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数値シミュレーションのための定式化

• 現在の一般相対性理論の数値シミュレーション
は，ベストな方程式か？

• 使っている方程式が，不安定な発展をする可能性
が十分にある．

• Lagrange乗数法で，拘束条件を付加する自由度
を使え．



数値シミュレーションのための定式化

arXiv:0805.0068



Goals of the Lecture

What is the guiding principle for 
selecting evolution equations for 
simulations in GR?

Why many groups use the BSSN 
equations?

Are there an alternative formulation 
better than the BSSN?



Procedure of the Standard Numerical Relativity

■ 3+1 (ADM) formulation 

■ Preparation of the Initial Data

◆ Assume the background metric

◆ Solve the constraint equations

■ Time Evolution

do time=1, time_end
◆ Specify the slicing condition

◆ Evolve the variables

◆ Check the accuracy

◆ Extract physical quantities

end do



The Standard ADM formulation (aka York 1978):
The fundamental dynamical variables are (γij,Kij), the three-metric and extrinsic
curvature. The three-hypersurface Σ is foliated with gauge functions, (α,βi), the
lapse and shift vector.

• The evolution equations:

∂tγij = −2αKij + Diβj + Djβi,

∂tKij = α (3)Rij + αKKij − 2αKikK
k
j − DiDjα

+(Diβ
k)Kkj + (Djβ

k)Kki + βkDkKij

−8πGα{Sij + (1/2)γij(ρH − trS)},

where K = Ki
i, and (3)Rij and Di denote three-dimensional Ricci curvature,

and a covariant derivative on the three-surface, respectively.

• Constraint equations:

Hamiltonian constr. HADM := (3)R + K2 − KijK
ij ≈ 0,

momentum constr. MADM
i := DjK

j
i − DiK ≈ 0,

where (3)R =(3) Ri
i.



strategy 0 The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

3+1 decomposition of the spacetime.

Evolve 12 variables (γij, Kij)

with a choice of gauge condition.

coordinate constant line
surface normal line

lapse function

shift vector

A

A'A"

 = constant hypersurface

Maxwell eqs. ADM Einstein eq.

constraints
div E = 4πρ

div B = 0

(3)R + (trK)2 − KijKij = 2κρH + 2Λ

DjK
j
i − DitrK = κJi

evolution eqs.

1

c
∂tE = rot B − 4π

c
j

1

c
∂tB = −rot E

∂tγij = −2NKij + DjNi + DiNj,

∂tKij = N( (3)Rij + trKKij) − 2NKilK l
j − DiDjN

+ (DjNm)Kmi + (DiNm)Kmj + NmDmKij − NγijΛ

− κα{Sij + 1
2γij(ρH − trS)}



S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM:

∂tH = βj(∂jH) + 2αKH − 2αγij(∂iMj)

+α(∂lγmk)(2γ
mlγkj − γmkγlj)Mj − 4γij(∂jα)Mi,

∂tMi = −(1/2)α(∂iH) − (∂iα)H + βj(∂jMi)

+αKMi − βkγjl(∂iγlk)Mj + (∂iβk)γ
kjMj.

From these equations, we know that

if the constraints are satisfied on the initial slice Σ,
then the constraints are satisfied throughout evolution (in principle).



Primary / Secondary constraint

First-class / Second-class constraint

• Primary Constraints

• Secondary Constraints

= when propagation of constraints require additional constraints

• First-Class Constraints

       =



Numerical Relativity in the 20th century
1960s Hahn-Lindquist 2 BH head-on collision AnaPhys29(1964)304

May-White spherical grav. collapse PR141(1966)1232
1970s ÓMurchadha-York conformal approach to initial data PRD10(1974)428

Smarr 3+1 formulation PhD thesis (1975)
Smarr-Cades-DeWitt-Eppley 2 BH head-on collision PRD14(1976)2443
Smarr-York gauge conditions PRD17(1978)2529
ed. by L.Smarr “Sources of Grav. Radiation” Cambridge(1979)

