bar{\hat{C}}_{\alpha} + \hat{C}_{\alpha} \bar{A}_{\alpha}{}^{\beta} \bar{\hat{C}}_{\beta} \ dV < 0, \ \forall \text{ non zero } \hat{C}_{\alpha}$$

$$\Leftrightarrow \quad \text{eigenvalues of } (A + A^{\dagger}) \text{ are all negative for } \forall k.$$

• Our criteria is that the eigenvalues of A are all negative. Therefore,

Our criteria \ni Detweiler's criteria

• We remark that Detweiler's truncations on higher order terms in C-norm corresponds our perturbative analysis, both based on the idea that the deviations from constraint surface (the errors expressed non-zero constraint value) are initially small.

Example 2: Detweiler-type adjusted (in Schwarzschild coord.)

Figure 2: Amplification factors of the standard Schwarzschild coordinate, with Detweiler type adjustments. Multipliers used in the plot are (b) $\kappa_L = +1/2$, and (c) $\kappa_L = -1/2$.

$$\begin{aligned} \partial_t \gamma_{ij} &= (\text{original terms}) + P_{ij} \mathcal{H}, \\ \partial_t K_{ij} &= (\text{original terms}) + R_{ij} \mathcal{H} + S^k{}_{ij} \mathcal{M}_k + s^{kl}{}_{ij} (\nabla_k \mathcal{M}_l), \\ \text{where } P_{ij} &= -\kappa_L \alpha^3 \gamma_{ij}, \quad R_{ij} = \kappa_L \alpha^3 (K_{ij} - (1/3) K \gamma_{ij}), \\ S^k{}_{ij} &= \kappa_L \alpha^2 [3(\partial_{(i}\alpha) \delta^k_{j)} - (\partial_l \alpha) \gamma_{ij} \gamma^{kl}], \quad s^{kl}{}_{ij} = \kappa_L \alpha^3 [\delta^k_{(i} \delta^l_{j)} - (1/3) \gamma_{ij} \gamma^{kl}], \end{aligned}$$

Table 3. List of adjustments we tested in the Schwarzschild spacetime. The column of adjustments are nonzero multipliers in terms of (13) and (14). The column '1st?' and 'TRS' are the same as in table 1. The effects to amplification factors (when $\kappa > 0$) are commented for each coordinate system and for real/imaginary parts of AFs, respectively. The 'N/A' means that there is no effect due to the coordinate properties; 'not apparent' means the adjustment does not change the AFs effectively according to our conjecture; 'enl./red./min.' means enlarge/reduce/minimize, and 'Pos./Neg.' means positive/negative, respectively. These judgements are made at the $r \sim O(10M)$ region on their t = 0 slice.

	No in			Sc	hwarzschild/isotropic	coordinates	iEF/PG coordinates		
No	table 1		Adjustment	1st?	TRS	Real	Imaginary	Real	Imaginary
0	0	_	no adjustments	yes	_	_	_	_	_
P-1	2-P	P_{ij}	$-\kappa_L \alpha^3 \gamma_{ij}$	no	no	makes 2 Neg.	not apparent	makes 2 Neg.	not apparent
P-2	3	P_{ij}	$-\kappa_L \alpha \gamma_{ij}$	no	no	makes 2 Neg.	not apparent	makes 2 Neg.	not apparent
P-3	-	P_{ij}	$P_{rr} = -\kappa$ or $P_{rr} = -\kappa \alpha$	no	no	slightly enl.Neg.	not apparent	slightly enl.Neg.	not apparent
P-4	_	P_{ij}	$-\kappa \gamma_{ij}$	no	no	makes 2 Neg.	not apparent	makes 2 Neg.	not apparent
P-5	-	P_{ij}	$-\kappa \gamma_{rr}$	no	no	red. Pos./enl.Neg.	not apparent	red.Pos./enl.Neg.	not apparent
Q-1	_	Q^k_{ij}	$\kappa lpha \beta^k \gamma_{ij}$	no	no	N/A	N/A	$\kappa \sim 1.35$ min. vals.	not apparent
Q-2	_	Q^k_{ij}	$Q^r{}_{rr} = \kappa$	no	yes	red. abs vals.	not apparent	red. abs vals.	not apparent
Q-3	-	Q^k_{ij}	$Q^{r}_{ij} = \kappa \gamma_{ij}$ or $Q^{r}_{ij} = \kappa \alpha \gamma_{ij}$	no	yes	red. abs vals.	not apparent	enl.Neg.	enl. vals.
Q-4	_	Q^k_{ij}	$Q^r{}_{rr} = \kappa \gamma_{rr}$	no	yes	red. abs vals.	not apparent	red. abs vals.	not apparent
R-1	1	R_{ij}	$\kappa_F \alpha \gamma_{ij}$	yes	yes	$\kappa_F = -1/4 \min$. abs vals.	$\kappa_F = -1/4$ mi	n. vals.
R-2	4	R_{ij}	$R_{rr} = -\kappa_{\mu} \alpha$ or $R_{rr} = -\kappa_{\mu}$	yes	no	not apparent	not apparent	red.Pos./enl.Neg.	enl. vals.
R-3	-	R_{ij}	$R_{rr} = -\kappa \gamma_{rr}$	yes	no	enl. vals.	not apparent	red.Pos./enl.Neg.	enl. vals.
S-1	2-S	S^k_{ij}	$\kappa_L \alpha^2 [3(\partial_{(i}\alpha)\delta^k_{i)} - (\partial_l \alpha)\gamma_{ij}\gamma^{kl}]$	yes	no	not apparent	not apparent	not apparent	not apparent
S-2	-	S^{k}_{ij}	$\kappa \alpha \gamma^{lk} (\partial_l \gamma_{ij})$	yes	no	makes 2 Neg.	not apparent	makes 2 Neg.	not apparent
p-1	-	p^{k}_{ij}	$p^{r}_{ij} = -\kappa \alpha \gamma_{ij}$	no	no	red. Pos.	red. vals.	red. Pos.	enl. vals.
p-2	-	p^{k}_{ij}	$p^r{}_{rr} = \kappa \alpha$	no	no	red. Pos.	red. vals.	red.Pos/enl.Neg.	enl. vals.
p-3	-	p^{k}_{ij}	$p^r{}_{rr} = \kappa \alpha \gamma_{rr}$	no	no	makes 2 Neg.	enl. vals.	red. Pos. vals.	red. vals.
q-1	-	q^{kl}_{ij}	$q^{rr}{}_{ij} = \kappa \alpha \gamma_{ij}$	no	no	$\kappa = 1/2$ min. vals.	red. vals.	not apparent	enl. vals.
q-2	_	$q^{kl}{}_{ij}$	$q^{rr}{}_{rr} = -\kappa \alpha \gamma_{rr}$	no	yes	red. abs vals.	not apparent	not apparent	not apparent
r-1	-	r^{k}_{ij}	$r^{r}_{ij} = \kappa \alpha \gamma_{ij}$	no	yes	not apparent	not apparent	not apparent	enl. vals.
r-2	-	r^{k}_{ij}	$r^{r}_{rr} = -\kappa \alpha$	no	yes	red. abs vals.	enl. vals.	red. abs vals.	enl. vals.
r-3	-	r^{k}_{ij}	$r^{r}{}_{rr} = -\kappa \alpha \gamma_{rr}$	no	yes	red. abs vals.	enl. vals.	red. abs vals.	enl. vals.
s-1	2-s	s ^{kl} ij	$\kappa_L \alpha^3 [\delta^k_{(i)} \delta^l_{(i)} - (1/3) \gamma_{ij} \gamma^{kl}]$	no	no	makes 4 Neg.	not apparent	makes 4 Neg.	not apparent
s-2	-	s ^{kl} ij	$s^{rr}{}_{ij} = -\kappa \alpha \gamma_{ij}$	no	no	makes 2 Neg.	red. vals.	makes 2 Neg.	red. vals.
s-3	_	s ^{kl} ij	$s^{rr}_{rr} = -\kappa \alpha \gamma_{rr}$	no	no	makes 2 Neg.	red. vals.	makes 2 Neg.	red. vals.

