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HENDBHEEDHA "Black Objects"

4-dim BHs Higher-dim BHSs

Schwarzschild =—» Tangherlini

--- unique & stable

Kerr —> Myers-Perry
--- maybe unstable in higher J
black ring (Emparan-Reall)
black Saturn
= di-rings, orthogonal di-rings, ...




Introduction
Higher-dim Black Holes have Rich Structures

black hole

"Black Objects”  black string
black ring
black Saturn

di-rings, orthogonal di-rings ...

Uniqueness (only in spherical sym.)

Stability? No Hair Conjecture?
Formation Process? Cosmic Censorship?
Dynamical Features? ... Hoop Conjecture?

CENSORED

CENSORED

C~4xM BH
e
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Introduction

Dynamics in Gauss-Bonnet gravity?

e Action
~ . y . 1
v _\ _ ‘ .
S :./M N+1, _.(,_)H__){u.R+n._m,(_;[;}+£,,m,,m.|

Where E(;;; = R-] ]R‘R' _ RR .
e Field equation
(\l(;/”’ T ”—'// + .(//Hn\ — sz;r;_/

¢ ¢ ¢ ab 31 | ]
Where ][/11/ — -)[RR/H/ - -272/1(»72“,, _ 27?/) R;nw 3 + R,,“ Rzm )’*‘J o 3.(///1/£(,'1>’

e has GR correction terms from String Theory
e has two solution branches (GR/non-GR).
e has minimum mass for static spherical BH solution
T Torii & H Maeda, PRD 71 (2005) 124002
e |s expected to have singularity avoidance feature.
(but has never been demonstrated in full gravity.)

e new topic in numerical relativity. e much attentions in WH community

S Golod & T Piran, PRD 85 (2012) 104015 H Maeda & M Nozawa, PRD 78 (2008) 024005
N Deppe+, PRD 86 (2012) 104011 P Kanti, B Kleihaus & J Kunz, PRL 107 (2011) 271101
F Izaurieta & E Rodriguez, 1207.1496 P Kanti, B Kleihaus & J Kunz, PRD 85 (2012) 044007



Plan of the Talk
Dynamics in §dim GR gravity?

Yamada & HS, CQG 27 (2010) 045012
Yamada & HS, PRD 83 (2011) 064006
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2. Spheroidal matter collapse

Initial data analysis, Evolutions ®

3. Wormhole dynamics in GR
linear stability, Torii & HS, PRD 88 (2013) 064027

dynamical stability HS & Torii, in preparation

Dynamics in Gauss-Bonnet gravity?

4. Wormhole dynamics in GB HS & Torii, in preparation
5. Plane-wave collision in GB



2. Spheroidal matter collapse

A. Initial data construction
»

- time symmetric, asymptotically flat
- conformal flat
- non-rotating homogeneous dust

- solve the Hamiltonian constraint eq. 512”2 grids
- Apparent Horizon Search
- Define Hoop and check the Hoop Conjecture

ds* = (R, 2)? [dR* + R*(dy? + sin® p1dy3) + dz°]

: : . w -
R = \/:1:2+;z/2+zz, @1 = tan~? . (g = tan~ 1 (Q)

RRV/ 2 0% 0%
v 20y 0%

+ = —47°Gsp

JR2 R OR 922




2. Spheroidal matter collapse
B. Initial data sequence

cf. (3-dim.) Nakamura-Shapiro-Teukolsky (1988)

Class. Quantum Grav. 27 (2010) 045012 Y Yamada and H Shinkai

(b)

4+1 3. , ‘ 3.0
initial data | |

w il | o
00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0 00 05 10 15 20 25 30
R/r R/r R/r

ontour Plot of the Kretchmann invariant, R, p.d

Izabcd



2. Spheroidal matter collapse
C. Evolution method

- ADM 2+1 Double Axisym Cartoon
- 13072 x 272 grids

- lapse function: Maximal slicing condition
- shift vectors: Minimum distortion condition
- asymptotically flat

- Collisionless Particles (5000)
- the same total mass
- no rotation

- Apparent Horizon Search



2. Spheroidal matter collapse
C. Evolution examples (4D, ST1991)

VOLUME 66, NUMBER 8 PHYSICAL REVIEW LETTERS 25 FEBRUARY 1991

Formation of Naked Singularities: The Violation of Cosmic Censorship

Stuart L. Shapiro and Saul A. Teukolsky

"'11r-~-l

t/M=0 1 b | FI1G. 1. Snapshots of the particle positions at initial and late
| ' times for prolate collapse. The positions (in units of M) are
projected onto a meridional plane. Initially the semimajor axis
of the spheroid is 2M and the eccentricity is 0.9. The collapse
proceeds monhomologously and terminates with the formation
of a spindle singularity on the axis. However, an apparent hor-
izon (dashed line) forms to cover the singularity. At ¢/M =77
its area is A/16xM * =098, close to the asymptotic theoretical
limit of 1. Its polar and equatorial circumferences at that time
arc Cpli/azM =1.03 and CXM/axM =091. At later times
these circumferences become equal and approach the expected
theoretical value 1. The minimum exterior polar circumfer-
ence is shown by a dotted line when it does not coincide with
the matter surface. Likewise, the minimum equatorial cir-
cumference, which is a circle, is indicated by a solid dot. Here
CR"/4xM =0.59 and CRL/4xM =0.99. The formation of a
black hole is thus consistent with the hoop conjecture.

/M = r’?ﬂ.