1980s Nakamura-Maeda-Miyama-Sasaki axisym. grav. collapse PTP63(1980)1229
Miyama axisym. GW collapse PTP65(1981)894
Bardeen-Piran axisym. grav. collapse PhysRep96(1983)205
Stark-Piran axisym. grav. collapse unpublished

1990 Shapiro-Teukolsky naked singularity formation PRL66(1991)994
Oohara-Nakamura 3D post-Newtonian NS coalesence PTP88(1992)307
Seidel-Suen BH excision technique PRL69(1992)1845
Choptuik critical behaviour PRL70(1993)9
NCSA group axisym. 2 BH head-on collision PRL71(1993)2851
Cook et al 2 BH initial data PRD47(1993)1471
Shibata-Nakao-Nakamura BransDicke GW collapse PRD50(1994)7304
Price-Pullin close limit approach PRL72(1994)3297

1995 NCSA group event horizon finder PRL74(1995)630
NCSA group hyperbolic formulation PRL75(1995)600
Anninos et al close limit vs full numerical PRD52(1995)4462
Scheel-Shapiro-Teukolsky BransDicke grav. collapse PRD51(1995)4208
Shibata-Nakamura 3D grav. wave collapse PRD52(1995)5428
Gunnersen-Shinkai-Maeda ADM to NP CQG12(1995)133
Wilson-Mathews NS binary inspiral, prior collapse? PRL75(1995)4161
Pittsburgh group Cauchy-characteristic approach PRD54(1996)6153
Brandt-Brügmann BH puncture data PRL78(1997)3606
Illinois group synchronized NS binary initial data PRL79(1997)1182
Shibata-Baumgarte-Shapiro 2 NS inspiral, PN to GR PRD58(1998)023002
BH Grand Challenge Alliance characteristic matching PRL80(1998)3915
Baumgarte-Shapiro Shibata-Nakamura formulation PRD59(1998)024007
Brady-Creighton-Thorne intermediate binary BH PRD58(1998)061501
Meudon group irrotational NS binary initial data PRL82(1999)892
Shibata 2 NS inspiral coalesence PRD60(1999)104052





Critical Phenomena in Gravitational Collapse        
                                                                  Choptuik, Phys. Rev. Lett. 70 (1993) 9

Spherical Sym., Massless Scalar Field
 (1) scaling
 (2) echoing
 (3) universality

Discrite 
   Self-Similarity



Head-on Collision of 2 Black-Holes (Misner initial data)

NCSA group 1995



S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM:

∂tH = βj(∂jH) + 2αKH − 2αγij(∂iMj)

+α(∂lγmk)(2γ
mlγkj − γmkγlj)Mj − 4γij(∂jα)Mi,

∂tMi = −(1/2)α(∂iH) − (∂iα)H + βj(∂jMi)

+αKMi − βkγjl(∂iγlk)Mj + (∂iβk)γ
kjMj.

From these equations, we know that

if the constraints are satisfied on the initial slice Σ,
then the constraints are satisfied throughout evolution (in principle).



S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM:

∂tH = βj(∂jH) + 2αKH − 2αγij(∂iMj)

+α(∂lγmk)(2γ
mlγkj − γmkγlj)Mj − 4γij(∂jα)Mi,

∂tMi = −(1/2)α(∂iH) − (∂iα)H + βj(∂jMi)

+αKMi − βkγjl(∂iγlk)Mj + (∂iβk)γ
kjMj.

From these equations, we know that

if the constraints are satisfied on the initial slice Σ,
then the constraints are satisfied throughout evolution (in principle).

But this is NOT TRUE in NUMERICS....



• By the period of 1990s, NR had provided a lot of physics:
Gravitational Collapse, Critical Behavior, Naked Singularity, Event Horizons,
Head-on Collision of BH-BH and Gravitational Wavve, Cosmology, · · ·

• However, for the BH-BH/NS-NS inspiral coalescence problem, · · · why ???

