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Procedure of the Standard Numerical Relativity
H 3+1 (ADM) formulation
B Preparation of the Initial Data

@ Assume the background metric
& Solve the constraint equations

B Time Evolution
do time=1, time_end
& Specify the slicing condition
& Evolve the variables
@ Check the accuracy Z: Initial 3-dimensional Surface

& Extract physical quantities
end do

time direction



The 34+1 decomposition of space-time, The ADM formulation

[1 ] R. Arnowitt, S. Deser and C.W. Misner, in Gravitation: An Introduction to Current Research, ed. by
L.Witten, (Wiley, New York, 1962).
[2 ] JW. York, Jr. in Sources of Gravitational Radiation, (Cambridge, 1979)

Dynamics of Space-time = Foliation of Hypersurface

e Evolution of t =const. hypersurface »(t). _ _ _
time direction
ds® = gudatde”,  (u,v=0,1,2,3)

on X(t)... dl* =~ dr'da’, (i,7 =1,2,3) T

e [he unit normal vector of the slices, n*.
n, = (—a,0,0,0) X: Initial 3-dimensional Surface
nt = g¢"'n, = (1/a, —ﬁi/oz)

e The lapse function, o.. The shift vector, /3.

ds* = —a?dt* + v;;(dx' + B'dt)(da? + 57 dt)




The decomposed metric:

ds® =

—’dt” + i (da’ + B'dt)(da? + 3 dt)

— (—a? + 5,8Ydt? + 26, dtdx’ + ~,;;dx' da’
J

. (042+6zﬁl ﬁj)
" B Yij |

where v and (3; are defined as a = 1//—¢",

g“”(

—1/a? 67 /o

ﬁj = 40j-

B'la? 49— ol

e [ he unit normal vector of the slices, n*.

n, = (—a,0,0,0)
n' = g"n, = (1/«, _6i/&)

e The lapse function, «.
e The shift vector, 3.

surface normal line

shift vector B ?
4
,8 ¢ dt coordinate constant line

/

AH

lapse function (y —, adt

//*' (¢ + dt)/

/




e Projection operator (or intrinsic 3-metric) to X(t),

Yur — Guv + My
v =0 +ntn, = LI

where n, is the unit-normal timelike vector to X..
Remark: the projection operator can be defined also to the timelike hypersurface.

where n, is the unit-normal vector to ¥ with n, is timelike (if ¢ = —1) or spacelike (if ¢ = 1). X is

spacelike (timelike) if n, is timelike (spacelike).

e Projection of the Einstein equation:

Gn'n’ =r"T,n"n" = K’py = the Hamiltonian constraint eq.  (2)

Gon' LY =kr"T,n" 1Y =—K’J, = the momentum constraint eqs.  (3)
M .2 7 _ 2 .

G Ly L7 =r"T, Li L7 = K"Sj = the evolution egs. (4)

where we defined

T = prngny, + Juny + Jyn, + S, T = —pg+ S5



e The projections of the Eisntein equation:

Gnt'n” = K T, n'n” =: lisz,
G n J_”p = K2 T, n" J_Z = —/12Jp,

Gy L LY = KTy LV 1Y =1 K25,

where we defined
T = panyny + Jyn, + Jyn, + S, T =—pg + S¢,
e Introduce the extrinsic curvature /<;;,
1 1% 1% 1%
Kij = —§£nhij = — 1/ 15V,n, = —(6] +n'n;)(6] +n"n;)V,n,
1
= —anz' = F%na — s = % (—8{%‘]' -+ Djﬁz -+ Dzﬁj) . (5)

where £, denotes the Lie derivative in the 3-dimension and V and D; is the covariant differentiation

with respect to g, and 7;;, respectively.



e Projection of the (3 + 1)-dimensional Riemann tensor onto Xy

Gauss eq.  Ropgys L J_Bj 17 J_5l = Rijp — e KK + e Ky Ky,
Codacci eq. Rapys L J_ﬂ- 17 nd = —2D; K,
R(ww 1 J_ kn n’ = £ Kk—I—KZgKk,

~—~
o g O
— ~— ~—

e Curvature relations
Ruvpe = Ruvpe — (K 1y Ko — Ko Ky — 1D, Ko + 1, Do Ky +1,D Ky — 1y Do K,
—n,D, Ko +n,D,K,s +1n,D,K,, —n,D,K,,)
+n,n, KoK, — nungKmKO‘p — NN, K0 K, + nyngKWKO‘p
+n,np LKy — e £n Ky — nun, £0K e + nuyne £,K,,,, (9)
Ruw = Ry — e|[KK,, — 2K,,K%, +n, (DK% — D,K) 4+ n, (DK% — D,K)]
—I—nﬂnyKagKO‘ﬁ + £, K, + nunﬂo‘ﬂi’nl{w, (10)

R =R —e(K?* 3K 3K — 27" £,K,3). (11)



The Standard ADM formulation (aka York 1978):
The fundamental dynamical variables are (v;;, K;;), the three-metric and extrinsic curvature. The

three-hypersurface X is foliated with gauge functions, («, 3), the lapse and shift vector.

e The evolution equations:

Oij = —2aK;; + Dif; + D;[5;,
0 Ki; = a BRy; + aKK;j — 20K K*; — D;D;a
—|—(Dzﬂk)Kkj + (Dgﬂk)Kkz' + ﬁkaKz‘j
—8rGa{S;; + (1/2)v;i(pg — trS)},
where K = K';, and ®R;; and D; denote three-dimensional Ricci curvature, and a covariant

derivative on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. HAPM .— G 4 K2 Kinij ~ 0,

momentum constr. MAPM . — DK, — DK = 0,

where GCIR =0 Ri..