15 Apparent Horizon |
[ appears

FIG. 4. Profile of 7 in a meridional plane for the collapse
shown in Fig. 2. For the case of 32 angular zones shown here,
the peak value of [ is 24/M * and occurs on the axis just outside

; the matter.
©
Equator Equator




heroidal matter collapse
Evolution examples (5D, ours)

FIG. 2: Snapshots of 5D axisymmetric evolution with the ini-
tinl matter distribution of b/M i [Fig.(al) and (a2); model
SDS3 in Table I} and 10 [Fig.(bl) and (b2); model 5D84]. We
see the apparent horizon (AH) is formed at the coordinate
time t/M = 33 for the former model and the area of AH
MCTeases, while AH 15 not observed for the latter model up

P

to the time t/M 15.4 when our code stops due to the 11\[‘(('
curvature. The big circle indicates the location of the max-

LT

imum Kretschmann invariant 7., at the final time at each
evolution. Number of particles are reduced to 1/10 for figures.

*  tM = 3.3 (matter)
"M =33 (AH)

* M =55 (matter)
t‘M=55(AH)

FIG. 3: Kretschmann invariant 7 for model 56DS§ at t/M =
15.4. The maximum is O(1000), and its location is on z-axis,
just outside of the matter.




2. Spheroidal matter collapse
Evolution examples (5D, ours)

. 1 1 )

t/'M = 3.3 (matter)
‘UM =33 (AH)

t‘M=55(AH)

t/M =55 (matter) [1

]
6.0 (matter)
6.0 (AH)
7.8 (matter 7

.8 (AH)




2. Spheroidal matter collapse
D. Comparisons 4D vs. 5D

(a)

\\\\\\

\\\\\\\;

O

\

N\ >

R (x,y,w)

b/M (t = 0)

2.50 4.00 6.25 10.00

4D axisym.

e 4D[3 4D~ 4D5
A H-formed no no no

ean = 0.90 towards spindle
er =092 e=08) er=092 er=096

5D axisym.
SO(3)

5DS 5DS4

AH- f01 med JA H- f()l med no no

ean — 0.88 ean — 0.88 tOwards spherici
I er = (.82 er = (.84 er = 0.88 ef =0.96

towards spherical towards spindle




2. Spheroidal matter collapse
D. Comparlsons 4D vs. 5D

@ b/M(E=0)] 250 1.00

4D axisym. ADcy 4D
no
eag = 0.4 l
| er = 0.92 ere=0280 ¢ e = 0.92
5D axisym. DS DS/ s 5DSvy
SO(3) A H-formed§A no
eag = 0. 88I€AH = 088'
[ ef =0.82 eer=0.8 Q(f—()<\<\ er = 0.96
5D double m
axisym. E
U(l)XU(l) eag = U.8306%eag = 0.87 epag = 0.4
| e = 0.79 "ger = 0.81 o e = 0.90

5D collapses

-- proceed rapidly.

-- towards spherically.
-- AH forms in wider ranges.

——SDSoatzZM =56
———S5DUdatzZM =53
4DdatzZM =6.15
mmmunSDSH at ZM = 32
*SDUBatzZM =26
4DpatzZM =138

Proper time



2. Spheroidal matter collapse
C. Evolution examples

| ] > 0(10)
w—wmatter surface

Proper time
Proper time
Proper time

wn | > O(10)
w—mmatter surface
25 30 35

10 15 20
z/M

FIG. 4: The snapshots of the hypersurfaces on the z-axis in the proper-time versus coordinate diagram; (a) model 5DSj3, (b)
model 5DS4, and (c) model 4D4. The upper most hypersurface is the final data in numerical evolution. We also mark the matter
surface and the location of AH if exist. The ranges with Z > 10 are marked with bold lines and peak value of 7 express by
asterisks.




2’. Hoop Conjecture
A. Hyper-Hoop conjecture ?

Hoop Conjecture Thorne (1972)

Hyper-Hoop Conjecture
lda-Nakao (2002)
Vb3 < GpM

In 5-D, if mass gets compacted
In some area, ....

Penrose (1969)
A < 16w M?



2’. Hoop Conjecture Vo < T167Gs M
B. Spheroidal Cases 2

Define Hyper-Hoop as the surface V5 = ()

0
oy 2 9 ¢« 2 [ ‘
3T} ry + 17 T} 2 . .
L 9y + P : “cot® — —(rysinf
Th Th Th (%
o 2 : : o)
hcosf)— — —(rpsin@ —rycos ) — | =0
0z OR

/2

Ui/ Th° + 7'% ry, cos 6 df
_H (A)
yper-Hoop V,

;2 9 . 9 )
o 27}, _dib_éSBBLOtk fQEQ + g,(’rh sin 6

e | B s(;)heroﬁﬁal [6rizons.”
L hcos@)a—%——,(7‘;16089+7’;,/81n9)0— — 0
00 40 80 120 160 200 240 I L% <

b/a(a=0.1)




2’. Hoop Conjecture Vo < T167Gs M
C. Toroidal Cases K
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Section Summary
Dynamics in §dim GR gravity?

Yamada & HS, CQG 27 (2010) 045012

2. Spheroida[ matter collapse Yamada & HS, PRD 83 (2011) 064006

Initial data analysis, Evolutions @ £ @ ©)
B L ? P1, P2 E 0,
(ElER7 L DA EY RILFIR D E S AHE)

Lm

A b
a R (x,y,w) a X (X,)

*5D &, ADED BRI LENFRZEIT (BFANICIEWEA)
k5D TDREEIE, 4D&DHIKRICHEDPITW (BENHZS < OBEHERD)

*k Apparent HorizonlE5DD AR LT L), (ERINEL DFER)
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Introduction

Why Wormhole?