Many (too many) trials and errors, hard to find a definit recipe.

time

er
ro

r

Blow up

t=0 

Constrained  Surface
(satisfies  Einstein's constraints)

Best formulation of the Einstein eqs. for long-term stable & accurate simulation?



“Convergence”

=  higher resolution runs approach to the continuum limit.

(All numerical codes must have this property.)

• When the code has 2nd order finite difference scheme,                 ,

then the error should be scaled with                 .

• “Consistency”, Choptuik, PRD 44 (1991) 3124



“Accuracy”

=  The numerical results represent the actual solutions.

(All numerical codes must have this property.)

• Check the code with known results.

Gauge wave test in BSSN;

Kiuchi, HS, PRD (2008)









Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

• Many (too many) trials and errors, hard to find a definit recipe.

time

er
ro

r

Blow up Blow up

ADM

BSSN

Mathematically equivalent formulations, but differ in its stability!

strategy 0: Arnowitt-Deser-Misner (ADM) formulation
strategy 1: Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
strategy 2: Hyperbolic formulations
strategy 3: “Asymptotically constrained” against a violation of constraints

By adding constraints in RHS, we can kill error-growing modes
⇒ How can we understand the features systematically?



80s 90s 2000s

A D M

Shibata-Nakamura
95

Baumgarte-Shapiro
99

Nakamura-Oohara
87

Bona-Masso
92

Anderson-York
99

ChoquetBruhat-York
95-97

Frittelli-Reula
96

62

Ashtekar
86

Yoneda-Shinkai
99

Kidder-Scheel
 -Teukolsky

01

lambda-system
99

Alcubierre
97

Iriondo-Leguizamon-Reula

97



strategy 1 Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)

M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995)
T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)

The popular approach. Nakamura’s idea in 1980s.
BSSN is a tricky nickname. BS (1999) introduced a paper of SN (1995).

• define new set of variables (φ, γ̃ij,K,Ãij ,Γ̃i), instead of the ADM’s (γij,Kij) where

γ̃ij ≡ e−4φγij, Ãij ≡ e−4φ(Kij − (1/3)γijK), Γ̃i ≡ Γ̃i
jkγ̃

jk,

and impose detγ̃ij = 1 during the evolutions.

• The set of evolution equations become

(∂t − Lβ)φ = −(1/6)αK,

(∂t − Lβ)γ̃ij = −2αÃij,

(∂t − Lβ)K = αÃijÃ
ij + (1/3)αK2 − γij(∇i∇jα),

(∂t − Lβ)Ãij = −e−4φ(∇i∇jα)TF + e−4φαR(3)
ij − e−4φα(1/3)γijR

(3) + α(KÃij − 2ÃikÃ
k
j)

∂tΓ̃
i = −2(∂jα)Ãij − (4/3)α(∂jK)γ̃ij + 12αÃji(∂jφ) − 2αÃk

j(∂jγ̃
ik) − 2αΓ̃k

ljÃ
j
kγ̃

il

−∂j

(

βk∂kγ̃
ij − γ̃kj(∂kβ

i) − γ̃ki(∂kβ
j) + (2/3)γ̃ij(∂kβ

k)
)

Momentum constraint was used in Γi-eq.



• Calculate Riemann tensor as

Rij = ∂kΓ
k
ij − ∂iΓ

k
kj + Γm

ijΓ
k
mk − Γm

kjΓ
k
mi =: R̃ij + Rφ

ij

Rφ
ij = −2D̃iD̃jφ − 2g̃ijD̃

lD̃lφ + 4(D̃iφ)(D̃jφ) − 4g̃ij(D̃
lφ)(D̃lφ)

R̃ij = −(1/2)g̃lm∂lmg̃ij + g̃k(i∂j)Γ̃
k + Γ̃kΓ̃(ij)k + 2g̃lmΓ̃k

l(iΓ̃j)km + g̃lmΓ̃k
imΓ̃klj

• Constraints are H,Mi.
But thre are additional ones, Gi,A,S.