Original ADM | The original construction by ADM uses the pair of (h;;, 7).

) 1
L=+/—gR=VhN[®R - K? + K;;K"], where K;; = §£nhzj
then 7% = ;ﬁ — \/E(Kij - Khij)a

tJ

The Hamiltonian density gives us constraints and evolution egs.

H = Wijhij — L= \/E{NH(h, T) — QNij(ha ™) + 2Dz‘(h_1/2Nj7Tij)} v

( OH N 1
< atﬂ'w = _52—( = —\/EN(C%)RZ] — 5(3)Rh7a7> -+ 5\/—5}&2] (Wmnﬂmn — 57'('2) — 2\/_5(77_1717.‘.”] — 5777'('2])
]
\ +Vh(D'DIN — hPD™D,,N) + /hD,,(h"2N™7ii) — 2x™i D, NJ)

Standard ADM (by York) | NRists refer ADM as the one by York with a pair of (h;;, K;;).

0,K;; = N(®Ry+ KK;j) —2NKyK'; — D;D;N + (D;N™)Kyp; + (D;N™) Ky + N™ Dy, K

In the process of converting, H was used, i.e. the standard ADM has already adjusted.




strategy 0 The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

3+1 decomposition of the spacetime.
Evolve 12 variables (v;;, K;;)

with a choice of gauge condition. .
shift vector 182
4
,8 v dt %oordjnate constant line

e . ' B(t+db)
// )

lapse function Oy —, adt

< N 50

surface normal line

A
/ | = constant hypersurface
Maxwell egs. ADM Einstein eq.
| div E = 4mp OR 4+ (trK)? — Kij KV = 2kpg + 2A
constraints _ :
div B =0 D;K’; — DitrK = kJ;

1 4 o L DN+ DN,
_atE —rot B — _7TJ 815723 — QNKZ] =+ D]NZ =+ Dle7
¢ ¢ 0;Kij = N( WR;; + trKK;;) —2NKyK'; — D;D;N

— kafSij + 57ij(prw — trS)}

evolution egs.

1
—E?tB = —rot &
C




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM.:

OH = B(0/H) + 2aKH — 207" (M)
(O ymic) (29— mGle)Mj — 49" (9j0) M;,
(9,5_/\/1@- — —(1/2)0&(827'() — ((3204)7'[ + ﬁ](a]./\/lz)
+aK M; — B Oy ) M + (8:81)7" M.

That is, the constraints are the first class.

From these equations, we know that

if the constraints are satisfied on the initial slice X,

then the constraints are satisfied throughout evolution (in principle).

But this is not true in numerics....
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Step 1:| Einstein-Hilbert action (metric g,,,)

Splg) = [d'z /=g R(g) ~ g0+ (dg)’

e Construct a canonical theory by means of the ADM method;
ds® = g, da"dr” = —N* dt* + q;;(dz’ + N'dt)(dz’ + N’dt)
B —N? + Nka Nj
s = N; gij )

e [ he canonical action, then, is given by

Selg,p] = [ d'z[4;jp”? — N Cy — N; Caf]
where Cyy = G@jkzpijpkl — \/5(3)}%
CMi = —QVjpij
1
where Gjr = ———(qirqs1 + Quqjx — Gijqr)-

2/



From Einstein to Ashtekar: via transformation of Lagragian (2)

Step 2:| Palatini action (metric g,,,, Affine connection ng)

e Einstein-Hilbert action consists of the terms with the second-order derivative or the square
of the first order derivative of metric g, .
e Palatini’s idea is to introduce the Affine connection I} (=17} ) to be independent to the

metric g,,,. The Palatini action is

Splg, Tl = [d'z\/=gg" RuW(T) ~ g(dT +TT) (3)

 Sp = Sp when T, satisfies the definition of the Christoffel symbol, I'}, = I'},(g) ~ 0g.

(07

This condition is derived from the variation with respect to [

0
o',

SP[gv F] = 0.

e The action (3) contains up to the first-order derivatives.



From Einstein to Ashtekar: via transformation of Lagragian (Summary)

Theory action order of 0, | independent variables

Einstein| Einstein-Hilbert action ~ Sg | 2nd order | metric (g,,)

Palatini action Sp | 1st order | metric (g,,) & Affine connection (F/AW)

Tetrad Palatini action ~ Sp | 1st order | tetrad (e”,) & spin connection (w’)

0

(
(

Ashtekar| Jacobson-Smolin action *S7 | 1st order | tetrad (e?,) & self-dual connection (

+ ,ab
wﬂ

)

Sp with the Christoffel condition for I' — Sg
S+ with the Levi-Civita condition for w® — Sp

(torsion free condition)
St with the Bianchi identity for R, — S7

(Ru[vaﬁ] = 0)




From Einstein to Ashtekar: via transformation of Lagragian (3)

Step 3:| Tetrad Palatini action (tetrad ¢, spin connection wzb)

e The next step is the introduction of the internal symmetry, that is, to introduce the local

Lorentz transformation as a gauge symmetry.

a

e We employ the orthonormal tetrad ¢,

in stead of the metric g,,,, which acts as a basis of

the local Lorentz frame.

b b
i i)

which acts as a gauge field of the local Lorentz albebra so(3,1).

instead of the Affine connection ['®

(: —Ww i

e \We also employ the spin connection w

e The internal indices a, b, - - - are lowering and raising by the metric 7,;, = diag(—1,1,1,1).