Example 3: standard ADM (in isotropic/iEF coord.)

Figure 3: Comparison of amplification factors between different coordinate expressions for the standard ADM formulation (i.e. no adjustments). Fig. (a) is for the isotropic coordinate (1), and the plotting range is $1/2 \leq r_{iso}$. Fig. (b) is for the iEF coordinate (1) and we plot lines on the t = 0 slice for each expression. The solid four lines and the dotted four lines with circles are real parts and imaginary parts, respectively.

Example 4: Detweiler-type adjusted (in iEF/PG coord.)

Figure 4: Similar comparison for Detweiler adjustments. $\kappa_L = +1/2$ for all plots.

Comparisons of Adjusted ADM systems (Teukolsky wave) 3-dim, harmonic slice, periodic BC HS original Cactus/GR code

Figure 1: Violation of Hamiltonian constraints versus time: Adjusted ADM systems applied for Teukolsky wave initial data evolution with harmonic slicing, and with periodic boundary condition. Cactus/GR/evolveADMeq code was used. Grid = 24^3 , $\Delta x = 0.25$, iterative Crank-Nicholson method.

Comparisons of Adjusted ADM systems (Teukolsky wave) :: Detweiler type 3-dim, harmonic slice, periodic BC HS original Cactus/GR code

Figure 2: Violation of Hamiltonian constraints versus time: Adjusted ADM (Detweiler-type) system is applied for Teukolsky wave initial data evolution with harmonic slicing, and with periodic boundary condition. Cactus/GR/evolveADMeq code was used. (x, y, z) = [-3, 3], iterative Crank-Nicholson method.

$$\partial_{t}\gamma_{ij} = -2\alpha K_{ij} + \nabla_{i}\beta_{j} + \nabla_{j}\beta_{i} - \kappa_{L}\alpha^{3}\gamma_{ij}\mathcal{H}$$

$$\partial_{t}K_{ij} = \alpha R_{ij}^{(3)} + \alpha K K_{ij} - 2\alpha K_{ik}K^{k}{}_{j} - \nabla_{i}\nabla_{j}\alpha + (\nabla_{i}\beta^{k})K_{kj} + (\nabla_{j}\beta^{k})K_{ki} + \beta^{k}\nabla_{k}K_{ij}$$

$$+\kappa_{L}\alpha^{3}(K_{ij} - (1/3)K\gamma_{ij})\mathcal{H} + \kappa_{L}\alpha^{2}[3(\partial_{(i}\alpha)\delta_{j)}^{k} - (\partial_{l}\alpha)\gamma_{ij}\gamma^{kl}]\mathcal{M}_{k}$$

$$+\kappa_{L}\alpha^{3}[\delta_{(i}^{k}\delta_{j)}^{l} - (1/3)\gamma_{ij}\gamma^{kl}](\nabla_{k}\mathcal{M}_{l})$$

Comparisons of Adjusted ADM systems (Teukolsky wave) :: Simplified-Detweiler type 3-dim, harmonic slice, periodic BC HS original Cactus/GR code