Hamiltonian and the momentum constraint equations

HBSSN = RBSSN + K2 − KijK
ij, (1)

MBSSN
i = MADM

i , (2)

Additionally, we regard the following three as the constraints:

Gi = Γ̃i − γ̃jkΓ̃i
jk, (3)

A = Ãijγ̃
ij, (4)

S = γ̃ − 1, (5)

Why BSSN better than ADM?
Is the BSSN best? Are there any alternatives?



Some known fact (technical):

• Trace-out Aij at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

• “The essential improvement is in the process of replacing terms by the momentum
constraints”,

Alcubierre, et al, [PRD 62 (2000) 124011]

• Γ̃i is replaced by −∂jγ̃ij where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

• Γ̃i-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]

Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]

Some guesses:

• BSSN has a wider range of parameters that give us stable evolutions in von
Neumann’s stability analysis. Miller, [gr-qc/0008017]

• The eigenvalues of BSSN evolution equations has fewer “zero eigenvalues” than
those of ADM, and they conjectured that the instability can be caused by “zero
eigenvalues” that violate “gauge mode”.

M. Alcubierre, et al, [PRD 62 (2000) 124011]



80s 90s 2000s

A D M

Shibata-Nakamura
95

Baumgarte-Shapiro
99

Nakamura-Oohara
87

Bona-Masso
92

Anderson-York
99

ChoquetBruhat-York
95-97

Frittelli-Reula
96

62

Ashtekar
86

Yoneda-Shinkai
99

Kidder-Scheel
 -Teukolsky

01

lambda-system
99

Alcubierre
97

Iriondo-Leguizamon-Reula

97



80s 90s 2000s

A D M

Shibata-Nakamura
95

Baumgarte-Shapiro
99

Nakamura-Oohara
87

Bona-Masso
92

Anderson-York
99

ChoquetBruhat-York
95-97

Frittelli-Reula
96

62

Ashtekar
86

Yoneda-Shinkai
99

Kidder-Scheel
 -Teukolsky

01

NCSA   AEIG-code 
H-code BSSN-code

Cornell-Illinois

UWash

Hern

Caltech

PennState

lambda-system
99

Shinkai-Yoneda

Alcubierre
97

Nakamura-Oohara Shibata

Iriondo-Leguizamon-Reula

97

LSU



strategy 2 Hyperbolic formulation

Construct a formulation which reveals a hyperbolicity explicitly.
For a first order partial differential equations on a vector u,

∂t











u1

u2
...











=











A











∂x











u1

u2
...











︸ ︷︷ ︸

characteristic part

+ B











u1

u2
...











︸ ︷︷ ︸

lower order part



Hyperbolic Formulation

(1) Definition



Hyperbolic Formulation

(2) Expectations

• if strongly/symmetric hyperbolic  ==> well-posed system

– Given initial data + source terms -> a unique solution exists

– The solution depends continuously on the data

– Exists an upper bound on (unphysical) energy norm

• Better boundary treatments

<== existence of characteristic field

• Known numerical techniques in

Newtonian hydro-dynamics



strategy 2 Hyperbolic formulation

Construct a formulation which reveals a hyperbolicity explicitly.
For a first order partial differential equations on a vector u,

∂t











u1

u2
...











=











A











∂x











u1

u2
...











︸ ︷︷ ︸

characteristic part

+ B











u1

u2
...











︸ ︷︷ ︸

lower order part

However,

• ADM is not hyperbolic.

• BSSN is not hyperbolic.

• Many many hyperbolic formulations are presented. Why many? ⇒ Exercise.

One might ask ...
Are they actually helpful?

Which level of hyperbolicity is necessary?



Exercise 1 of hyperbolic formulation Wave equation (∂t∂t − c2∂x∂x)u = 0



Exercise 1 of hyperbolic formulation Wave equation (∂t∂t − c2∂x∂x)u = 0

[1a] use u as one of the fundamental variables.

∂t






u
v




 =




0 c2

1 0



 ∂x






u
v




 (6)

Eigenvalues = ±c. Not a symmetric hyperbolic, but a kind of strongly hyperbolic.