The tetrad plays a role of a square root of the metric,

9uv = Tab QZ 6[;- <4>



e [ he Palatini action in the tetrad form

Sp[g, F} — /d4£L‘ \/?ggw/ R,LLV<F>
Srle,w] = /dﬂ‘eréj EY R“Z)W(w) (5)

where e is the determinant of e}, and the E/" is the inverse tetrad,

e = det ez =/, B! = 62 9" Nup-

o Now that the internal symmetry is taken into account, the Riemann curvature R% , will
be replaced by the curvature szy(w) of the spin connection wzb defined by
Rzz(w) = (‘%wﬁb — (‘szb + wfwwﬁb — wﬁcwg’,
ie. R%w) = dw™ +w" Aw®
e The action (5), then, can be expressed also as
Srle, w] = /(1/2) Eabea R (W) A €€ A e, (6)

e Sp = St only when w®(e) satisfies the torsion free condition (Levi-Civita connection )

De® :=de” +w% Ne’ =0
0

which is derived from —— Sr[e,w| = 0.
ow



BEPH (self-duality), anti-self-duality

e For an anti-symmetric tensor F;, the duality transformation is defined as

S

L cd
ab i égab ch.

e [he dual of dual is equal to the minus of the original,
*(*Fa ) — — L'gh

when we choose the Lorentzian signature and use the metric 7.

e If we suppose the complex combinations

1

é(Fab -+ i*Fab>7

then this satisfies the eigen-equations

iF’ab:

“(FFy) = +i"Fy.

+tF, : self-dual part of F
~F, : anti-self-dual part of F),.




From Einstein to Ashtekar: via transformation of Lagragian (4)

Step 4:| Self-dual action (tetrad e, self-dual connection *w")
e Introduction of the self-dual connection +wzb.
wab _ +wab + —wab.

e The curvature 2-form R results in

Rab<w> _ Rab<+wab 4 —wab> _ Rab(—i—wab> 4 Rab(—wab) . +Rab 4 —Rab

e The previously mentioned tetrad-Palatini action (6)

1
Srle,w] = /§ 5abcdRab(w) A el A e = /*Rcd(w) A el A el

Is decomposed as

Srle,w| = /*Rab(+w) Ae’ Ae’+ / “Rap(Cw) Ae® Ae

= " Srle, Tw] + ~S7le, “w]

with regard to the contributions of self-dual and anti-self-dual connections.



Ashtekar’s idea is to consider just a self-dual part of the action.

e When the self-dual connection is equal to the self-dual part of the Levi-Civita connection

+wab _ —|—wab<€)
)

J
the variation ﬁﬂgﬂe, Tw] = 0 is satisfied. Then *Syle, Tw] = 1S7[e,w(e)] = 5Sk[g].

e The equivalence to the Einstein theory requires additional condition. Since
1
Rab(er) _ +Rab<w) _ 5 (Rab(w> o i*Rab(W>) |

the action turns out to be
1

TSrle, Tw(e)] = 5/* (Rap(w(e)) — i *Rap(w(e))) A e A el
_ % [ (* Rup(w(€)) + iRup(w(e))) A e A €

= _Srle.w(e)] + iz [ Rulwle)) Ae’ Ad = _Sglg] +0,

where the last imaginary term is vanished by virtue of the 1st Bianchi identity
R (w(e)) A e’ =

which is the cyclic identity R, = 0 in the tensor form.



o BREAT LRI 4 REBXEBREERTS, BXEEOBEAY MLE B/ ELT,
CNEEBOBERTELILLD £ 27 RS K (4 HIE) SIS
9uv :E,iE;/]nIJy nIJ:diag (_1717171)
o A#RIC, 3 RITEMTRAMICEREIZRZEAUVEEN7 NLZENZA47 8 (3 HZ) &I,

gij = B¢ B

o RFTERERRDMDZFIONYT MUICHT 2HEHD =
V. Vi=0.V! +w,, V7
ERTLE, v, BAEVER R REMICE,

1J v v v
wy = E"V,E] = E"0,E) — E,xE"E"0,E; + E"0,E,




From Einstein to Ashtekar: via transformation of Lagragian (5)

Step 5:| New Variables (densitized inverse triad £, self-dual connection TAY)

The self-dual action would lead to the same equation of motion as the Einstein equation

so far as the tetrad or equivalently the metric is concerned.

e [ he Ashtekar formalism can be regarded as a canonical theory starting from the self-dual

action,
Srle, Tw] = /d4CE e B! B} Rabw(+w). (8)

where E* is the inverse tetrad, defined as E¥ := E’g"'n,, which makes the inverse

space-time metric as ¢*¥ = n E#EY as we mentioned before.

e 3 + 1 decomposition of the self-dual theory in the tetrad form.
The spatial component of the tetrad, £ acts as an inverse triad since it produces the
inverse 3-metric, ¢/ = E'E]. We further impose the gauge condition

o (Eg Eg) ) (1/N —N@'/N)

. . 9
¢ EY E: 0 iy )



Ashtekar variables (New variables)
PRL 57, 2244 (1986); PRD 36, 1587 (1987).

The pair of new variables, (£, ©A%)

e Self-dual connection (Ashtekar connection)

We define so(3,C) connections

TR SR ) S S SR
AN = wu + 26 JKCUM : (10)
where w!” is a spin connection 1-form (Ricci connection), w!’ = E''V,E;.

Ashtekar's plan is to use only "A7. and to use its spatial part "A{ as a dynami-
cal variable. Hereafter, we simply denote +AZ as A

e Densitized inverse triad ECZL

B =eE", (11)
where e := detE}' is a density.