Figure 3: Violation of Hamiltonian constraints versus time: Adjusted ADM (Simplified Detweiler-type) system is applied for Teukolsky wave initial data evolution with harmonic slicing, and with periodic boundary condition. Cactus/GR/evolveADMeq code was used. (x, y, z) = [-3, 3], iterative Crank-Nicholson method.

$$\partial_t \gamma_{ij} = -2\alpha K_{ij} + \nabla_i \beta_j + \nabla_j \beta_i - \kappa_L \alpha \gamma_{ij} \mathcal{H}$$

$$\partial_t K_{ij} = \alpha R_{ij}^{(3)} + \alpha K K_{ij} - 2\alpha K_{ik} K^k_{\ j} - \nabla_i \nabla_j \alpha + (\nabla_i \beta^k) K_{kj} + (\nabla_j \beta^k) K_{ki} + \beta^k \nabla_k K_{ij}$$

"Einstein equations" are time-reversal invariant. So ...

Why all negative amplification factors (AFs) are available?

Explanation by the time-reversal invariance (TRI)

• the adjustment of the system I,

adjust term to
$$\underbrace{\partial_t}_{(-)}\underbrace{K_{ij}}_{(-)} = \kappa_1 \underbrace{\alpha}_{(+)} \underbrace{\gamma_{ij}}_{(+)} \underbrace{\mathcal{H}}_{(+)}$$

preserves TRI. ... so the AFs remain zero (unchange).

• the adjustment by (a part of) Detweiler

adjust term to
$$\underbrace{\partial_t}_{(-)}\underbrace{\gamma_{ij}}_{(+)} = -L\underbrace{\alpha}_{(+)}\underbrace{\gamma_{ij}}_{(+)}\underbrace{\mathcal{H}}_{(+)}$$

violates TRI. ... so the AFs can become negative.

Therefore

We can break the time-reversal invariant feature of the "ADM equations".

Constraint Propagation in N + 1 dimensional space-time

HS-Yoneda, submitted to PRD (2003)

Dynamical equation has N-dependency ____

Only the matter term in $\partial_t K_{ij}$ has N-dependency.

$$0 \approx \mathcal{C}_{H} \equiv (G_{\mu\nu} - 8\pi T_{\mu\nu})n^{\mu}n^{\nu} = \frac{1}{2}({}^{(N)}R + K^{2} - K^{ij}K_{ij}) - 8\pi\rho_{H} - \Lambda,$$

$$0 \approx \mathcal{C}_{Mi} \equiv (G_{\mu\nu} - 8\pi T_{\mu\nu})n^{\mu} \bot_{i}^{\nu} = D_{j}K_{i}^{j} - D_{i}K - 8\pi J_{i},$$

$$\partial_{t}\gamma_{ij} = -2\alpha K_{ij} + D_{j}\beta_{i} + D_{i}\beta_{j},$$

$$\partial_{t}K_{ij} = \alpha^{(N)}R_{ij} + \alpha KK_{ij} - 2\alpha K^{\ell}{}_{j}K_{i\ell} - D_{i}D_{j}\alpha$$

$$+\beta^{k}(D_{k}K_{ij}) + (D_{j}\beta^{k})K_{ik} + (D_{i}\beta^{k})K_{kj} - 8\pi\alpha \left(S_{ij} - \frac{1}{N-1}\gamma_{ij}T\right) - \frac{2\alpha}{N-1}\gamma_{ij}\Lambda,$$

Constraint Propagation remain the same

From the Bianchi identity, $\nabla^{\nu} S_{\mu\nu} = 0$ with $S_{\mu\nu} = X n_{\mu} n_{\nu} + Y_{\mu} n_{\nu} + Y_{\nu} n_{\mu} + Z_{\mu\nu}$, we get

$$0 = n^{\mu} \nabla^{\nu} \mathcal{S}_{\mu\nu} = -Z_{\mu\nu} (\nabla^{\mu} n^{\nu}) - \nabla^{\mu} Y_{\mu} + Y_{\nu} n^{\mu} \nabla_{\mu} n^{\nu} - 2Y_{\mu} n_{\nu} (\nabla^{\nu} n^{\mu}) - X (\nabla^{\mu} n_{\mu}) - n_{\mu} (\nabla^{\mu} X),$$

$$0 = h_{i}{}^{\mu} \nabla^{\nu} \mathcal{S}_{\mu\nu} = \nabla^{\mu} Z_{i\mu} + Y_{i} (\nabla^{\mu} n_{\mu}) + Y_{\mu} (\nabla^{\mu} n_{i}) + X (\nabla^{\mu} n_{i}) n_{\mu} + n_{\mu} (\nabla^{\mu} Y_{i}).$$

•
$$(\mathcal{S}_{\mu\nu}, X, Y_i, Z_{ij}) = (T_{\mu\nu}, \rho_H, J_i, S_{ij})$$
 with $\nabla^{\mu}T_{\mu\nu} = 0 \Rightarrow$ matter eq.

•
$$(\mathcal{S}_{\mu\nu}, X, Y_i, Z_{ij}) = (G_{\mu\nu} - 8\pi T_{\mu\nu}, \mathcal{C}_H, \mathcal{C}_{Mi}, \kappa \gamma_{ij} \mathcal{C}_H)$$
 with $\nabla^{\mu}(G_{\mu\nu} - 8\pi T_{\mu\nu}) = 0 \Rightarrow \mathsf{CP}$ eq.