They make great science fiction -- short cuts between otherwise distant regions.
Morris & Thorne 1988, Sagan “Contact” etc

JODIE FOSTER
MATTHEW McCONAUGHEY JODIE FOSTER

MATTHEW McCONAUGHEY =~

US movie 1997



Wormholes in spacetime and their use for interstellar travel: A tool for

teaching general relativity

Michael S. Morris and Kip S. Thorne
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

(Received 16 March 1987; accepted for publication 17 July 1987)

Rapid interstellar travel by means of spacetime wormholes is described in a way that is useful for
teaching elementary general relativity. The description touches base with Carl Sagan’s novel
Contact, which, unlike most science fiction novels, treats such travel in a manner that accords
with the best 1986 knowledge of the laws of physics. Many objections are given against the use of
black holes or Schwarzschild wormholes for rapid interstellar travel. A new class of solutions of
the Einstein field equations is presented, which describe wormholes that, in principle, could be
traversed by human beings. It is essential in these solutions that the wormhole possess a throat at

which there is no horizon; and this property, together with the Einstein field equations, places an
extreme constraint on the material that generates the wormhole’s spacetime curvature: In the
wormhole’s throat that material must possess a radial tension 7, with the enormous magnitude
7o~ (pressure at the center of the most massive of neutron stars) X (20 km)?/(circumference of
throat)?. Moreover, this tension must exceed the material’s density of mass-energy, p,c’. No
known material has this 7,> p,c® property, and such material would violate all the “energy
conditions” that underlie some deeply cherished theorems in general relativity. However, it is not
possible today to rule out firmly the existence of such material; and quantum field theory gives
tantalizing hints that such material might, in fact, be possible.

Am. J. Phys. 56 (5), May 1988 © 1988 American Association of Physics Teachers




Box 1. Excerpts from Contact by Carl Sagan."

After traveling through some sort of “tunnel” that took them in less than an hour from Earth to an orbit around the star Vega, five of the characters in
the novel speculate on the nature of the tunnel:

“You see,” Eda explained softly, “if the tunnels are black holes there are real contradictions implied. There is an interior tunnel in the exact Kerr
solution of the Einstein Field Equations, but it’s unstable. The slightest perturbation would seal it off and convert the tunnel into a physical singularity
through which nothing can pass. I have tried to imagine a superior civilization that would control the internal structure of a collapsing star to keep the
interior tunnel stable. This is very difficult. The civilization would have to monitor and stabilize the tunnel forever. It would be especially difficult with
something as large as the dodecahedron falling through.”

“Even if Abonnema can discover how to keep the tunnel open, there are many other problems,” Vaygay said. “Too many. Black holes collect problems
faster than they collect matter. There are the tidal forces. We should have been torn apart in the black hole’s gravitational field. We should have been
stretched like people in the paintings of El Greco or the sculptures of . . . Giacometti. Then other problems: As measured from Earth it takes an infinite
amount of time for us to pass through a black hole, and we could never, never return to Earth. Maybe this is what happened. Maybe we will never go home.
Then, there should be an inferno of radiation near the singularity. This is a quantum mechanical instability. . . *

“And finally,” Eda continued, “a Kerr-type tunnel can lead to grotesque causality violations. With a modest change of trajectory inside the tunnel, one
could emerge from the other end as early in the history of the universe as you might like-—a picosecond after the big bang, for example. That would be a
very disorderly universe.

“Look, fellas,” she said, “I'm no expert in General Relativity. But didn’t we see black holes? Didn't we fall into them? Didn’t we emerge out of them?
Isn’t a gram of observation worth a ton of theory?"”

“I know, I know,"” Vaygay said in mild agony. “It has to be something else. Our understanding of physics can't be so far off. Can it?”

He addressed this last question, a little plaintively, to Eda, who only replied, A naturally occurring black hole can’t be a tunnel; they have impassible
singularities at their centers.”

pages 347,348

Eda was, considering the circumstances, very relaxed. She soon understood why. While she and Vaygay had been undergoing lengthy interrogations, he
had been calculating.

“I think the tunnels are Einstein-Rosen bridges,” he said. “General relativity admits a class of solutions, called wormholes, similar to black holes, but
with no evolutionary connection—they cannot be generated, as black holes can, by the gravitational collapse of a star. But the usual sort of wormhole,
once made, expands and contracts before anything can cross through; it exerts disastrous tidal forces, and it also requires—at least as seen by an observer
left behind—an infinite amount of time to get through."”

Ellie did not see how this represented much progress, and asked him to clarify. The key problem was holding the wormhole open. Eda had found a class
of solutions to his field equations that suggested a new macroscopic field, a kind of tension that could be used to prevent a wormhole from contracting
fully. Such a wormhole would pose none of the other problems of black holes; it would have much smaller tidal stresses, two-way access, quick transit
times as measured by an exterior observer, and no devastating interior radiation field.

“I don’t know whether the tunnel is stable against small perturbations,” he said. “If not, they would have to build a very elaborate feedback system to
monitor and correct the instabilities.”

page 406

Am. J. Phys., Vol. 56, No. 5, May 1988 M. S. Morris and K. S. Thorne




Morris- Thorne's “Traversable” wormhole

M.S. Morris and K.S. Thorne, Am. J. Phys. 56 (1988) 395

M.S. Morris, K.S. Thorne, and U. Yurtsever, PRL 61 (1988) 3182
H.G. Ellis, J. Math. Phys. 14 (1973) 104

(G. Clément, Am. J. Phys. 57 (1989) 967)

Desired properties of traversable WHs

1. Spherically symmetric and Static = M. Visser, PRD 39(89) 3182 & NPB 328 (89) 203

Einstein gravity

Asymptotically flat
No horizon for travel through
Tidal gravitational forces should be small for traveler

Traveler should cross it in a finite and reasonably small proper time

N o oA W N

Must have a physically reasonable stress-energy tensor
= Weak Energy Condition is violated at the WH throat.
= (Null EC is also violated in general cases.)