This pair forms a canonical set.




e In the case of pure gravitational spacetime, the Hilbert action takes the form

~

+SA[E, +.A] — /d4$[(8tA?>E~Z -+ NCH + N* Curi + ./48 CGQ],
where N := ¢ !N,
e Lagrange multipliers (IV, N*, and A%)
their accompanied constraints, Cy ~ 0,Cy;; =~ 0 and Cq, = 0.

e The set of (£, A%) forms a canonical relation,
(Ei(e). Bl(w)) = 0.
{A%(2), Ey(y)} = id":6%0(x — y),
{A%(2), A% (y)} = 0.

The dynamical degrees of freedom

. S

covariant vars. canonical vars. gauge conditions gauge vars.
Ey(16) |=| E,(9) Eq=0(3) N'(3) + N(I)
fwp (12) =] A (9) Aj (3)

(12)



The Ashtekar formulation:

PRL 57, 2244 (1986); PRD 36, 1587 (1987).

e New variables

( (

A = wZQ — 56 owi- = — K BV ja _ 56 Wy and EZ eEé

e The evolution equations for a set of (E?, A%) are
OB = —iDj(e?, NEJE}) + 2D;(NVEY) + iAbey” B,
O A = —1e” CNEbFC + NJF‘L + D; Ay + 2AN¢;,
where D; X7 := 0;X]" —ie," A' X7, and F}) .= 20 A% — 1€, ALAS.
e Constraint equations: (Hamiltonian, momentum and Gauss constraints)
CpM = (i/2)e". ELEJF — 2A detE ~ 0,
CASH = F!F] ~0,

Ca%M .= DB =~ 0.

e Gauge variables: IV, N?, and the “triad lapse” AS.

N
—_t
~N O
~— —




Einstein vs. Ashtekar

Einstein theory Ashtekar theory

purely geometrical theory gauge theoretical features
2nd order derivative theory 1st order derivative theory
dynamical egs are non-polynomial dynamical els are polynomial

dynamical eqs are (weakly) hyperbolic
does contain the inverse of variables | does not contain the inverse of variables

does not admit degenerate metric does admit degenerate metric

constraints are Cy and Cyy additional constraint, Cg

“reality condition” to recover real geometry

ADM evolution Ashtekar evolution

i',Ki' AS,EZL/
ke L

T@aﬁi T &76i7A6




Ashtekar’s formulation : From the viewpoint of classical dynamics (1)

If we apply this formulation to the time evolution of Lorenzian space-time, the bottleneck is

the additional constraint C¢; and the reality conditions.

e Additional gauge variables (\Af)

In Ashtekar's theory, there is additional gauge variable, A%, which we named “triad lapse” .

This freedom appears due to the introduction of the internal indices.

We somehow have to spacify Aj in a proper manner.

ADM evolution Ashtekar evolution
/ gij,Kij./t—to—FAtl/ AiﬂEa/.

T a, B T a, B, Al
e 9ij: Wiy 7~ 4 — 4, |/ A?’E;/




Ashtekar's formulation : From the viewpoint of classical dynamics (2)

e Additional “Gauss constraint” (Cg)
In Ashtekar’s theory, we have additional Cg, which has 3 components.
The set of constraints forms the first-class, therefore we have to solve them when we
prepare the initial data.

e Reality conditions to recover classical GR
We have to solve the reality conditions when we describe the classical spacetime.
Fortunately, the metric will remain on its real-valued constraint surface during time evolu-

tion automatically if we prepare initial data which satisfies the reality condition (Ashtekar-

Romano-Tate, 1989).

evolution

constraint

constraints straints CM constraint



Reality conditions HS, Yoneda, Class. Quant. Grav. 13 (1996) 783

.| Metric Reality Condition

e the primary is that the doubly densitized contravariant metric 7/ := 2~ is real,
S(EE) = 0, (1)
e the secondary condition is that the time derivative of 47 is real,
S{O(E,E)} = 0. (2)

These will be hold if the initial data satisfy the metric realicy conditions.

.| Triad Reality Condition

e "primary triad reality condition” and the “secondary triad reality condition”
S(E,) =0 (3)
and S(Ei) = 0, (4)
e Using the equations of motion of E’ and C¢, (1)-(4) will be
RIA) = 0,(N)E™ + %e—legjymajég L NTR(AD). (5)

This is a kind of slicing condition on A§.



Ashtekar’s formulation :

From the viewpoint of classical dynamics (3)

e Reality condition for the metric or for the triad?

More practically, we further can require that triad is real-valued. But again this reality

condition appears as a gauge restriction on the real part of the gauge function A%

(Yoneda-Shinkai, 1996)

ADM formulation

connection formulation

Re(metric) Re(triad)
Yo (%)
variables Yis 6 E 18 Ei 18 (9)
K 6 Ag 18 Asg 18 (9)
N 1 N 1 N 1 (1)
gauge N’ 3 N’ 3 N’ 3 (3)
: 6 ¢ 3(3)
Cn 1 Cn 1 Cn 1(1)
constraints Csi 3 Csi 3 Csi 3(3)
Cca 6 Caa 6 (3)
reality condition primary 6 (Xg) | primary 9 (0)
secondary 6 (3g) | secondary 6 (0)
GW freedom 2 x 2 2 %2 2 %2

#F 1 Number of components in actual simulations. We here count the numbers of freedom in components, i.e. one complex number has two components.