Plan of the talk

Control Constraints: H. Shinkai

(*)

(*)

*

(*`

1. Introduction: Formulation problem and Three approaches

2. Attractor systems: "Adjusted Systems" Asymptotically constrained system by adjusting evolution eqs. General discussion on Constraint Propagation analysis

Adjusted ADM systems

CP Eigenvalues in Flat / Schwarzschild background Numerical Examples N + 1-dim version

Adjusted BSSN systems

CP Eigenvalues in Flat background Numerical Examples

3. Summary and Future Issues

strategy 1 Shibata-Nakamura's (Baumgarte-Shapiro's) modifications to the standard ADM

- define new variables ($\phi, \tilde{\gamma}_{ij}, K, \tilde{A}_{ij}, \tilde{\Gamma}^i$), instead of the ADM's (γ_{ij}, K_{ij}) where

$$\tilde{\gamma}_{ij} \equiv e^{-4\phi} \gamma_{ij}, \qquad \tilde{A}_{ij} \equiv e^{-4\phi} (K_{ij} - (1/3)\gamma_{ij}K), \qquad \tilde{\Gamma}^i \equiv \tilde{\Gamma}^i_{jk} \tilde{\gamma}^{jk},$$

use momentum constraint in Γ^i -eq., and impose $det \tilde{\gamma}_{ij} = 1$ during the evolutions.

- The set of evolution equations become

$$\begin{aligned} (\partial_t - \mathcal{L}_{\beta})\phi &= -(1/6)\alpha K, \\ (\partial_t - \mathcal{L}_{\beta})\tilde{\gamma}_{ij} &= -2\alpha \tilde{A}_{ij}, \\ (\partial_t - \mathcal{L}_{\beta})K &= \alpha \tilde{A}_{ij}\tilde{A}^{ij} + (1/3)\alpha K^2 - \gamma^{ij}(\nabla_i \nabla_j \alpha), \\ (\partial_t - \mathcal{L}_{\beta})\tilde{A}_{ij} &= -e^{-4\phi}(\nabla_i \nabla_j \alpha)^{TF} + e^{-4\phi}\alpha R^{(3)}_{ij} - e^{-4\phi}\alpha(1/3)\gamma_{ij}R^{(3)} + \alpha(K\tilde{A}_{ij} - 2\tilde{A}_{ik}\tilde{A}^k{}_j) \\ \partial_t \tilde{\Gamma}^i &= -2(\partial_j \alpha)\tilde{A}^{ij} - (4/3)\alpha(\partial_j K)\tilde{\gamma}^{ij} + 12\alpha \tilde{A}^{ji}(\partial_j \phi) - 2\alpha \tilde{A}_k{}^j(\partial_j \tilde{\gamma}^{ik}) - 2\alpha \tilde{\Gamma}^k{}_{lj}\tilde{A}^j{}_k\tilde{\gamma}^{il} \\ &- \partial_j \left(\beta^k \partial_k \tilde{\gamma}^{ij} - \tilde{\gamma}^{kj}(\partial_k \beta^i) - \tilde{\gamma}^{ki}(\partial_k \beta^j) + (2/3)\tilde{\gamma}^{ij}(\partial_k \beta^k)\right) \end{aligned}$$

$$\begin{aligned} R_{ij} &= \partial_k \Gamma_{ij}^k - \partial_i \Gamma_{kj}^k + \Gamma_{ij}^m \Gamma_{mk}^k - \Gamma_{kj}^m \Gamma_{mi}^k =: \tilde{R}_{ij} + R_{ij}^\phi \\ R_{ij}^\phi &= -2\tilde{D}_i \tilde{D}_j \phi - 2\tilde{g}_{ij} \tilde{D}^l \tilde{D}_l \phi + 4(\tilde{D}_i \phi)(\tilde{D}_j \phi) - 4\tilde{g}_{ij} (\tilde{D}^l \phi)(\tilde{D}_l \phi) \\ \tilde{R}_{ij} &= -(1/2)\tilde{g}^{lm} \partial_{lm} \tilde{g}_{ij} + \tilde{g}_{k(i} \partial_{j)} \tilde{\Gamma}^k + \tilde{\Gamma}^k \tilde{\Gamma}_{(ij)k} + 2\tilde{g}^{lm} \tilde{\Gamma}_{l(i}^k \tilde{\Gamma}_{j)km} + \tilde{g} lm \tilde{\Gamma}_{im}^k \tilde{\Gamma}_{klj} \end{aligned}$$

No explicit explanations why this formulation works better.
 AEI group (2000): the replacement by momentum constraint is essential.

Constraints in BSSN system

The normal Hamiltonian and momentum constraints

$$\mathcal{H}^{BSSN} = R^{BSSN} + K^2 - K_{ij}K^{ij}, \tag{1}$$

$$\mathcal{M}_i^{BSSN} = \mathcal{M}_i^{ADM}, \tag{2}$$

Additionally, we regard the following three as the constraints:

$$\mathcal{G}^{i} = \tilde{\Gamma}^{i} - \tilde{\gamma}^{jk} \tilde{\Gamma}^{i}_{jk}, \qquad (3)$$

