Wormhole Evolutions in n-dim Gauss-Bonnet gravity

Hisaaki Shinkai & Takashi Torii (Osaka Inst. Technology, Japan)

真貝寿明 & 鳥居隆

(大阪工業大学)

Previous Stories

- "Fate of Morris-Thorne (Ellis) wormhole" was numerically investigated in 2002. [HS & Hayward, PRD66, 044005]. (a)
 - The fate is either black-hole collapse or inflationary expansion, depending on the excessed energy.
- (b) The n-dimensional GR Ellis wormhole solutions are obtained. Perturbation study suggests instability. [TT & HS, PRD88 (2013),
 - 064023]. Numerical evolutions in 4-6 dim confirm its instability. [HS & TT, in preparation]
- (c) The wormholes in anti-de Sitter spacetime are analyzed. Perturbation study suggests instability if throat is smaller than
 - a half of AdS horizon. Numerical evolutions support this prediction. [TT & HS, in Poster B05.]

Outline & Summary

The dynamics of the simplest wormhole solutions in n-dimensional Gauss-Bonnet gravity are investigated numerically.

The solutions catch an unstable mode, and the throat begins inflate if GB coupling term is positive, while it turns into a black-hole

1. Motivation **Dynamics in Gauss-Bonnet gravity?** Action

Motivation

Why Wormhole?

They make great science fiction -- short cuts between otherwise distant regions. Morris & Thorne 1988, Sagan "Contact" etc

poster B06

if the coupling is negative. This horizon bifurcation can be seen easily in higher-dimensional spacetime. There exists the optimized

positive coupling constant which maximizes the throat expansion.

Motivations

1. Motivation

Why Wormhole?

They increase our understanding of gravity when the usual energy conditions are not satisfied, due to quantum effects (Casimir effect, Hawking radiation) or alternative gravity theories, brane-world models etc.

They are very similar to black holes --both contain (marginally) trapped surfaces and can be defined by trapping horizons (TH).

Wormhole = Hypersurface foliated by marginally trapped surfaces

BH & WH are interconvertible?

S.A. Hayward, Int. J. Mod. Phys. D 8 (1999) 373

They are very similar -- both contain (marginally) trapped surfaces and can be defined by trapping horizons (TH)

Only the causal nature of the THs differs, whether THs evolve in plus / minus density which is given locally.

Field Eqs.