8. Should be perturbatively stable

9. Should be possible to assemble

“Ellis (Morris-Thorne) wormhole”



Introduction

Why Wormhole?

They increase our understanding of gravity when the usual energy conditions
are not satisfied, due to quantum effects (Casimir effect, Hawking radiation)
or alternative gravity theories, brane-world models etc.

They are very similar to black holes --both contain (marginally) trapped
surfaces and can be defined by trapping horizons (TH).

Wormhole = Hypersurface foliated by marginally trapped surfaces

BH and WH are interconvertible? New duality?



~ Imtroduction
BH & WH are interconvertible?

S.A. Hayward, Int. J. Mod. Phys. D 8 (1999) 373

They are very similar -- both contain (marginally) trapped

surfaces and can be defined by trapping horizons (TH)

Only the causal nature of the THs differs, whether THs
evolve In plus / minus density which is given locally.

Locally
defined
)%

Einstein
eqgs.

Appear-
ance

Black Hole

Achronal (spatial/null)
outer TH
— 1-way traversable

‘normal matter (or
‘vacuum)

‘occur naturally

Positive energy density ENega tive energy density

“exotic” matter

Wormhole [

—%iBiTh. WEETEED

éTemporaI (timelike)
outer THs
— 2-way traversable

......................................................................

......................................................................

‘Unlikely to occur
‘naturally.
but constructible??
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Part| Wormhole dynamics in 4-dim GR

PHYSICAL REVIEW D 66, 044005 (2002)

Fate of the first traversible wormhole: Black-hole collapse or inflationary expansion

Hisa-aki Shinkai*
Computational Science Division, Institute of Physical & Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama, 351-0198, Japan

Sean A. Hayward'
Department of Science Education, Ewha Womans University, Seoul 120-750, Korea

(Received 10 May 2002; published 16 August 2002)

Fate of Morris-Thorne (Ellis) wormhole?

e “Dynamical wormhole” defined by local trapping horizon
e spherically symmetric, both normal/ghost KG field
e apply dual-null formulation in order to seek horizons

e Numerical simulation

ghost /normal Klein-Gordon fields

T = o) + Toal0) = [0t = s (5 (V02 + Vi) | + [ =000 — g (—5(V0P + Va(9))

A\ e \ . 4

no;;]al gh?st
Oy = dvl(w), O¢p = d\/é(gb). (Hereafter, we set Vi(v) =0, V5(¢) = 0)

d¢



Initial data on 27 =0, 2~ = 0 slices and on S

Generally, we have to set :

(Qa f7 ﬁi) ¢, ¢)

(Via@iaﬁi)

on S:xt =2 =0

on Y2t =027 >0

Grid Structure for Numerical Evolution

Xxminus

N\
N\

wormhole throat

xplus




dual-null formulation, spherically symmetric spacetime (4D)

e The spherically symmetric line-element:

ds? = —2¢ Tdatde™ + r?dS?,

e To obtain a system accurate near 3, we introduce the conformal factor | = 1/r|.

first-order variables, the conformally rescaled momenta

where r =r(z",27), f = f(a",27), -

We also define

expansions
inaffinities
momenta of ¢

momenta of ¥

Gy = 20.r = —20720.0 (0L = 27“_1(9i7“)
ve =0+ f

pr =10:p = 0020

T =rio) = Q0

N

The set of equations (remember the identity: 0,0 = 0_0.):

01ty = —viy — QQW:Qt + 29@1,

010+ = — QO 0_/2 +e ),

P02+ e —2mm +20,0 ),
Orpr = —Wzp+/2,

Orme = —QUxmy /2.

&N

Y N N N
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4dGR ogs =0 HS-Hayward PRD 66(2002) 044005
Wormhole evolution®D{E®R

/- . \\vamm
inflationary
expansion

Inflationary

Black Hole -
Expansion

9T =0 =0
T * T xt
Positive Energy Input Negative Energy Input
= add normal scalar field = add ghost scalar field
= subtract ghost field




Ghost pulse input -- Bifurcation of the horizons (4d)

, D. ®

S

6&0 ©

&

éﬁ&"o Q\\)g
™ +
* %
> o
Figure 3: Horizon locations, ¥, = 0, for perturbed wormhole. Fig.(a) is the case we supplement the ghost field, ¢, = 0.1,

and (bl) and (b2) are where we reduce the field, ¢, = —0.1 and —0.01. Dashed lines and solid lines are ¥/, = 0 and ¥ = 0
respectively. In all cases, the pulse hits the wormhole throat at (z",z ") = (3,3). A 45° counterclockwise rotation of the figure
corresponds to a partial Penrose diagram.



4dGR ogs =0 HS-Hayward PRD 66(2002) 044005
Wormhole evolution®D{E®R

inflationary
expansion

]

19+:0 ?9_:0

Yi{ Hole Inﬂation.ary
Expansion
0" =0 9t =0

9T =0 v =0

=
circumference radius of the throat IGR 4dim]
(with penturabation positive/negative Energy)
3.0 T T T
———— GR 4dim, a=0.00, E=+0.00 /
Positive Energy Input Negative Energy Input GR 4dim, #=0.20 [noemsl), E=+0,07 /
= add normal scalar field = add ghost scalar field 25 GR 4din, a=0 .40 [(noena), E=+0.27 7
= subtract ghost field . - —— GR 4dim, 3=0.20 (ghost), E=-0,11 /
/

GR 4dim, a=0.40(gho#t), E=-0.31
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Travel through a Wormhole
-- with Maintenance Operations!