$$\mathcal{A} = \tilde{A}_{ij} \tilde{\gamma}^{ij}, \tag{4}$$

$$\mathcal{S} = \tilde{\gamma} - 1, \tag{5}$$

Adjustments in evolution equations

$$\begin{aligned} \partial_t^B \varphi &= \partial_t^A \varphi + (1/6) \alpha \mathcal{A} - (1/12) \tilde{\gamma}^{-1} (\partial_j \mathcal{S}) \beta^j, \qquad (6) \\ \partial_t^B \tilde{\gamma}_{ij} &= \partial_t^A \tilde{\gamma}_{ij} - (2/3) \alpha \tilde{\gamma}_{ij} \mathcal{A} + (1/3) \tilde{\gamma}^{-1} (\partial_k \mathcal{S}) \beta^k \tilde{\gamma}_{ij}, \qquad (7) \\ \partial_t^B K &= \partial_t^A K - (2/3) \alpha K \mathcal{A} - \alpha \mathcal{H}^{BSSN} + \alpha e^{-4\varphi} (\tilde{D}_j \mathcal{G}^j), \qquad (8) \\ \partial_t^B \tilde{A}_{ij} &= \partial_t^A \tilde{A}_{ij} + ((1/3) \alpha \tilde{\gamma}_{ij} K - (2/3) \alpha \tilde{A}_{ij}) \mathcal{A} + ((1/2) \alpha e^{-4\varphi} (\partial_k \tilde{\gamma}_{ij}) - (1/6) \alpha e^{-4\varphi} \tilde{\gamma}_{ij} \tilde{\gamma}^{-1} (\partial_k \mathcal{S})) \mathcal{G}^k \\ &\quad + \alpha e^{-4\varphi} \tilde{\gamma}_{k(i} (\partial_{j)} \mathcal{G}^k) - (1/3) \alpha e^{-4\varphi} \tilde{\gamma}_{ij} (\partial_k \mathcal{G}^k) \qquad (9) \\ \partial_t^B \tilde{\Gamma}^i &= \partial_t^A \tilde{\Gamma}^i - ((2/3) (\partial_j \alpha) \tilde{\gamma}^{ji} + (2/3) \alpha (\partial_j \tilde{\gamma}^{ji}) + (1/3) \alpha \tilde{\gamma}^{ji} \tilde{\gamma}^{-1} (\partial_j \mathcal{S}) - 4\alpha \tilde{\gamma}^{ij} (\partial_j \varphi)) \mathcal{A} - (2/3) \alpha \tilde{\gamma}^{ji} (\partial_j \mathcal{A}) \\ &\quad + 2\alpha \tilde{\gamma}^{ij} \mathcal{M}_j - (1/2) (\partial_k \beta^i) \tilde{\gamma}^{kj} \tilde{\gamma}^{-1} (\partial_j \mathcal{S}) + (1/6) (\partial_j \beta^k) \tilde{\gamma}^{ij} \tilde{\gamma}^{-1} (\partial_k \mathcal{S}) + (1/3) (\partial_k \beta^k) \tilde{\gamma}^{ij} \tilde{\gamma}^{-1} (\partial_j \mathcal{S}) \\ &\quad + (5/6) \beta^k \tilde{\gamma}^{-2} \tilde{\gamma}^{ij} (\partial_k \mathcal{S}) (\partial_j \mathcal{S}) + (1/2) \beta^k \tilde{\gamma}^{-1} (\partial_k \tilde{\gamma}^{ij}) (\partial_j \mathcal{S}) + (1/3) \beta^k \tilde{\gamma}^{-1} (\partial_j \tilde{\gamma}^{ji}) (\partial_k \mathcal{S}). \qquad (10) \end{aligned}$$

Effect of adjustments

No.		Constraints (number of components)					diag?	Constr. Amp. Factors
		$\mathcal{H}\left(1 ight)$	\mathcal{M}_i (3)	\mathcal{G}^{i} (3)	\mathcal{A} (1)	\mathcal{S} (1)		in Minkowskii background
0.	standard ADM	use	use	-	-	-	yes	$(0,0,\Im,\Im)$
1.	BSSN no adjustment	use	use	use	use	use	yes	$(0,0,0,0,0,0,0,\Im,\Im)$
2.	the BSSN	use+adj	use+adj	use+adj	use+adj	use+adj	no	$(0,0,0,\Im,\Im,\Im,\Im,\Im,\Im)$
3.	no ${\cal S}$ adjustment	use+adj	use+adj	use+adj	use+adj	use	no	no difference in flat background
4.	no ${\mathcal A}$ adjustment	use+adj	use+adj	use+adj	use	use+adj	no	$(0,0,0,\Im,\Im,\Im,\Im,\Im,\Im)$
5.	no \mathcal{G}^i adjustment	use+adj	use+adj	use	use+adj	use+adj	no	$(0,0,0,0,0,0,0,\Im,\Im)$
6.	no \mathcal{M}_i adjustment	use+adj	use	use+adj	use+adj	use+adj	no	$(0,0,0,0,0,0,0,\Re,\Re)$ Growing modes
7.	no ${\mathcal H}$ adjustment	use	use+adj	use+adj	use+adj	use+adj	no	$(0,0,0,\Im,\Im,\Im,\Im,\Im,\Im)$
8.	ignore \mathcal{G}^i , \mathcal{A} , \mathcal{S}	use+adj	use+adj	-	-	-	no	(0, 0, 0, 0)
9.	ignore \mathcal{G}^i , \mathcal{A}	use+adj	use+adj	use+adj	-	-	yes	$(0,\Im,\Im,\Im,\Im,\Im,\Im)$
10.	ignore \mathcal{G}^i	use+adj	use+adj	-	use+adj	use+adj	no	(0,0,0,0,0,0)
11.	ignore ${\cal A}$	use+adj	use+adj	use+adj	-	use+adj	yes	$(0,0,\Im,\Im,\Im,\Im,\Im,\Im)$
12.	ignore ${\cal S}$	use+adj	use+adj	use+adj	use+adj	-	yes	$(0,0,\Im,\Im,\Im,\Im,\Im,\Im)$

New Proposals :: Improved (adjusted) BSSN systems

TRS breaking adjustments

In order to break time reversal symmetry (TRS) of the evolution eqs, to adjust $\partial_t \phi$, $\partial_t \tilde{\gamma}_{ij}$, $\partial_t \tilde{\Gamma}^i$ using $\mathcal{S}, \mathcal{G}^i$, or to adjust $\partial_t K, \partial_t \tilde{A}_{ij}$ using $\tilde{\mathcal{A}}$.