[1b]

∂t






u
v




 =




0 c
c 0



 ∂x






u
v




 (7)

Eigenvalues = ±c. Symmetric hyperbolic.

[2a] Let U = u̇, V = u′,

∂t






U
V




 =




0 c2

1 0



 ∂x






U
V




 (8)

Eigenvalues = ±c. Not a symmetric hyperbolic, but a kind of strongly hyperbolic.

[2b] Let U = u̇, V = cu′,

∂t






U
V




 =




0 c
c 0



 ∂x






U
V




 (9)

Eigenvalues = ±c. Symmetric hyperbolic.



Exercise 1 of hyperbolic formulation Wave equation (∂t∂t − c2∂x∂x)u = 0

[3a] Let v = u̇, w = v′,

∂t










u
v
w










=









0 0 0
0 0 c2

0 1 0









∂x










u
v
w










+










v
0
0










(10)

Eigenvalues = 0,±c. Not a symmetric hyperbolic, nor a strongly hyperbolic.

[3b] Let v = u̇, w = cv′,

∂t










u
v
w










=









0 0 0
0 0 c
0 c 0









∂x










u
v
w










+










v
0
0










(11)

Eigenvalues = 0,±c. Not a symmetric hyperbolic, nor a strongly hyperbolic.

[4] Let f = u̇ − cu′, g = u̇ + cu′,

∂t






f
g




 =




−c 0
0 c



 ∂x






f
g




 (12)

Eigenvalues = ±c. Symmetric hyperbolic, de-coupled.



Exercise 2 of hyperbolic formulation Maxwell equations

Consider the Maxwell equations in the vacuum space,

divE = 0, (1a)

divB = 0, (1b)

rotB −
1

c

∂E

∂t
= 0, (1c)

rotE +
1

c

∂B

∂t
= 0. (1d)



Exercise 2 of hyperbolic formulation Maxwell equations (cont.)

• Take a pair of variables as ui = (E1, E2, E3, B1, B2, B3)T , and write (1c) and
(1d) in the matrix form

∂t







Ei

Bi







∼=







Al j
i Bl j

i

Cl j
i Dl j

i








︸ ︷︷ ︸

Hermitian?

∂l







Ej

Bj





 . (2)

• In the Maxwell case, we see immediately

∂tui = c





0 εi
lm

−εi
lm 0




 ∂lum

or with the actual components

∂t























E1

E2

E3

B1

B2

B3























= c





















0










0 −δl
3 δl

2

δl
3 0 −δl

1

−δl
2 δl

1 0



















0 δl
3 −δl

2

−δl
3 0 δl

1

δl
2 −δl

1 0










0





















∂l























E1

E2

E3

B1

B2

B3























.

That is, symmetric hyperbolic system.



Exercise 2 of hyperbolic formulation Maxwell equations (cont.)

• The eigen-equation of the characteristic matrix becomes

det








Al j
i − λlδj

i Bl j
i

Cl j
i Dl j

i − λlδj
i








= det






























−λl 0 0
0 −λl 0
0 0 −λl










c










0 −δl
3 δl

2

δl
3 0 −δl

1

−δl
2 δl

1 0










c










0 δl
3 −δl

2

−δl
3 0 δl

1

δl
2 −δl

1 0



















−λl 0 0
0 −λl 0
0 0 −λl






























= 0

We therefore obtain the eigenvalues as

0 (2 multi), ±c
√

(δl
1)

2 + (δl
2)

2 + (δl
3)

2 ≡ ±c (2 each)



Exercise 3 of hyperbolic formulation Adjusted Maxwell equations

By adding constraints (1a) and (1b) in the RHS of equations, and see what will be
happend.

∂tui = c





0 −εi
lm

εi
lm 0




 ∂lum + c






x
y




 ∂kEk + c






z
w




 ∂kBk, (3)

where x, y, z, w are parameters.



Exercise 3 of hyperbolic formulation Adjusted Maxwell equations (cont.)