[ D—=Lk—ILEBBTEDD |

BENOIZRIFX-—T
FA5hTWB7
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EDQOIRILE—D
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Figure 11: A trial of wormhole maintenance. After a normal scalar pulse, we signalled a ghost scalar pulse to extend the life

of wormhole throat. The travellers pulse are commonly expressed with a normal scalar field pulse, (é,, &, ¢.) = (+0.1,6.0,2.0).
Horizon locations ¥, = 0 are plotted for three cases:

(A) no maintenance case (results in a black hole),
(B) with maintenance pulse of (c,, ¢, ¢.) = (0.02390, 6.0, 3.0) (results in an inflationary expansion),
(C) with maintenance pulse of (c,, ¢;,c.) = (0.02385, 6.0, 3.0) (keep stationary structure upto the end of this range).



Summary of Part | HS & Hayward, PRD66 (2002) 044005
Dynamics of Ellis (Morris-Thorne) traversible WH

WH is Unstable

(A) with positive energy pulse ---> BH
---> confirms duality conjecture between BH and WH.

(B) with negative energy pulse ---> Inflationary expansion
---> provides a mechanism for enlarging a quantum WH

to macroscopic size

(C) can be maintained by sophisticated operations
---> a round-trip Is available for our hero/heroine

The basic behaviors has been confirmed by
A Doroshkevich, J Hansen, | Novikov, A Shatskiy, [JMPD 18 (2009) 1665
J A Gonzalez, F S Guzman & O Sarbach, CQG 26 (2009) 015010, 015011
J A Gonzalez, F S Guzman & O Sarbach, PRD80 (2009) 024023
O Sarbach & T Zannias, PRD 81 (2010) 047502



http://jp.arxiv.org/find/gr-qc/1/au:+Doroshkevich_A/0/1/0/all/0/1
http://jp.arxiv.org/find/gr-qc/1/au:+Hansen_J/0/1/0/all/0/1
http://jp.arxiv.org/find/gr-qc/1/au:+Novikov_I/0/1/0/all/0/1
http://jp.arxiv.org/find/gr-qc/1/au:+Shatskiy_A/0/1/0/all/0/1

Part 2 WH in higher-dim. (1) Exact Solution
(1) Exact Solution : Basic eqns.
Torii & HS, PRD88 (2013) 064027

» general relativity, n-dimension massless scalar field (ghost)

/

ﬁR——e((%) V//qs)] =1

» static, spherical sym., asymptotically flat

/ e/ =g

ds? = —f(r)dt* + f(r)"'dr* + R(r)*h;;dz"dx’

n

» Basic equations

4.1) n_2f2[ 2R f,R/_|_(n_3)R/2]_|_(n_2)(n_3)kf:/Qif[%efqb@—i—%)},

R ' fR R 2R
n—2R f’ (n —2)( k211 ]
(r.7): | PR | DRI [ eren - 6]
o f// R// f/R/ 4 R/ - 1 . -
(/La]): 7+(n_3)f(R ) 2R2 :ﬁ%_7€f¢2+%)_7
dV. O constant

(KG) - RH (R"72f¢) = —e . St



Part 2 WH in higher-dim. (1) Exact Solution
Solution

ds?

n

= —f(r)dt* + f(r)~'dr® + R(r)*h;dz'da’

» regularity at the throat ( 7 =10)
R = a ~— throat radius % from the scaling rule

R =0, f=fo, f'=0, ¢=0 a=1 fo=1

: 2002 _ (o _ o), 2(n—3)
Basics eqns. ™ .07 = (n—2)(n—3)a

» Exact solution

B.(p,q) = / tP~1(1 —¢)?"'dt  Incomplete Beta func.
0

% in another metric form: V. Dzhunushaliev+, 2013



Part 2 WH in higher-dim. (1) Exact Solution
Configurations

» configurations ds? = —f(r)dt? + f(r)"'dr® + R(r)*h;dz'da’

3

2.5

2.5
2

expansion is O

trapping horizon

% large curvature near the throat.
% scalar field goes steep if n is large.

% In the 7 — oo limit

R=r+1 »=0 (r=0)



Part 2 WH in higher-dim. (2) Linear Stability
(2) Linear Stability: Master eqn.

Torii & HS, PRD88 (2013) 064027

» metric

ds? = —f(t,r)e 2PN a2 4 f(t,r) " Ldr® 4+ R(t,r)2hydz'da?

n

» linear perturabation static solution
f=fo(r)+ fi(r)e*t, R= R%Rl(r)em,

6 = 0o(r) + 61(r)e™t, ¢ = do(r) + ¢1(r)e™".

» master equation

TSy ST = mmmwai 10
—\Ij,ll + W(T)qjl = w2\Ij1, L IZ -
1 3(n—2)? = 2
W(r) = — [ — (n—4)(n— 6)} .
ARE | p2n9) } wl
B B d &1 B nT_2 B ¢_6 0.0 0.5 1}.’0 1.5 2.0
Vi=Dyyr Dr=on— D 1 = H <¢1 R Rl)’ % potential W

% W1: Gauge invariant in spherical sym.



Part 2

WH in higher-dim. (2) Linear Stability

S S S

N

=
LI | VO | I T T [

— O 0NN~

N

Unstable!
» exist negative mode
n wg 1.2
1 —1.39705243371511
5 —2.98495893027790
6 —4.68662054299460
7 —6.46258414126318
8 —8.28975936306259 .
9 —10.1535530451867
10 —12.0442650147438
11 —13.9552091676647
20 —31.5751101285105
50 —91.3457759137153
100 —191.283017729717 02 w w

eigenvalues of negative mode

% In all dimensions, we found negative modes.