ADM 2 Ashtekar

evolution

initial data t =1y
construction
11 a
Yigs $i; Lg, A;
p— 5 (Vij» Kij) = Af
1. Define a triad £ from 3-metric ~;;: L. triad £}
| B! E! E! ' [ vAm 00] 2. inverse triad E!
E! = E.',-’. E;-; 133 — 0O b d 3. connection 1-form w = E"”V,E;,’
E3 E;f E? 0 e ¢ which can be expressed

2. inverse triad £,
3. density e: e = detE¢
4. b“ = ekl 4. A = — K F'* —

1.J wi ~J 1 ol WK .t 1
W‘;I - b ()[/Iby] o b’[l[\“b", b ()[pb',,: T b’l ()[/)‘b"

L (1 .
( 2 ;)
‘) T )

I
m



Ashtekar 2 ADM

initial data

evolution

construction

Yij — K (

1. density e = (detE")"/2
2.4 = E,E}/¢’
3. i

s
E; ., A;

Kij <= (B}, A)

1. un-densitized inverse triad E! = E' /e

2. triad E}

3. connection 1-form €%j.w?

4. K;; B = —A¢ + sepwi® = Z7, then
Ki; = Z{'Ej,



MBIR R DEEDNOTRE 7

Yoneda, HS, Nakamichi, PRD 56, 2086 (1997)

Intersecting Approach

ZHDOERUZRE, BIREMET density—0 ZEF I 570514, KZEEICH DiERRZ, BRZEMICTELOULUTCEEEES I &N T]EE

Deformed Slicing Approach

lapse, density D FRFEMID (FFEREIC U7RL E WIF7RLY, THDD, BO—BMENFEEICKED.

ADM

Ashtekar

Intersecting Approach [E #5818 X

X

Deformed Slice Method £ ZE[E5T[C %

O

.10

.05

-00 Im(e;



The Ashtekar formulation:
PRL 57, 2244 (1986); PRD 36, 1587 (1987).

e New variables

A = W) — %6 - = — KB — %e W and E' = ek

Remark:
TTlE, EHFEOREES ZETD260, Immirzi /INTX—5 7Y ZEAL,

a ,_ a a
Ai =Py — I
EUT, ZERZHODUDEBICUTUR D AENERICHKR > TE.

(Hamiltonian constraint|ldEM(C/8 5. )
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Brane-World model

Brane (4-dim, t,Xx,y,z) Another Brane?

. i

(with cosmological constant?)

5th dimension S5th dimension

-~ {onnnnnn s m— >

all matter and forces are trapped
in 4-dimensional space-time

/

but only gravitational force propagates
higher dimensional space-time
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N + 1 formalism in Einstein-(GGauss-Bonnet Gravity

Takashi Torii Osaka Institute of Technology

BE B KRTEXRF TZFEE
Hisa-aki Shinkai Osaka Institute of Technology
EHFH RIRIEKXE FHEFER

e (N + 1)-dimensional space-time decomposition of Einstein-Gauss-Bonnet gravity

e Due to the quasi-linear property of the Gauss-Bonnet gravity, we find that the evolution
equations can be in a treatable form in numerics.
e \We also show the conformally-transformed constraint equations for constructing an initial

data.

e Both for timelike and spacelike foliations.

Phys Rev D 78, 084037 (2008).




e (N + 1)-dimensional spacetime (M, g,,,)

Sz/MdNHX\/Tg

1
2

Lop =R —ARWR™ 4+ Rywpe R
e [he action gives the gravitational equation

g,ul/ =+ aGBHuV — /{2 IZZW

where
1
g,uz/ — R,uy — §g,ul/R + Ag,w/a
Hyw = 2 [RRW — 2R RY, — QRQBRWV& + Ruamnmﬁv] B
5£matter

,Z;w = —2 + g,ul/ﬁmatter-

o g

1

2

R — 2A + OZGBEGB) + Ematter

g,uwCGBa



Projections to Hypersurface >y (spacelike or timelike) (1)

e the projection operator,

1w =guw —enym,, nnt=c¢ (3)
where n, is the unit-normal vector to ¥ with n, is timelike (if ¢ = —1) or spacelike (if ¢ = 1). X is

spacelike (timelike) if n, is timelike (spacelike).

e The projections of the gravitational equation:
(G + agH,w) n'n” = K Tnt'n” = kD5,
<gluy _|_ &GBHMV) nu J_Vp — KJZ T/U/ nu J_Z =. _K/QJP,

(G + M) L1 LY, = k2T LY 1Y =t K2S,,,

S Ot W~
— — —

where we defined
T = panyny, + Jyn, +JIn, + S, T =—pg+ St
e Introduce the extrinsic curvature kK;
Kijm — by = — 1010y
i'-—_§ nllij = —L ;L jVallg, (7)

where £, denotes the Lie derivative in the n-direction and V and D; is the covariant differentiation

with respect to g, and -;;, respectively.



e Projection of the (N 4 1)-dimensional Riemann tensor onto ¥y

Gauss eq.  Rapys L% J_Bj 17 J_5l = Riju — eKip Kj + e Ky K, (8)
Codaccieq. Rapys L J_ﬁ- 1% n® = —2D; Ky, (9)
RagwsJ_ J_kn n’ = £ sz+Kngk, (10)

e Curvature relations
Ruvpo = Rupe — (K p Ko — K)o Ky — 1y DKo + 1, Do Ky +1,D, Ky — 1y Do K,
—n,D,K,e +n,D, K, +n,D,K,, —n,D,K,,)
+n,n, KoK, — nungKyaKO‘p — nyn, K0 K, + n,,nO.KWKO‘p
+n,n, L, K e — nyne Ly, —nyn, £, K + nyne £, K, (11)
Ruw = Ry — e[K Ky — 2K, K%, + 1, (Do K, — D,K) + n,, (DK%, — D,K)]
—I—nunyKagKO‘ﬁ + el K, + nun,/yo‘ﬁi’n[(ag, (12)

R =R —e(K?—3K.,3K — 2y £,K,p). (13)



N + 1 Einstein-Gauss-Bonnet equations Substituting (11)-(13) into (3) or (4)-(6), we find:

(a) dynamical equations for -;;:

1
Mij — éM’}/i]’ — 6(—KmKaj + ’YinabKab — anw + %j’y“boEnKab)

(b) Hamiltonian constraint equation:

M + agp(M? — AMyM® + Mpeg M) = —25/127;”71“71”

(c) momentum constraint equation:

N; + 2agp (MN; — 2M;"N, + 2M ™ Nig, — M; ““Nope) = —k>Tnty",

Hij = MMi; — 2(Mia M% + M M;oj6) + Miape M,
Mk = Rijii — e(Kin Kji — KuKjik)
Mij = 7" Miags = Rij — e(KKij — KiaK*%)
Nijr = D; K, — D; Kk
N; = v Noip = D K;* — D;K 1 a abe
ki ! Zl ki ki ak bl R [M2 — AMap M + MapeaM ™ d}
Wi = Mryigy™ = 2Mijy™ = 27i; M + 2Miazey "y

1
—2¢ | = Kap K" Mij — S MK K + Kia K%M + Kjo KM + KK Miaje

a 1 a a
+N;N; — N*(Naij + Naji) — §NabiN l}- — Niab N ’

—e%ij [Kap KM — 2Mop, K*“K,” — 2Na N® + Nape N*°]




(1+ 206 M) £, K5 — (vi7™ + 20a8W;; ™) £ Kap — 8aasM " £,K )
1
= _5(Mz'j — iM%j) — Kio K% + 7 K K® + er?Sij — ei;A — 2eagpH,; (20)
o L,IK,, terms appear only in the linear form, due to the quasi-linear property of the Gauss-Bonnet
gravity.

e |terative scheme is necessary, but treatable in numerics.

( LnY11 ) / \ ( LnY11 \ (Ko )
LnY12 O O £nY12 K9
LnY13 Ln713 K3

. _ L —1_ :
LK1 . LK1
O Mixing
£,.K1o £,.K19 Source
LnKi3 Ln K3
\ )

) A /

e Coding is in progress, .... but .... |Are the evolution eqgs always invertible??




Newman-Penrose Formulation (1)

References

e E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962); ibid. 4, 998 (1963) errata.

e R. Penrose and W. Rindler, Spinors and Space-time, vol.1 and 2, (Cambridge University Press, 1984, 1986)

e S. Chandrasekhar, The Mathematical Theory of Black Holes, (Oxford Univ. Press, 1992).

e J. Stewart, Advanced General Relativity, (Cambridge Univ. Press, 1990).

e D. Kramer, H. Stephani, M. MacCallum, E. Herlt, Exact solutions of Einstein’s field equations, (Cambridge University Press,

1980).
Advantages

e Natural framework for calculations in radiative spacetimes
e Variables have geometrical meanings
e Practical advantages in treating Petrov type-D spacetimes

e Closely related with spinor formalism



Newman-Penrose Formulation (2): Null Tetrad

e Take real-valued null vectors 1, n and complex conjugate null vectors m, m,

l-n=1I0"n=1n"=1 (1a)
m - m = m“m, = m,;m" = —1 (1b)
and else 0 (1c)

This null basis (1, n%, m®, m") and the orthogonal tetrad basis (%, 2%, 4%, 2%) are related

by

/ L, - .
1" = oot = —=(t" + 2%, (2a)

/ L, . -
a A A a a
n' =110 = —(t"—2"), 2b
st = 2 2
/ 1 . .
m® = oM = —Q(x“ —1y”), (2¢)
/ L, . -
m® = o = (2% + iy?), (2d)

where | also put spinor expressions (0”, 1) of those.



e | he indice rules are

Lo = T

la — gablb7 [ = gablba

b

Metric g, will be recovered by

. i 7
gab = Nij€ €

Gab = 2l (M) — 2 Ty

a _ ab
" =0,

Gab — metric

77&[; — (17 _17 _17 _1>

Gap = taly — TaTy — Ya¥j, — Za%;
b b b b b

where 1;; = 1"/ =

(0 1
10

)

0 —1

—1 0



Spinor Algebra

e A set of non-zero 2-component vector (o,¢) is called spin basis, if their skew-scalar

product obeys [0, ¢| = 1, where [,] is defined by [¢, 1] = —[n, £] = eap&in?.
e T his condition is also expressed by
eapo- 0P = e pt? =0, eqgo® =00t =1. (1)

In components with 0 = (1,0), 4 = (0, 1),

0 1
€EAB = ( - ) ;B =M AP ABepo = -5, (2)
e When raise and lower indices, be careful the position of them.

Ea = epalP = —eapt” = Pepy (3a)

gA.::€AB€B::__EBASB:::gBEAB (3b)

If the contraction is across adjacent northwest and southeast indices, no minus signs

OCCUr.



Theorem 1 Every non-vanishing real null vector k% can be written in one are other of the

forms
k= iR (4)

A relation to orthonormal tetrad ¢.; = diag(1, —1, —1, —1) is given by
_ 7 b
€CABEA'B" = §4,0 “An0 BB (5)

where 0% 4 are the Infeld-van der Warden symbols, and these are related to the Pauli matrix
with 0,44 = (1/v/2)0s  (a=0,1,2,3) where oy = I and

01 0 —i 10
T r0) 2T 0 ) BT o 21 )

/N
@)
N———"



Newman-Penrose Formulation (3): Connection coefficients

v miVl, | L(noVl, — m*Vm,) _mVn,
(deriv. op.) & 04Woys | © 04Viy = 11Vou & 1AV iy
="V,
AT 4 k {3,1} € T (—=7") {-1,1}
A =n"V, T {1,—1} v (—€) v (—r') {-3,—1}
0 =m"'V, |o {3,-1} g p(=p){-1,-1}
g — mava P {17 1} & (_6/) A (_OJ) {_37 1}
0 =m m’Vl,

{p, q} indicates spin- and boost-weighted type and prime-operation will be defined later by
R. Gerosh, A. Held and R. Penrose, J. Math. Phys. 14, 874 (1973).