By adding constraints (1a) and (1b) in the RHS of equations, and see what will be
happend.

∂tui = c





0 −εi
lm

εi
lm 0




 ∂lum + c






x
y




 ∂kEk + c






z
w




 ∂kBk, (3)

where x, y, z, w are parameters.

• The actual components are

∂t
















E1

E2

E3

B1

B2

B3
















= c















x







δl
1 δl

2 δl
3

δl
1 δl

2 δl
3

δl
1 δl

2 δl
3





 z







δl
1 δl

2 δl
3

δl
1 δl

2 δl
3

δl
1 δl

2 δl
3





 +







0 −δl
3 δl

2

δl
3 0 −δl

1

−δl
2 δl

1 0







y







δl
1 δl

2 δl
3

δl
1 δl

2 δl
3

δl
1 δl

2 δl
3





 +







0 δl
3 −δl

2

−δl
3 0 δl

1

δl
2 −δl

1 0





 w







δl
1 δl

2 δl
3

δl
1 δl

2 δl
3

δl
1 δl

2 δl
3





















∂l
















E1

E2

E3

B1

B2

B3
















.

We see that adding constraint terms break the symmetricity of the characteristic
matrix.

• The eigenvalues will be changed as
c

2

(

x + w ±
√

x2 − 2xw + w2 + 4yz
)

(δl
1 + δl

2 + δl
3) (1 each), ±c (2 each).

The zero eigenvalues disappear by adding constraints, and they can be also |c| if
the parameters have the relation (yz − xw − 1)2 = (x + w)2.
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Kidder-Scheel-Teukolsky hyperbolic formulation (Anderson-York + Frittelli-Reula)

Phys. Rev. D. 64 (2001) 064017

• Construct a First-order form using variables (Kij, gij, dkij) where dkij ≡ ∂kgij

Constraints are (H,Mi, Ckij, Cklij) where Ckij ≡ dkij − ∂kgij, and Cklij ≡ ∂[kdl]ij

• Densitize the lapse, Q = log(Ng−σ)

• Adjust equations with constraints

∂̂0gij = −2NKij

∂̂0Kij = (· · ·) + γNgijH + ζNgabCa(ij)b

∂̂0dkij = (· · ·) + ηNgk(iMj) + χNgijMk

• Re-deining the variables (Pij, gij, Mkij)

Pij ≡ Kij + ẑgijK,

Mkij ≡ (1/2)[k̂dkij + êd(ij)k + gij(âdk + b̂bk) + gk(i(ĉdj) + d̂bj))], dk = gabdkab, bk = gabdabk

The redefinition parameters

– do not change the eigenvalues of evolution eqs.

– do not effect on the principal part of the constraint evolution eqs.

– do affect the eigenvectors of evolution system.

– do affect nonlinear terms of evolution eqs/constraint evolution eqs.



Numerical experiments of KST hyperbolic formulation

Weak wave on flat spacetime.

->  No non-principal part. 

-> We can observe the 

    features of hyperbolicity. 

-> Using constraints in RHS

    may improve the blow-up. 

Stability properties of a formulation of Einstein’s equations

Gioel Calabrese,* Jorge Pullin,† Olivier Sarbach,‡ and Manuel Tiglio§

Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001

!Received 27 May 2002; published 19 September 2002"

We study the stability properties of the Kidder-Scheel-Teukolsky !KST" many-parameter formulation of
Einstein’s equations for weak gravitational waves on flat space-time from a continuum and numerical point of

view. At the continuum, performing a linearized analysis of the equations around flat space-time, it turns out

that they have, essentially, no non-principal terms. As a consequence, in the weak field limit the stability

properties of this formulation depend only on the level of hyperbolicity of the system. At the discrete level we

present some simple one-dimensional simulations using the KST family. The goal is to analyze the type of

instabilities that appear as one changes parameter values in the formulation. Lessons learned in this analysis

can be applied in other formulations with similar properties.