$$\begin{aligned} \partial_{t}\phi &= \partial_{t}^{BS}\phi + \kappa_{\phi\mathcal{H}}\alpha\mathcal{H}^{BS} + \kappa_{\phi\mathcal{G}}\alpha\tilde{D}_{k}\mathcal{G}^{k} + \kappa_{\phi\mathcal{S}1}\alpha\mathcal{S} + \kappa_{\phi\mathcal{S}2}\alpha\tilde{D}^{j}\tilde{D}_{j}\mathcal{S} \\ \partial_{t}\tilde{\gamma}_{ij} &= \partial_{t}^{BS}\tilde{\gamma}_{ij} + \kappa_{\tilde{\gamma}\mathcal{H}}\alpha\tilde{\gamma}_{ij}\mathcal{H}^{BS} + \kappa_{\tilde{\gamma}\mathcal{G}1}\alpha\tilde{\gamma}_{ij}\tilde{D}_{k}\mathcal{G}^{k} + \kappa_{\tilde{\gamma}\mathcal{G}2}\alpha\tilde{\gamma}_{k(i}\tilde{D}_{j)}\mathcal{G}^{k} + \kappa_{\tilde{\gamma}\mathcal{S}1}\alpha\tilde{\gamma}_{ij}\mathcal{S} + \kappa_{\tilde{\gamma}\mathcal{S}2}\alpha\tilde{D}_{i}\tilde{D}_{j}\mathcal{S} \\ \partial_{t}K &= \partial_{t}^{BS}K + \kappa_{KM}\alpha\tilde{\gamma}^{jk}(\tilde{D}_{j}\mathcal{M}_{k}) + \kappa_{K\tilde{\mathcal{A}}1}\alpha\tilde{\mathcal{A}} + \kappa_{K\tilde{\mathcal{A}}2}\alpha\tilde{D}^{j}\tilde{D}_{j}\tilde{\mathcal{A}} \\ \partial_{t}\tilde{A}_{ij} &= \partial_{t}^{BS}\tilde{A}_{ij} + \kappa_{AM1}\alpha\tilde{\gamma}_{ij}(\tilde{D}^{k}\mathcal{M}_{k}) + \kappa_{AM2}\alpha(\tilde{D}_{(i}\mathcal{M}_{j)}) + \kappa_{A\tilde{\mathcal{A}}1}\alpha\tilde{\gamma}_{ij}\tilde{\mathcal{A}} + \kappa_{A\tilde{\mathcal{A}}2}\alpha\tilde{D}_{i}\tilde{D}_{j}\tilde{\mathcal{A}} \\ \partial_{t}\tilde{\Gamma}^{i} &= \partial_{t}^{BS}\tilde{\Gamma}^{i} + \kappa_{\tilde{\Gamma}\mathcal{H}}\alpha\tilde{D}^{i}\mathcal{H}^{BS} + \kappa_{\tilde{\Gamma}\mathcal{G}1}\alpha\mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}2}\alpha\tilde{D}^{j}\tilde{D}_{j}\mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}3}\alpha\tilde{D}^{i}\tilde{D}_{j}\mathcal{G}^{j} + \kappa_{\tilde{\Gamma}\mathcal{S}}\alpha\tilde{D}^{i}\mathcal{H}^{BS} \end{aligned}$$

or in the flat background

$$\begin{aligned} \partial_{t}^{ADJ(1)} \phi &= +\kappa_{\phi \mathcal{H}}^{(1)} \mathcal{H}^{BS} + \kappa_{\phi \mathcal{G}} \partial_{k}^{(1)} \mathcal{G}^{k} + \kappa_{\phi \mathcal{S}1}^{(1)} \mathcal{S} + \kappa_{\phi \mathcal{S}2} \partial_{j} \partial_{j}^{(1)} \mathcal{S} \\ \partial_{t}^{ADJ(1)} \tilde{\gamma}_{ij} &= +\kappa_{\tilde{\gamma}\mathcal{H}} \delta_{ij}^{(1)} \mathcal{H}^{BS} + \kappa_{\tilde{\gamma}\mathcal{G}1} \delta_{ij} \partial_{k}^{(1)} \mathcal{G}^{k} + (1/2) \kappa_{\tilde{\gamma}\mathcal{G}2} (\partial_{j}^{(1)} \mathcal{G}^{i} + \partial_{i}^{(1)} \mathcal{G}^{j}) + \kappa_{\tilde{\gamma}\mathcal{S}1} \delta_{ij}^{(1)} \mathcal{S} + \kappa_{\tilde{\gamma}\mathcal{S}2} \partial_{i} \partial_{j}^{(1)} \mathcal{S} \\ \partial_{t}^{ADJ(1)} \mathcal{K} &= +\kappa_{K\mathcal{M}} \partial_{j}^{(1)} \mathcal{M}_{j} + \kappa_{K\tilde{\mathcal{A}1}}^{(1)} \tilde{\mathcal{A}} + \kappa_{K\tilde{\mathcal{A}2}} \partial_{j} \partial_{j}^{(1)} \tilde{\mathcal{A}} \\ \partial_{t}^{ADJ(1)} \tilde{\mathcal{A}}_{ij} &= +\kappa_{A\mathcal{M}1} \delta_{ij} \partial_{k}^{(1)} \mathcal{M}_{k} + (1/2) \kappa_{A\mathcal{M}2} (\partial_{i} \mathcal{M}_{j} + \partial_{j} \mathcal{M}_{i}) + \kappa_{A\tilde{\mathcal{A}1}} \delta_{ij} \tilde{\mathcal{A}} + \kappa_{A\tilde{\mathcal{A}2}} \partial_{i} \partial_{j} \tilde{\mathcal{A}} \\ \partial_{t}^{ADJ(1)} \tilde{\mathcal{Y}}^{i} &= +\kappa_{\tilde{\Gamma}\mathcal{H}} \partial_{i}^{(1)} \mathcal{H}^{BS} + \kappa_{\tilde{\Gamma}\mathcal{G}1}^{(1)} \mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}2} \partial_{j} \partial_{j}^{(1)} \mathcal{G}^{i} + \kappa_{\tilde{\Gamma}\mathcal{G}3} \partial_{i} \partial_{j}^{(1)} \mathcal{G}^{j} + \kappa_{\tilde{\Gamma}\mathcal{S}} \partial_{i}^{(1)} \mathcal{S} \end{aligned}$$