% Higher dimension, instability appears in short time scale

) Ellis’s wormhole is unstable‘

r
eigenfunction of negative




n-dimGR &g =0 Torii-HS PRD 88 (2013) 064027

Wormhole evolution in n-dim ORISR

PHYSICAL REVIEW D 88, 064027 (2013)
4-dim. TABLE 1. The negative eigenvalues w?.

Black Hole

2

n w*
5-dim. 4 —1.39705243371511
. s 5 —2.98495893027790
, 6 —4.68662054299460
6-dim. 7 —6.46258414126318
8 —8.28975936306259
9 —10.1535530451867
10 —12.0442650147438
1 —13.9552091676647
20 —31.5751101285105
50 —91.3457759137153
100 —191.283017729717
f(t,r)= folr) + ef(r)e':, (3.1)
8(t,r) = 8y(r) + £8,(r)e'", (3.2)
Positive Energy
R(t, r) = Ry(r) + eR,(r)e'*, (3.3)
&(t, r) = do(r) + e (r)e'". (3.4)

Sn—Q
RITHREWEE, FEZEE—RZIED.
(FRFZEERT)



4d 5d 6d GR
ghost pulse (negative amp.) input

double trapping horizon

positive energy input --> BH formation



4d 5d 6d GR

amp.) input

ghost pulse (

double trapping horizon

--> throat inflates



Section Summary n N

Dynamics in §dim GR gravity?

2. Spheroidal matter collapse Yamada & HS, CQG 27 (2010) 045012
Initial data analysis, Evolutions  Yamada & HS, PRD 83 (2011) 064006

3. Wormhole dynamics in GR
linear stablility, Torii & HS, PRD 88 (2013) 064027

dynamical stability HS & Torii, in preparation

Ellis (Morris-Thorne) traversable WHfE RFiBE) & BHRE
WH (& N"EZECTHL B S XTTIEENTE
(A) EDQDITXRILFX—/NILA ---> BH

(B) BT XRILF¥—/NILAR ---> Inflationary expansion
(C) EENIEA VT F > A HHE
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Introduction

Dynamics in Gauss-Bonnet gravity?

e Action

L -1 ,
S = ./,\/1 (/‘\ * l.I' —( ")h"'){” |R T ()-_>L(.;l;}+£numvr|

where L = R2 — AR,y R + Ry RV

e Field equation

_ 9
(\l(’v/zll + ”_’// + ,(//uu\ = H-];rz./

‘ ¢ ‘ ab 37 |
Where ][I”/ — -—)[RRIIIJ - 272/,()72(", - .ZR) R,””/ 7 + R,;. R;V/” )'*‘J -

e has GR correction terms from String Theory
e has two solution branches (GR/non-GR).
e has minimum mass for static spherical BH solution
T Torii & H Maeda, PRD 71 (2005) 124002
e |s expected to have singularity avoidance feature.
(but has never been demonstrated in full gravity.)

1
3,(1,1115(;1;

e new topic in numerical relativity. e much attentions in WH community

S Golod & T Piran, PRD 85 (2012) 104015 H Maeda & M Nozawa, PRD 78 (2008) 024005
N Deppe+, PRD 86 (2012) 104011 P Kanti, B Kleihaus & J Kunz, PRL 107 (2011) 271101
F Izaurieta & E Rodriguez, 1207.1496 P Kanti, B Kleihaus & J Kunz, PRD 85 (2012) 044007



Field Equations (1)
Formulation for evolution [dual null}

'Metric| n-dimensional, dual-null coordinate, 2 + (n — 2) decomposition

ds®* = =2 T ) dat da™ + (2t a” )j.,“,-(/.r"(/.l'-’. (1)

Variables|

| Evolution
() = Conformal factor

.
Vi = (n — 2)0+r expansion
f lapse function
vy =0+ f inaffinity (shift)
) scalar field (normal)
Ty = 101 scalar momentum
¢ scalar field (ghost)

Py =10+0 scalar momentum



Field Equations (1)
Formulation for evolution [dual null}

‘Metric| n-dimensional, dual-null coordinate, 2 + (n — 2) decomposition

¢ —f(rt 1 . 9, L . ' '
ds® = =2 1T ) dat da™ + (2t x )yiidx da’ (1)

Variables Parameters

n  dimension
Conformal factor

. k  curvature
expansion

A cosmological constant

lapse function
inaffinity (shift)

For simplicity, we define

a = (n—3)(n—4)as, (2)
) scalar field (normal) A = o +2a0°Z, (3)
Ty = 1oyt scalar momentum . 2e/ w
| . W = — V-, (4)
¢ scalar field (ghost) (n —2)
pr =10+0 scalar momentum Zz =k+W, (5)

n - Q?(n — 2)(n — 3)(3_fZ, (6)




normal field ¢)(u,v) and/or ghost field ¢(u,v)

Tp = Tu(®) + Tu(®)
= [t = g (V0 + Vi) + <0000 — g (—5(V 0 + 1306))|

this derives Klein-Gordon equations

dv;
0¢ = %
Klein-Gordon eqs.
Scalar field variables s ;
i 0
1 O¢p = —— — _
T4+ rog) = ﬁazl:'l/) ¢ , (2r¢uv (n 2)%% + (n 2)Tv¢u)
1 - —2ef¢uv — efﬂz (ﬂ_p+ -+ 19+p_)

P+ rdi ¢ = ﬁaﬂ:¢

Energy-momentum tensor

T,y = Q2(7ri—p_2+)

T _ = QXY= —p?)