DOI: 10.1103/PhysRevD.66.064011 PACS number!s": 04.25.Dm

I. INTRODUCTION

Numerical simulations of the Einstein equations for situ-

ations of interest in the binary black hole problem do not run

forever. The codes either stop due to the development of
floating point overflows, or even if they do not crash, they
produce answers that after a while are clearly incorrect. It is
usually very difficult to pinpoint a clear reason why a code
stops working. Recently, Kidder, Scheel and Teukolsky
!KST" #1$ introduced a twelve-parameter family of evolution
equations for general relativity. Performing an empirical pa-
rameter study within a certain two-parameter subfamily, they
were able to evolve single black hole space-times for over
1000 M, where M is the mass of the black hole, something
that had been very difficult to achieve in the past. It is of
interest to try to understand what makes some of the param-
eter choices better than others, in particular given that a
twelve dimensional parameter study appears prohibitive at
present. The intention of this paper is to take some steps in
this direction. We will first perform a linearized analysis of
the KST equations in the continuum, by considering small
perturbations around flat space-time. We will observe that the
stability of flat space-time is entirely characterized by the
level of hyperbolicity of the system. Since the latter is con-
trolled by the parameters of the family, this provides a first
analytic guidance as to which values to choose. Unfortu-
nately, the result is somewhat weak, since it just points to an
obvious fact: formulations with a higher level of hyperbolic-
ity work better.
In the second part of the paper we perform a set of simple

numerical tests. We consider space-times where all variables
depend on one spatial coordinate, which we consider com-
pactified for simplicity, and time. We are able to exhibit ex-
plicitly the various types of instabilities that arise in the sys-
tem. Some of the results are surprising. For the situation
where the system is weakly hyperbolic, the code is strictly

nonconvergent, but it might appear to converge for a signifi-
cant range of resolutions. We will see that the addition of
dissipation does not fix these problems, but actually can ex-
acerbate them. It is often the case in numerical relativity that
discretization schemes that are convergent for strongly hy-
perbolic equations are applied to weakly hyperbolic formu-
lations. The examples of this section will teach us how dan-
gerous such a practice is and confirm the analytic results of
Ref. #2$. This part of the paper is also instructive in that the
KST system has only been evolved with pseudospectral
methods. We use ordinary integration via the method of
lines.
The plan of this paper is as follows. In the next section we

will discuss several notions of stability that are present in the
literature, mostly to clarify the notation. In Sec. III we dis-
cuss the stability of the KST equations in the continuum
under linearized perturbations. In Sec. IV we discuss the nu-
merical simulations.

II. DIFFERENT DEFINITIONS OF STABILITY

The term stability is used in numerical relativity in several
different ways. We therefore wanted to make the notation
clear at least in what refers to this paper. Sometimes the
notion of stability is used in a purely analytic context, while
some other times it is used in a purely numerical one. Within
analytical contexts, there are cases in which it is used to
mean well posedness, as in the book of Kreiss and Lorenz
#3$. In such a context well posedness means that the norm of
the solution at a fixed time can be bounded by the norm of
the initial data, with a bound that is valid for all initial data.
In other cases it is intended to measure the growth of pertur-
bations of a certain solution within a formulation of Ein-
stein’s equations, without special interest in whether the
equations are well posed or not.
At the numerical level, a scheme is sometimes defined as

stable if it satisfies a discrete version of well posedness. This
is the sense in which stability !plus consistency" is equivalent
to convergence via the Lax theorem #4$. Examples of this
kind of instability are present in the Euler scheme, schemes
with Courant factor that are too large, or other situations
where the amplification factor !or its generalization" is big-