2. Field Equations evolution equations (1) evolution equations (2) dual-null variables x^+ -direction Let $\tilde{\alpha} = (n-3)(n-4)\alpha_2$, $\tilde{\Lambda} = \frac{2\Lambda}{(n-1)(n-2)}$, and $A = \alpha_1 + 2\tilde{\alpha}\Omega^2(k+W)$. x^- -direction n-dim., Spherical Symmetry, Dual-null coordinate $\begin{array}{rcl} \partial_{-}\Omega & = & -\frac{1}{n-2}\vartheta_{-}\Omega^2 \\ \partial_{-}\vartheta_{+} & = & \partial_{+}\vartheta_{-} \end{array}$ $\partial_+\Omega = -rac{1}{n-2}\vartheta_+\Omega^2$ $ds^{2} = -2e^{-f(x^{+},x^{-})}dx^{+} dx^{-} + r^{2}(x^{+},x^{-})d\Omega_{3}^{(n-2)}$ $\partial_+\vartheta_+ = -\vartheta_+\nu_+ - rac{1}{4}\kappa^2\Omega(\pi_+^2 - p_+^2)$ $\partial_-\vartheta_- = -\vartheta_-\nu_- - \frac{1}{4}\Omega\kappa^2(\pi_-^2 - p_-^2)$ $\partial_{+}\vartheta_{-} = \frac{1}{A} \frac{e^{-f}}{\Omega} \left\{ -\alpha_{1}\Omega^{2} \frac{(n-2)(n-3)}{2} (k+W) + \Lambda + \kappa^{2} (V_{1}+V_{2}) \right\} - \frac{\tilde{\alpha}}{A} \Omega^{3} e^{-f} \frac{(n-2)(n-5)}{2} \left\{ (k+W)^{2} + W \right\}$ (3) $\partial_{-}f = \nu_{-}$ $\partial_{-}\nu_{+} = \partial_{+}\nu_{-}$ $\partial_+ f = \nu_+$ $\partial_{-}\nu_{-} =$ no equation $\partial_+ \nu_+ =$ no equation Space-time Variables $\partial_{-}\psi = \Omega\pi_{-}$ $\partial_+ \nu_- = \frac{\alpha_1}{A} Z e^{-f} \Omega^2 \frac{(n-3)}{2} \left\{ -\frac{\alpha_1}{A} 2(n-3) + n - 4 \right\}$ $\partial_{-}\phi = \Omega p_{-}$ $\Omega = \frac{1}{-}$ $+\frac{1}{A}\Omega^2 e^{-f}\kappa^2(\pi_+\pi_--p_+p_-)+\frac{1}{A}e^{-f}\left\{\frac{\alpha_1}{A}\frac{2(n-3)}{(n-2)}-1\right\}\left\{\Lambda+\kappa^2(V_1+V_2)\right\}$ $\partial_{-}\pi_{+} = -\frac{1}{2}\Omega\vartheta_{+}\pi_{-} + \left(\frac{1}{n-2} - \frac{1}{2}\right)\Omega\vartheta_{-}\pi_{+} - \frac{1}{2e^{f}\Omega}\frac{dV_{1}}{d\psi}$ $\partial_-\pi_-$ = no equation $-\frac{\tilde{\alpha}}{A}e^{-f}\Omega^2(n-5)\times\frac{\alpha_1}{A}\Omega^2(n-3)\left\{k^2+2WZ+2Z^2\right\}-\frac{\tilde{\alpha}}{A}e^{-f}\Omega^2(n-5)\times\frac{\tilde{\alpha}}{A}\Omega^42(n-5)\left\{k^2+2WZ\right\}Z$ $\vartheta_{\pm} \equiv (n-2)\partial_{\pm}r$ $+\frac{\tilde{\alpha}}{4}e^{-f}\Omega^{2}(n-5)\times\Omega^{2}\frac{1}{2}\left\{(n-2)k^{2}+2WZ-4Z^{2}\right\}+\frac{\tilde{\alpha}}{4}e^{-f}\Omega^{2}(n-5)\times\frac{1}{4}\frac{4}{n-2}Z\left\{\Lambda+\kappa^{2}(V_{1}+V_{2})\right\}$ $\nu_{\pm} \equiv \partial_{\pm} f$ $-\frac{\tilde{\alpha}}{A}e^{f}\Omega^{2}\frac{4}{(n-2)^{2}}\left\{\nu_{+}\vartheta_{+}(\partial_{-}\vartheta_{-})+\nu_{-}\vartheta_{-}(\partial_{+}\vartheta_{+})+(\partial_{+}\vartheta_{+})(\partial_{-}\vartheta_{-})+\nu_{+}\nu_{-}\vartheta_{+}\vartheta_{-}-(\partial_{-}\vartheta_{+})^{2}\right\}$ (5) This constitutes the first-order dual-null form, suitable for numerical coding. We also define η as $\partial_+\psi = \Omega\pi_+$ $Z \equiv k + \frac{2e^f}{(n-2)^2} \vartheta_+ \vartheta_- \equiv k + W$ $\partial_{\pm}\phi = \Omega p_{\pm}$ $\partial_+\pi_- = \left(\frac{1}{n-2} - \frac{1}{2}\right)\Omega\vartheta_+\pi_- - \frac{1}{2}\Omega\vartheta_-\pi_+ - \frac{1}{2e^f\Omega}\frac{dV_1}{d\psi}$ $\partial_+ p_+ =$ no equation $\partial_+ p_- = \left(\frac{1}{n-2} - \frac{1}{2}\right)\Omega \vartheta_+ p_- - \frac{1}{2}\Omega \vartheta_- p_+ - \frac{1}{2e^f\Omega}\frac{dV_2}{d\phi}$ **2. Field Equations** matter variables initial data normal field $\psi(u, v)$ and/or ghost field $\phi(u, v)$ $T_{\mu\nu} = T_{\mu\nu}(\psi) + T_{\mu\nu}(\phi)$ Static condition $= \left[\psi_{,\mu} \psi_{,\nu} - g_{\mu\nu} \left(\frac{1}{2} (\nabla \psi)^2 + V_1(\psi) \right) \right] + \left[-\phi_{,\mu} \phi_{,\nu} - g_{\mu\nu} \left(-\frac{1}{2} (\nabla \phi)^2 + V_2(\phi) \right) \right]$ $(\partial_+ + \partial_-)\Omega = 0 \implies \vartheta_+ + \vartheta_- = 0$ $(\partial_+ + \partial_-)\psi = 0 \implies \pi_+ + \pi_- = 0$ this derives Klein-Gordon equations $(\partial_+ + \partial_-)\phi = 0 \implies p_+ + p_- = 0$

 $S = \int_{\mathcal{M}} d^{N+1} x \sqrt{-g} \Big[\frac{1}{2\kappa^2} \{ \alpha_1 \mathcal{R} + \alpha_2 \mathcal{L}_{\text{GB}} \} + \mathcal{L}_{\text{matter}} \Big]$ where $\mathcal{L}_{GB} = \mathcal{R}^2 - 4\mathcal{R}_{\mu\nu}\mathcal{R}^{\mu\nu} + \mathcal{R}_{\mu\nu\rho\sigma}\mathcal{R}^{\mu\nu\rho\sigma}$ Field equation $\alpha_1 G_{\mu\nu} + \frac{\alpha_2 H_{\mu\nu}}{M} + g_{\mu\nu} \Lambda = \kappa^2 T_{\mu\nu}$ where $H_{\mu\nu} = 2[\mathcal{RR}_{\mu\nu} - 2\mathcal{R}_{\mu\alpha}\mathcal{R}^{\alpha}_{\ \nu} - 2\mathcal{R}^{\alpha\beta}\mathcal{R}_{\mu\alpha\nu\beta} + \mathcal{R}^{\ \alpha\beta\gamma}_{\mu}\mathcal{R}_{\nu\alpha\beta\gamma}] - \frac{1}{2}g_{\mu\nu}\mathcal{L}_{GB}$ has GR correction terms from String Theory has two solution branches (GR/non-GR). is expected to have singularity avoidance feature. (but has never been demonstrated.) much attentions in WH community • new topic in numerical relativity. S Golod & T Piran, PRD 85 (2012) 104015 H Maeda & M Nozawa, PRD 78 (2008) 024005 N Deppe+, PRD 86 (2012) 104011 P Kanti, B Kleihaus & J Kunz, PRL 107 (2011) 271101 P Kanti, B Kleihaus & J Kunz, PRD 85 (2012) 044007 F Izaurieta & E Rodriguez, 1207.1496