T, = —e‘f(ww)+%(¢))

T.. = e/(mim —pip) — g (G(¥) — Va(0))



Equations for 2" direction

.
3+'(9+

9.9
i f

3+ vy

8+ V_

40

dio =

D7y
D7
i p+
dyp-

1

. 9,0 (7)

n-—2

1 1

—yvy — Q—AK2T++ = —V4v4 — Z"zﬂ(“i - Pi) (8)
e/ ,(n—2)(n—23) " PO () [ ) P
o [—aIQ 5 Z+ A+ K (Vi Vo) | - Q2% ) 22+ W] (9)
v, (10)
no evolution eq. exists
A, re(n=3) {_a_l _ _ }
y Ze Q) 5 y 2n=3)+n-4

l 2 ~f,.2 - l-; ﬂ2(n—3)_ 2
+AQ e TR (mem_ — pyep_) + 1 1 n=2) 1y {A+r* (V] + V2)}
_ﬁ —fO2(y _ (@) o 2 2 ﬁ do( =\ f1.2

S0 - 5) x | L% - 3) (k2 +2WZ + 222} + 012 - 5) {k* +2W 2} Z]

é ~fO2(pn — & l 2 f¢, 2 V7 _A72 l 4 .2
+¢ 7 (n - 5) x |52 {(n—2)k* +2WZ - 42%} + o 2Z{A + K (Vi + Va) }
g A (Ve (0-0-) + V-9 _(0:0,) + (0:0,)(0-0-) + vyv 0,9 — (9-9,)%} (11)

A (n — 2)?
QT"+ (12)
Qps (13)
no evolution eq. exists

1 1 1 1 dW

(n —2 2) Wim = ST = 570 dw (14)

no evolution eq. exists

1 1 1 1 dV,
( '5)"'“’-'59"-“'%% (15)

n—2



Equations for =~ direction

1

o 2
0-Q = — 219_9 (16)
oV, = (9) (17)
- — — L 2 — o l 2,2 .2
d_Jv_. = —d_v_ a1k T _=—9_v_ AQ& (7 — p~) (18)
o_f = v_ (19)
vy = (11) (20)
J_v_ = no evolution eq. exists
oY = Qm_ (21)
o = Qp_ (22)
1 1 1 1 dV;
o_m, = —5929+1r_ + (n —5 5) ) _m, — 20102 dv (23)
Jd_m_ = no evolution eq. exists
1 1 1 1 dV,
0-pe = =3 Wup-+ (=5 3) Wore - 576G 2
Jd_p_ = no evolution eq. exists

This constitutes the first-order dual-null form, suitable for numerical coding.



~ Wormhole Evolution
BH & WH are interconvertible?
S.A. Hayward, Int. J. Mod. Phys. D 8 (1999) 373

They are very similar -- both contain (marginally) trapped

surfaces and can be defined by trapping horizons (TH)

Only the causal nature of the THs differs, whether THs
evolve In plus / minus density which is given locally.

Locally
defined
)%

Einstein
eqgs.

Appear-
ance

Black Hole

Achronal (spatial/null)
outer TH
— 1-way traversable

‘normal matter (or
‘vacuum)

‘occur naturally

Positive energy density ENega tive energy density

“exotic” matter

Wormhole [

—%iBiTh. WEETEED

éTemporaI (timelike)
outer THs
— 2-way traversable

......................................................................

......................................................................

‘Unlikely to occur
‘naturally.
but constructible??

77297F =0 RN
B=AWTDHFEND

)
-850
be 2ok

ENRIRT 3R TED'

e )

7590R=ILOBR
RRO7BTHFA) TR
MREHRNAEETREIC
BT .

HEQW&U&REJ

T—LE-ILDRRE
BRL@BITHFERET
»5(3%¥)




n-dimGR <ag =0 Torii-HS PRD 88 (2013) 064027
Wormhole evolution in n-dim &S50

PHYSICAL REVIEW D 88, 064027 (2013)
4-dim. TABLE 1. The negative eigenvalues w?.

Black Hole

2

n w*

4 —1.39705243371511

5 —2.98495893027790

6 —4.68662054299460

7 —6.46258414126318

8 —8.28975936306259

9 —10.1535530451867

10 —12.0442650147438

11 —13.9552091676647

20 —31.5751101285105

50 —91.3457759137153

100 —191.283017729717

f(t, r) = fo(r) + ef (r)e', (3.1)

8(t,r) = 8y(r) + £8,(r)e'", (3.2)
Positive Energy

R(t, r) = Ry(r) + eR,(r)e'", (3.3)

(1, r) = po(r) + e (r)e’. (3.4)

Sn—2
RITHREWEE, FEZEE—RZIED.
(FRFZEERT)



§d Gauss-Bonnet WH : positive energy injection (1)

(n—2)VE

n..—‘2 n—3 A2 . 2 r2€ d,r—2 R 2 7‘28 B 2
acep = +0.001 " T [_M (ke G gureloas-) + a2 (et o Zgarelous )]
5 MSmass, H.Maeda-Nozawa, PRD77 (2008) 063031

circumference radius of the throat IGB 5dim]
(alpha=+0.001, with pernturabation positive Energy)

circumference radius of the throat

0.5 alpha=0.001,3=0.0, E=0.0
! ! weeeee--- @lpha=0.001,8=0.1, E=+0.11
--==--- @lpha=0.001,8=0.2, E=+0 405
- - —— @lpha=0.001,8=0.3, E=+1.04
- —— alpha=0.001,8=0.5,E=+2.85
: : -----a8pha=0.001,a=0.7,E=+#549
0.0 L L
0.0 1.0 2.0 3.0 4.0 5.0 6.0

proper time at the throat

coupling IE (BE®DGaussBonnet) — BHZRBEL L Ic < W
HHEELLEDIEIRIVEF—%ZEN — BHER ICEEU S