Constraint Amplification Factors with each adjustment

	adjustment	CAFs	diag?	effect of the adjustmer	nt
$\partial_t \phi$	$\kappa_{\phi \mathcal{H}} \alpha \mathcal{H}$	$(0, 0, \pm \sqrt{-k^2}(*3), 8\kappa_{\phi\mathcal{H}}k^2)$	no	$\kappa_{\phi \mathcal{H}} < 0$ makes 1 Neg.	
$\partial_t \phi$	$\kappa_{\phi \mathcal{G}} lpha ilde{D}_k \mathcal{G}^k$	$(0, 0, \pm \sqrt{-k^2}(*2))$, long expressions)	yes	$\kappa_{\phi \mathcal{G}} < 0$ makes 2 Neg. 1 Pos.	
$\partial_t ilde{\gamma}_{ij}$	$\kappa_{SD} \alpha \tilde{\gamma}_{ij} \mathcal{H}$	$(0, 0, \pm \sqrt{-k^2}(*3), (3/2)\kappa_{SD}k^2)$	yes	$\kappa_{SD} < 0$ makes 1 Neg.	Case (B)
$\partial_t \tilde{\gamma}_{ij}$	$\kappa_{ ilde{\gamma}\mathcal{G}1} lpha ilde{\gamma}_{ij} ilde{D}_k \mathcal{G}^k$	$(0, 0, \pm \sqrt{-k^2}(*2))$, long expressions)	yes	$\kappa_{\tilde{\gamma}G1} > 0$ makes 1 Neg.	
$\partial_t \tilde{\gamma}_{ij}$	$\kappa_{\tilde{\gamma}\mathcal{G}2} \alpha \tilde{\gamma}_{k(i} \tilde{D}_{j)} \mathcal{G}^k$	(0,0, $(1/4)k^2 \kappa_{\tilde{\gamma}G2} \pm \sqrt{k^2(-1+k^2\kappa_{\tilde{\gamma}G2}/16)}(*2)$, long expressions)	yes	$\kappa_{\tilde{\gamma}G2} < 0$ makes 6 Neg. 1 Pos.	Case (E1)
$\partial_t \tilde{\gamma}_{ij}$	$\kappa_{\tilde{\gamma}S1} \alpha \tilde{\gamma}_{ij} S$	$(0, 0, \pm \sqrt{-k^2}(*3), 3\kappa_{\tilde{\gamma}S1})$	no	$\kappa_{\tilde{\gamma}S1} < 0$ makes 1 Neg.	
$\partial_t ilde{\gamma}_{ij}$	$\kappa_{\tilde{\gamma}S2} \alpha \tilde{D}_i \tilde{D}_j S$	$(0, 0, \pm \sqrt{-k^2}(*3), -\kappa_{\tilde{\gamma}S2}k^2)$	no	$\kappa_{\tilde{\gamma}S2} > 0$ makes 1 Neg.	
$\partial_t K$	$\kappa_{K\mathcal{M}} \alpha \tilde{\gamma}^{jk} (\tilde{D}_j \mathcal{M}_k)$	$(0, 0, 0, \pm \sqrt{-k^2}(*2), (1/3)\kappa_{K\mathcal{M}}k^2 \pm (1/3)\sqrt{k^2(-9 + k^2\kappa_{K\mathcal{M}}^2)})$	no	$\kappa_{KM} < 0$ makes 2 Neg.	
$\partial_t \tilde{A}_{ij}$	$\kappa_{A\mathcal{M}1} lpha ilde{\gamma}_{ij}(ilde{D}^k \mathcal{M}_k)$	$(0, 0, \pm \sqrt{-k^2}(*3), -\kappa_{AM1}k^2)$	yes	$\kappa_{AM1} > 0$ makes 1 Neg.	
$\partial_t \tilde{A}_{ij}$	$\kappa_{A\mathcal{M}2} \alpha(\tilde{D}_{(i}\mathcal{M}_{j)})$	(0,0, $-k^2 \kappa_{AM2}/4 \pm \sqrt{k^2(-1+k^2 \kappa_{AM2}/16)}(*2)$, long expressions)	yes	$\kappa_{A\mathcal{M}2} > 0$ makes 7 Neg	Case (D)
$\partial_t \tilde{A}_{ij}$	$\kappa_{A\mathcal{A}1} lpha ilde{\gamma}_{ij} \mathcal{A}$	$(0, 0, \pm \sqrt{-k^2}(*3), 3\kappa_{AA1})$	yes	$\kappa_{AA1} < 0$ makes 1 Neg.	
$\partial_t \tilde{A}_{ij}$	$\kappa_{A\mathcal{A}2} \alpha \tilde{D}_i \tilde{D}_j \mathcal{A}$	$(0, 0, \pm \sqrt{-k^2}(*3), -\kappa_{AA2}k^2)$	yes	$\kappa_{AA2} > 0$ makes 1 Neg.	
$\partial_t \Gamma^i$	$\kappa_{ ilde{\Gamma}\mathcal{H}} lpha ilde{D}^i \mathcal{H}$	$(0, 0, \pm \sqrt{-k^2}(*3), -\kappa_{AA2}k^2)$	no	$\kappa_{\tilde{\Gamma}\mathcal{H}} > 0$ makes 1 Neg.	
$\partial_t \tilde{\Gamma}^i$	$\kappa_{ ilde{\Gamma} \mathcal{G} 1} lpha \mathcal{G}^i$	$(0,0,(1/2)\kappa_{ ilde{\Gamma}\mathcal{G}1}\pm\sqrt{-k^2+\kappa_{ ilde{\Gamma}\mathcal{G}1}^2}(*2)$, long.)	yes	$\kappa_{\tilde{\Gamma}G1} < 0$ makes 6 Neg. 1 Pos.	Case (E2)
$\partial_t \tilde{\Gamma}^i$	$\kappa_{ ilde{\Gamma}\mathcal{G}2} lpha ilde{D}^j ilde{D}_j \mathcal{G}^i$	$(0,0,-(1/2)\kappa_{\widetilde{\Gamma}\mathcal{G}2}\pm\sqrt{-k^2+\kappa_{\widetilde{\Gamma}\mathcal{G}2}^2}(*2)$, long.)	yes	$\kappa_{\widetilde{\Gamma}\mathcal{G}2} > 0$ makes 2 Neg. 1 Pos.	
$\partial_t \tilde{\Gamma}^i$	$\kappa_{\tilde{\Gamma}\mathcal{G}3} \alpha \tilde{D}^i \tilde{D}_j \mathcal{G}^j$	$(0,0,-(1/2)\kappa_{ ilde{\Gamma}\mathcal{G}3}\pm\sqrt{-k^2+\kappa_{ ilde{\Gamma}\mathcal{G}3}^2}(*2)$, long.)	yes	$\kappa_{\widetilde{\Gamma}\mathcal{G}3} > 0$ makes 2 Neg. 1 Pos.	