(10)

(11)

(12)

(13)

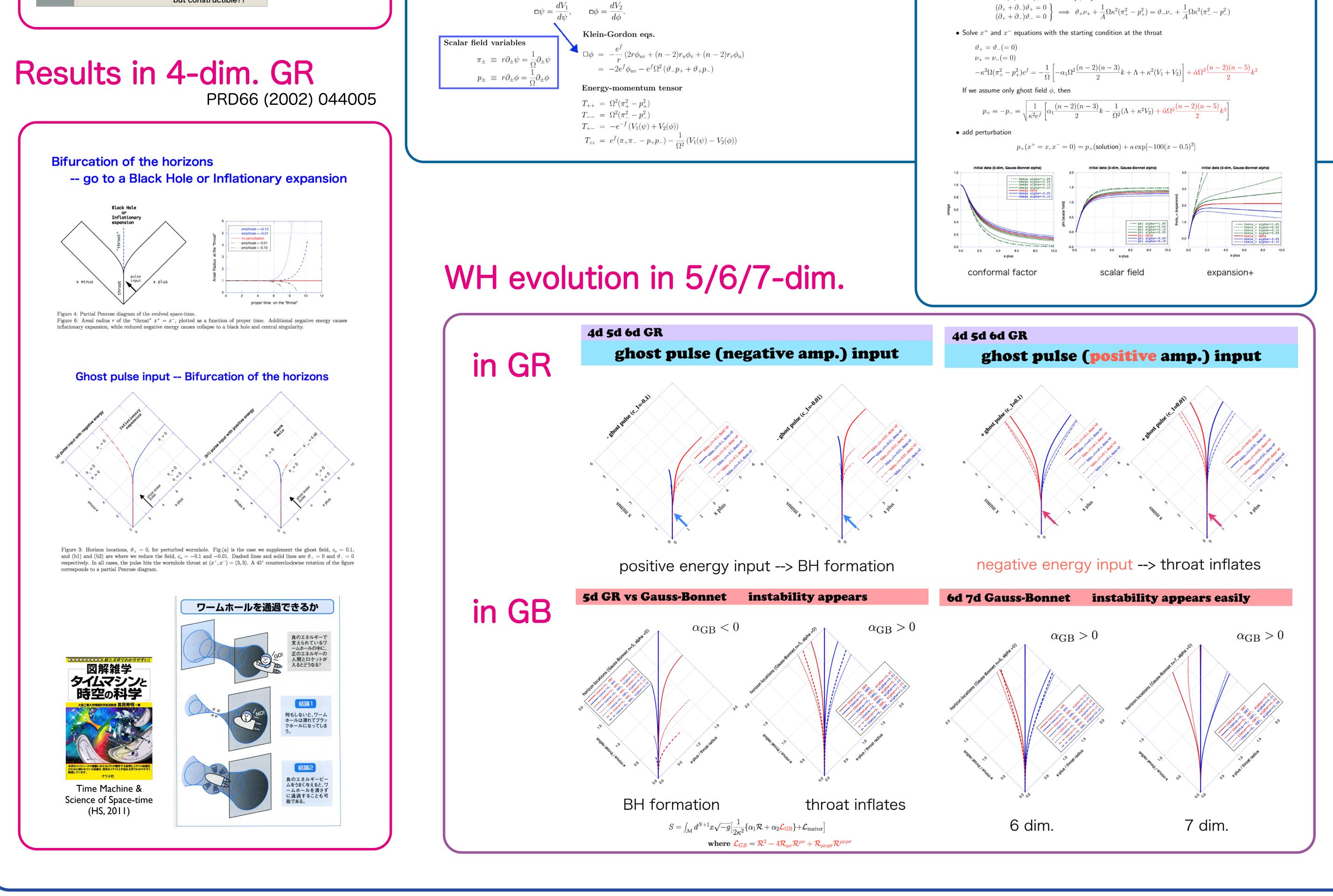
(14)

(15)

(16)

(17)

(18)



http://www.is.oit.ac.jp/~shinkai/

@ JGRG24 workshop, IMPU, Tokyo Univ., 2014/11/10-14