Newman-Penrose Formulation (4): Weyl scalars

R.K. Sachs, Proc. Roy. Soc. London, A264, 309 (1961); «bid A270, 103 (1962).
P. Szekeres, J. Math. Phys. 6, 1387 (1965).

e The Weyl curvature Cq Is defined as

1
Cabed = Raped — ga[cRd]b + gb[CRd]a - gRga[cgd]ba (1)
or alternatively by using A = R/24, ®,, = —%Rab + %Rgab,
Cabed = Rapea + 2(I)a[cgd]b - 2(I)b[cgd]a + 8Aga[cgd]b' <2)

e The 10 components of Weyl curvature are expressed by the following 5 complex scalars;

= Yapcopo’oPo®oP = Cupeal®mPlém?, n’-directed transverse component, {4,0} (3a)

U, = Yapcpo0Po' P = Cupeal®n’lcm n’-directed longitudinal component {2,0}  (3b)
Wy = Yapepo?o? P = Chpeql® mbmcnd ‘Coulomb’ component, {0,0} (3¢)
Uy = apcpo’ P8P = Copal*n®mn, [“-directed longitudinal component, {—2,0} (3d)
)

A B C D C a—bcd
a

Uy = Yapept™t”i™e beanm n’m [“-directed transverse component, {—4,0} (3e



Newman-Penrose Formulation (5): Ricci tensor components

Real valued (®gg, P11, P22, A) and Complex valued conjugate pairs (Pg1, P1g), (Po2, Pog) and (P, Poy).

Total 10 real components.

: 1
®gp = Papapotolol 0" = —5Ral'l’, {2,2}
/ / 1
(I)Ol — (I)ABA’B’OAOBéj4 ZB — _§Rablamb7 {27 0}
Y 1
(I)OQ = (I)ABA/B/OAOBZA ZB — —iRabmamb, {2, —2}
: 1
(I)l() = (I)ABA/B/OAL OA o~ = —§Rablamb, {0, 2}
/ / 1
b = (I)ABA/B/OALB5A P = —éRablanb + 3A, {O, O}
/ / 1
Dy = (I)ABA/BIOALBZA P = —éRabm n? , {0,—-2}
: 1
Doy = (I)ABA/B/LAL o4 ol = —§Rabmamb, {—2, —|—2}
/ / ].
Dy = Capapt 01T = — Rymn’, {-2,0}

/ / 1
Doy = (I)ABA/B/LALBZA T _iR an” n { 2, —2}



Newman-Penrose Formulation (6): Commutators acting on a scalar function

Derived from V,Vy9p = 0. Useful to reduce derivatives.

=[(v+75)D+ (e + A — (mr+7)0 — (T + 7))
=@+ —7)D+krA—(p+e—e€)d — ooy

=[-vD+ (1 —a—B)A+ (p—7+7)0 — MY
=[(m—p)D+(p—pA+(a—p)— (@+B)dyY




Newman-Penrose Formulation (7): Field equations

Expressions of Riemann tensor. 18 complex equations, but with 16 hidden eliminant relations,

in total 20 degrees of freedom.

Dp—6k = (p* +07)+ (e +8)p — R — k(3a+ B — ) + Pgo
Do — 0k ="---
Dr— Ak =---
Do — e =---
D3 —de=---
Dy —Ae=---
D\—énr=---
Dpy—om=---
Dv—Anr=---
AN—bv=---
6p— 60 =---
Sa— 63 =---
N — 6 =
SN—6p =~
Ap— 6y =
AB—6y=-
Ao —or=---
Ap—01=---
Aa— 5y =

N N

= = = = = = ==~~~ N —~ —~ —~ —~
N O O W N O © 00 g O Ot
— ) O — — — — Y Y Y " Y O — — — Y~ —

N N N N N N N N N
—_

—_
e



Newman-Penrose Formulation (8): Bianchi id.

20 identities. (In vacuum, 16).
DUy — Wy — DDy + 5y
= (m —4a)Vg+ 2(2p + €)V; — 3rVy — (T — 2a0 — 203) Dy
— 2(? + E)q)()l — 20P19 + 26DP11 + EDyo
AWy — oV + DDy — 0Py = - - -



Newman-Penrose Formulation (8): Geometrical meaning of variables

When we consider the propagation of the basis vectors along 1 or n, the physical significance
of the spin coefficiencies becomes apparent. The propagation properties of null congruence

of null geodesics are given by

1. 1
', = —= p)=—Jp = 1
Sl %(pﬂ)) p (1)

1 B

Sl =—=7(p=p)" = (Sp)° =’ (2)

1

él(l,])l ) — 92 -+ ‘O'|2 (3)

6,w and o are called optical scalars.



Newman-Penrose Formulation (9): Counting degrees of freedom

Degrees of tetrad transformations. (6 degrees of Lorentz boosts.)

Typell -1 m — al m —>m+al, and n — n + am + am + aal.
Typelln - n,m — tn,m — m+bn, and 1 — 14 bm + dm + bbn.
9 i0

Typellll - A7'1.n - An,m — €¢m, and m — ¢ m.

e Counting degrees of freedom in vacuum.
variables: W 10, spin coef. 24, and boost 6.
equation: field eq. 12x2, Bianchi id. 16.

e Counting degrees of freedom with matter.

variables: curvature 20, spin coef. 24. equation: field eq. 20, Bianchi 20, and V7% = 0,
4.



