「現代物理学が描く宇宙論」(共立出版,2018)の訂正

2021.5.5 真貝寿明

初版1刷 (2018/9) について、たいへん申し訳ありませんが、次の訂正と修正があります. このお知らせは、http://www.oit.ac.jp/is/shinkai/book/ にて更新しています.

	場所	誤	正.
			Ш-
カラー図	図 A.23	レプトンの上段の電荷 +2/3	-1
p16	中ほど	『はやぶさ』は小惑星イトカワを往復して	『はやぶさ』は地球近傍小惑星のイトカワを往復
			して
p36	表 2.2	Ia型 ケイ素 S の吸収線がある	Ia型 ケイ素 Si の吸収線がある
_		Ic 型 Sの吸収線も He の吸収線もない	Ic 型 Si の吸収線も He の吸収線もない
p155	図 5.3	(a) $\alpha + \beta + \gamma < 2\pi$	(a) $\alpha + \beta + \gamma < \pi$
		(b) $\alpha + \beta + \gamma = 2\pi$	(b) $\alpha + \beta + \gamma = \pi$
		(c) $\alpha + \beta + \gamma > 2\pi$	(c) $\alpha + \beta + \gamma > \pi$
p167	図 5.17	ブランク温度, ブランク時間	プランク温度,プランク時間
p219	図 A.23	レプトンの上段の電荷 +2/3	-1
p219	図 A.24	ブランク温度,ブランク時間	プランク温度,プランク時間

以下は、修正です.

以下は,	修止です.		
	場所	誤	正
p48	コラム 13	超巨大ブラックホール (super-massive black-hole)	超大質量ブラックホール (super-massive black-
		が存在していることがわかってきた.ブラックホー	hole) が存在していることがわかってきた. この観
		ルそのものは小さくて、現在の望遠鏡では「黒い	測を行ったゲンツェル (Reinhard Genzel, 1952–)
		穴」を見ることまではできないが、周囲の星やガス	とゲズ (Andrea Ghez, 1965–) は, 2020 年のノー
		の振る舞いから、その存在が確信されるのである.	ベル物理学賞を受賞した、ブラックホールそのも
			のは小さくて,直接見ることは難しい. 2019 年
			4月,ブラックホールの直接撮像に初めて成功し
			たという報告がなされた. 世界の電波望遠鏡を一
			斉に向けて, M87銀河の中心にある太陽の65億
			倍の質量をもつブラックホールの姿であった.
p48	図 2.28		(キャプション追加) 中心部分に超大質量ブラッ
-			クホールが存在していることがわかる.
p97	図 3.53		(キャプション追加)2020年ノーベル物理学賞受
-			賞.
p157	節タイトル	ハッブルの法則	ハッブル・ルメートルの法則
p157	公式タイトル	ハッブルの宇宙膨張の法則	ハッブル・ルメートルの法則 (1927/1929 年)
p158	コラム 30		(最後に一文追加)
			2018 年 10 月, 国際天文学連合 (IAU) は, 投票の
			結果, ハッブル・ルメートルの法則と法則名を替
			える結論を下した.
p162	傍注追加	P.J.E. Peebles (1935–)	P.J.E. Peebles (1935–)
			ピーブルズは、宇宙論の基本となる理論を構築し
			た業績で 2019 年のノーベル物理学賞を受賞した.
p190	傍注追加		系外惑星を初めて発見したマイヨール (Michel G.
			Mayor, 1942-) とケロー (Didier Queloz, 1966-)
			は,2019年のノーベル物理学賞を受賞した.
p199	表 A.1	プランク定数 $h = 6.62606957 \times 10^{-34}$ [Js]	プランク定数は,2018 年 11 月に国際度量衡学
		$\pm 0.00000029 \times 10^{-34}$	会によって、定義となり、次の値になりました.
			$6.62607004 \times 10^{-34} \text{ [Js]}$
p221	表 A.5 追加		2019 年 ピーブルズ
			物理的宇宙モデルにおける理論的な発見
			2019年 マイヨール,ケロー
			太陽系外惑星の発見
			2020 年 ペンローズ
			ブラックホール形成の一般性についての理論
			2020 年 ゲンツェル,ゲズ
			天の川銀河中心に超大質量ブラックホールを発見

	場所	誤	正
p225	索引追加		ゲズ (Ghez) 48
			ケロー (Queloz) 190
			ゲンツェル (Genzel) 48
			マイヨール (Mayor) 190
p229	人名索引追加		Genzel, R. (1952–) 48
			Ghez, A. (1965–) 48
			Mayor, M. G. (1942–) 190
			Queloz, D. (1966–) 190

 $\boxtimes 5.17 \ (= \boxtimes A.24)$

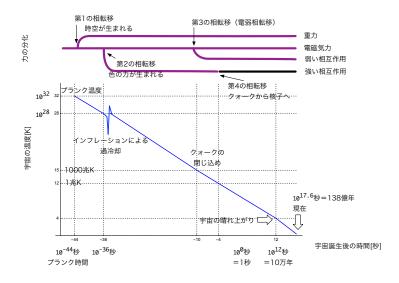
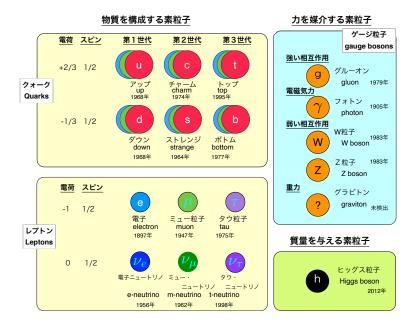



図 A.23

5.6 第2の地球はあるのか

この項は,毎年観測の進展が著しく,太陽系外惑星の発見数は年々増加しています. p190 の表 5.4 を 2021 年 1 月 現在のものとして更新すると,次のようになります.

表 1: これまでに発見された太陽系外惑星の数. Kepler 衛星 (2009–2013) のミッションは,一旦終了したものの,同衛星を用いて K2 ミッション (2014–2018) が引き続き行われた. その後 TESS(Transiting Exoplanet Survey Satellite,2018–) に観測が引き継がれている. (2021 年 1 月 16 日現在). [http://exoplanetarchive.ipac.caltech.edu/]

	全観測	Kepler	K2	TESS
確認された太陽系外惑星	4331	2394	425	98
(confirmed planets)				
複数の惑星からなる系	1856			
(multi-planet systems)				
ハビタブルゾーンにある星		361		
(確定+候補天体)				
候補天体		2366	889	1395
(Kepler/K2 Candidates)				

発見された方法	発見数
Astrometry	1
Imaging	51
Radial Velocity	826
Transit	3294
Transit timing variations	21
Eclipse timing variations	16
Microlensing	106
Pulsar timing variations	7
Pulsation timing variations	2
Orbital brightness modulations	6
Disk Kinematics	1