Yoneda-HS, PRD66 (2002) 124003

An Evolution of Adjusted BSSN Formulation

by Yo-Baumgarte-Shapiro, PRD 66 (2002) 084026

Kerr-Schild BH (0.9 J/M), excision with cube, $1 + \log$ -lapse, Γ -driver shift.

$$\partial_t \tilde{\Gamma}^i = (\cdots) + \frac{2}{3} \tilde{\Gamma}^i \beta^i{}_{,j} - (\chi + \frac{2}{3}) \mathcal{G}^i \beta^j{}_{,j} \qquad \chi = 2/3 \text{ for (A4)-(A8)}$$

$$\partial_t \tilde{\gamma}_{ij} = (\cdots) - \kappa \alpha \tilde{\gamma}_{ij} \mathcal{H} \qquad \qquad \kappa = 0.1 \sim 0.2 \text{ for (A5), (A6) and (A8)}$$

Studies in progress $\dots(1)$...

• Construct a robust adjusted system

(1) dynamic & automatic determination of κ under a suitable principle.

e.g.) Efforts in Multi-body Constrained Dynamics simulations $\frac{\partial}{\partial t}p_i = F_i + \lambda_a \frac{\partial C^a}{\partial x^i}, \quad \text{with} \quad C^a(x_i, t) \approx 0$ - J. Baumgarte (1972, Comp. Methods in Appl. Mech. Eng.) Replace a holonomic constraint $\partial_t^2 C = 0$ as $\partial_t^2 C + \alpha \partial_t C + \beta^2 C = 0$. - Park-Chiou (1988, J. Guidance), "penalty method" Derive "stabilization eq." for Lagrange multiplier $\lambda(t)$. - Nagata (2002, Multibody Dyn.) Introduce a scaled norm, $J = C^T SC$, apply $\partial_t J + w^2 J = 0$, and adjust $\lambda(t)$.

e.g.) Efforts in Molecular Dynamics simulations

- Constant pressure \cdots potential piston!
- Constant temperature ····· potential thermostat!! (Nosé, 1991, PTP)

Studies in progress $\dots(2)$...

- Construct a robust adjusted system
 - (2) target to control each constraint violation by adjusting multipliers.

CP-eigenvectors indicate directions of constraint grow/decay, if CP-matrix is diagonalizable.

(3) clarify the reasons of non-linear violation in the last stage of current test evolutions.

• Numerical comparisons of formulations, links to other systems, ...

- "Comparisons of Formulations" (Mexico NR workshop, 2002), gr-qc/0305023.
- with MHD people, mini-symposium at The 5th International Congress on Industrial and Applied Mathematics (Sydney, July 2003).

Summary

Towards a stable and accurate formulation for numerical relativity

We tried to understand the background in an unified way.

- Our proposal = "Evaluate eigenvalues of constraint propagation eqns" We give satisfactory conditions for stable evolutions. Fourier-mode analysis allows us to discuss lower-order terms.
- Our Observation = "Stability will change by adding constraints in RHS" Named "Adjusted System". Theoretical supports are given by Constraint Propagation Analysis.
 - Maxwell system
 - Ashtekar system
 - ADM system (also explain effective parameter ranges of ADM-Detweiler)
 - BSSN system

When re-formulating the system, evaluation of CAFs may be an alternative guideline to hyperbolization.