Caved = Canrpproc'pp!

= Vupcp€ap€crp +Vapcpeap€c
1

* L mn
abed — §€ab mncd

S/ N 7 N N
W N
N—— N N

. * J— J—
Cabed 1 "Cuped = 2V ABcpEA BIEC D!

Spinor Yapcp = Yapcp) is expressed by principal null spinor a4, 34, ... by using spinor
characters,

YaBcD = Y(ABCD) = Q(ABBYCOD), (4)

and principal null vectors are defined as real vectors constructed by aacv ., 34834, .... PNDs

are those directions.



Classification of vacuum spacetime by degeneracy of PNDs. *!

0 = Wapep(zt? + o) (208 + 0P) (28 4 09) (2P + oP)

0= W2 + 4U32° + 6Wsz2? + 40,2 + U,

Type |l  {1,1,1,1} no coincide PNDs. algebraically general.

Type Il {2,1,1} two coincide PNDs. algebraically special (all below).
Type D {2,2} two different pairs. Schwarzschild, Kerr, ...

Type Il {3, 1} three coincide PNDs.

Type N {4} all four coincide PNDs. Plane-wave




Gunnarsen-Shinkai-Maeda *? proposed a transformation formula of Weyl scalar ¥; from ADM
variables (;;, K;;), motivated by an application to interpret numerically generated spacetime.

Here, we consider vacuum spacetimes with cosmological constant A. Let (M, n,;) be
real, 4-dimensional Lorentz vector space with volume form euped; Eapedc™® = —4l. Let

(2, 2 y*, z*) be orthonormal basis of (M, n,;,), and define

t'%, =45 (s=21), eupe ="y, (1)

bc

where the tensor field €., = €y satisfies €,.6”° = 3! We formulate our equations in the

sighatures both (+,—,—,—) and (—,+,+,+) by choosing s = 1 or —1, respectively™,
because the former notation is common in working with the spinors.
First, we define the Weyl curvature C;.q by

1
Cabed = Rabed — GajeRapp + Gojc Raja — gRga[cgd]ba (2)

and decompose those into its electric and a magnetic components,

Eab = — Cambntmtna Bab = ambntntma (3)

*2 L. Gunnarsen, H. Shinkai and K. Maeda, Class. Quantum and Grav. 12, 133 (1995).



where *Clupeq = %sabm” mned 1S @ dual of the Weyl tenso. These decomposed elements E;

and B, are also presented by the 3-metric 7y, and the extrinsic curvature K, as ™
2
Eab — Rab — Kamem + KKab — §A’7ab7 <4>
Buy=¢,"Dy, Kpp. (5)

This is why we emphasize that our inputs are ‘3+1" elements. It follows from two constraint
equations that the fields E,,, B, are both trace-free and symmetric. We can reconstruct the

Weyl curvature completely from E;, and B, by
Clubed = 4t[aEb] eta) + 25amem[ctd] + 24" mlaly) + Eub Erd Emn- (6)

The next step is to choose a unit vector field z* on >, and to decompose E;, B, into

components along and perpendicular to 2. We set

e = E,,2°%" (7a

eq = Fyo3"(0,° + 52,5°), (7b
. L 1

ey = Feg(0,” + szazc)(5bd —- szbzd) —- 5 ESab Tc

b= B,32"3"
by = By2"(6,° 4 52,5°), (
1
bap = Ba(6,° + 52,59)(6,° + s2,2%) + 5bsab, (7f




where s, = Yo — Za2s. We note that E,, B, is again reconstructed from (8a)-(8f)

1

By = eZa2p + 2e(g2p) + eqp — 5 Sabe- (8)
1

B, =bz,2, + Qb(a/:’b) + by — isabb. (9)

Such decompositions will be useful to discuss the effects of curvatures on the transversal plane
to the 2 direction.

We put a rotation operator on the plane spanned by z, and g, as,
JV =gl 1, (10)

It is easy to check this mapping preserves s, and is also easy to check J ¢J. ' = —(§. '+
52,2"), which shows us J,° has a complex structure, i.e., J " lets us define complex multiples
of vectors % € P., according to the formula (m + in)z® = ma® + nJ,“a". In short, J °
expresses a rotation by 90 degrees in the plane orthogonal to z°.

The 10 components of Weyl curvature are expressed by the following 5 complex numbers

in the NP formalism;

Uy = CapealmPl°m? = apepo?oPoo”
Uy = Cupealn®l°m® = tpapcpo?oPo”iP,
Uy, = abcdl“mbmcnd — wABCDOAOBLCLD, (11)
Uy = Copeal®n®mn® = apcpo?tBiCP,

A Tr . | =b..c.=d Al ABCD



414 are spinor basis defined as

T(ta+z) = oo
%ta_z) _ AN

where [, n®, m*, m" are null tetrad and o

ZCL

)

DO

DO

n (
m* %(x“ —iy") = o
m’ (z°

! +1y?) = Ao

(12)

o5(x
Spinor Y apcp = Y apcp) is expressed by principal null spinor a4, 54, ... by using spinor
characters,

YaBcp = YABcD) = QABBYCOD), (13)
and principal null vectors are defined as real vectors constructed by avacar, BaB4r, ... PNDs
are those directions.

Finally, substitute (7) and (13) into (12), we get V; using (8a)-(8f) and (11):
Uy = —(ea + 5J,bye)m®m?, (14a)
\Ijl — —%<€a -+ SJacbc)m (14b)
1
\112 = —§<€ + Zb), (14C>
\IJ3 — —%<€a — SJacbc)m (14d)
U, = _(eab — SJacbbc)mamb. (146)