§d Gauss-Bonnet WH : positive energy injection (2)

— (n—2) nk—‘ n-— A 2 ' ~ - . 2 .
aGp = _|_001 m = 202 2pn=3 [—Ar2+ (k+ " _2)2r2ef9+9_) +ar~? (A+ (‘71_2)2r28f0+0_) ]

& MSmass, H.Maeda-Nozawa, PRD77 (2008) 063031

circumference radius of the throat [GB 5dim]
(alpha=+0.01, with perturabation positive Energy)

circurnference radius of the hroat

alpha=0.01,a=0.00, E=0.0 : . :
05 e I if‘J["<:1=|:| :I 1 ;:1=|:| "t-l:l_ E:_:;. :E:l: ..T ................. _..T ............... -

ceneee alpha=0.01,a=0 60, F=+4 00 : i :
v e glphas0.01,a%0.70, Ew+5. 39
- — dlpha=0.01,8=075 E=+6.15
----- apha=0.01,a=0280, E=+6.94

0.0 i i i i i i i
00 05 10 15 20 25 30 35 40

proper bime & the throat

alpha XZ i, BEXZEL)

coupling IE (BE®DGaussBonnet) — BHZRBEL L Ic < W
HHEELLEDIEIRIVEF—%ZEN — BHER ICEEU S




s5d, 6d Gauss-Bonnet WH

aGB — 0.001

aGgB — 0.001

need more positive energy for transition to BH in 6dim



s5d, 6d Gauss-Bonnet WH

aOGB — 0.001

2.0

1.5

1.0

circumference radius of the throat

0.5

0.0

sd agp = 0.001

circumference radius of the throat [GB 5diml
(alpha=+0.001, with perturabation positive Energy)

!

| | | | 2.0

1.5

1.0

circumference radius of the throat

alpha=0.001,a=0.0, E=0.0
--------- alpha=0.001,a=0.1, E=+0.11
-- alpha=0.001,a=0.2, E=+0.46
--—— alpha=0.001,a=0.3, E=+1.04
alpha=0.001,3=0.5, E=+2.85
----- alpha=0.001,a=0.7, E=+5.49

i

0.0

0.0

1.0

2.0 3.0 4.0 5.0 6.0
proper time akthe throak

6d

circumference radius of the throat [GB 6dim]
(alpha=+0.001, with perturabation positive Energy)

alpha=0.001,
alpha=0.001,
alpha=0.001,
alpha=0.001,
alpha=0.001,

a=0.00, E=+0.0000 | |
a=0.50, E=+1.5276 | :
a=0.60, E=+2.1954 |
a=0.65, E=+2.5790 | i
a=0.70, E=+2.9896 | !

0.0

1.0

1.5 2.0

2.5 3.0 3.5 4.0

proper time at the throat

need more positive energy for transition to

SH In 6dim



§d Gauss-Bonnet WH : trapped surface

aGgBp — 0.001

aGgBp — 0.01
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existence of trapped surface
—> not necessary to form BH




§d Gauss-Bonnet WH : trapped surface

critical behavior

aGgBp — 0.01

-~y o ",
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AKX Iy

$3EPOaste .
o, vy
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existence of trapped surface
—> not necessary to form a BH
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Dynamics in §dim GR gravity?

2. Spheroidal matter collapse Yamada & HS, CQG 27 (2010) 045012
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3. Wormhole dynamics in GR
linear stablility, Torii & HS, PRD 88 (2013) 064027

dynamical stability HS & Torii, in preparation

Dynamics in Gauss-Bonnet gravity?

4. Wormhole dynamics in GB HS & Torii, in preparation

Gauss-BonnetEH D45

IEDcouplingTid, FIUMEFREGETHERHERTERILEL 135,
IEDcouplingTid, B UMEAEETEHEBHIEAZRE L IC < LY,
ITXIF—ELT - FEALEDOERL G 5.
BRTTICKRBIFE, FLEHIILKT 5.

trapped surfaceDFEl, #9 LUHBHERMZERL AL,
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Colliding Scalar Waves

1IMax (RijklRijkl)

2.0

1.5

maximum of Kretshmann invariant

!

B GR
® GB+
A GB-

0.5

0.0

5 6 7
dimension

massless scalar waveDEZE(|C kK DS E S

5,6,7%3t Gauss-Bonnet

¥ 4dim, 5dim, 6dim,:-- SXJtit
% Gauss-Bonnetl& (IE g DIA)

¥, E556%!
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_______ Summary
FEADZ—RDER
BRI T — LTR—ILDBHADERBIRK

4dim, bdim, 6dim, ---
BRTTICESFE, EUYIEARETEBHIFEALICK W
Yamada-HS (2011) [naked singularityfzB] & consistent

BRTEKCBBEE, REEMMEAT S b1
Torii-HS (2013) [WHARZE 4] & consistent n—2

Gauss-BonnetEH D45
IEDcouplingTld, RUVIEIEREGETHIIRERTERITELS 155.
IEDcouplingTid, B UMEAEETEHBHIEAZE L IC < LY,
XILF—ELT - FEIEEOERI G B,
BRRTCICTRDIFEE, FCELEEHIEIEKRT 5.
trapped surfaceDEFElL, M\‘é'b%BHﬁ/EZE?’Tﬂ;'EbEL\
(EREEENLKIZLUEWERING D C ETKIRDY)