*Electronic address: gioel@lsu.edu
†Electronic address: pullin@lsu.edu
‡Electronic address: sarbach@phys.lsu.edu
§Electronic address: tiglio@lsu.edu
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lutions the coarsest one gives smaller errors after a while,

and the time at which this occurs decreases as one increases

resolution. This indicates that the difference scheme is not

convergent. Note that one could be easily misled to think that

the code is convergent if one did not evolve the system for

long enough time, or without high enough resolution. For

example, if one performs two runs, with 120 and 240 grid-

points, one has to evolve until, roughly, 150 crossing times,

in order to notice the lack of convergence. To put these num-

bers in context, suppose one had a similar situation in a 3D

black hole evolution. To give some usual numbers, suppose

the singularity is excised, with the inner boundary at, say, r

!M , and the outer boundary is at 20M !which is quite a
modest value if one wants to extract waveforms". In this case
120 and 240 gridpoints correspond to grid spacings of, ap-

proximately, M /5 and M /10, respectively !usual values as
well in some simulations". If one had to evolve up to 150
crossing times in order to notice the lack of convergence,

that would correspond to t!3000M , which is several times
more than what present 3D evolutions last. Of course, the

situation presented in this simple example need not appear in

exactly the same way in an evolution of a different space-

time, or with a different discretization; in fact, in the next

subsection we show an example where the instability be-

comes obvious sooner. Also, there are some ways of noticing

in advance that the code is not converging. Namely, it seems

that the numerical solution has the expected power law

growth that the continuum linearized analysis predicts until

all of a sudden an exponential growth appears. But if one

looks at the Fourier components of the numerical solution,

one finds that there are nonzero components growing expo-

nentially from the very beginning, starting at the order of

truncation error !see Fig. 8".
One might expect that, since for WH systems the

frequency-dependent growth at the continuum is a power law

one, it is possible to get convergence by adjusting the dissi-

pation. In #2$ we show that even though certain amount of

dissipation might help, the code is never convergent and,

indeed, adding too much dissipation violates the von Neu-

mann condition, which leads to a much more severe numeri-

cal instability. We have systematically done numerical ex-

periments changing the value of %̃ without being able to

stabilize the simulations !more details are given below", veri-
fying, thus, the discrete predictions.

3. The CIP case (!ÄÀ1Õ2)

Figure 9 shows the error in the metric, for different reso-

lutions. As in the WH case, the errors originate mostly from

the nonzero frequencies !i.e. the ones that typically grow in
an unstable numerical scheme". But now they grow more

than 10 orders of magnitude in much less than one crossing

time and it is quite obvious that the code is not converging.

This is so because in the CIP case the instability grows ex-

ponentially with the number of gridpoints !see Fig. 10". This
can be seen performing a discrete analysis for the single ill

posed equation in 1D, v t!ivx . One gets that the symbol
&('(x) is real and cannot be bounded by 1 in magnitude,
making the difference scheme unstable !independently of
resolution". If one changed to characteristic variables exactly
this equation would appear in 1D as a subset of the system

that we are considering, so this model equation is, in the

FIG. 7. L2 norms of the errors for the metric. FIG. 8. Fourier components of the numerical metric for )
!0,4,8. Some of the components grow exponentially from the very
beginning.

FIG. 9. L2 norm of the errors for the metric.
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lutions the coarsest one gives smaller errors after a while,

and the time at which this occurs decreases as one increases

resolution. This indicates that the difference scheme is not

convergent. Note that one could be easily misled to think that

the code is convergent if one did not evolve the system for

long enough time, or without high enough resolution. For

example, if one performs two runs, with 120 and 240 grid-

points, one has to evolve until, roughly, 150 crossing times,

in order to notice the lack of convergence. To put these num-

bers in context, suppose one had a similar situation in a 3D

black hole evolution. To give some usual numbers, suppose

the singularity is excised, with the inner boundary at, say, r

!M , and the outer boundary is at 20M !which is quite a
modest value if one wants to extract waveforms". In this case
120 and 240 gridpoints correspond to grid spacings of, ap-

proximately, M /5 and M /10, respectively !usual values as
well in some simulations". If one had to evolve up to 150
crossing times in order to notice the lack of convergence,

that would correspond to t!3000M , which is several times
more than what present 3D evolutions last. Of course, the

situation presented in this simple example need not appear in

exactly the same way in an evolution of a different space-

time, or with a different discretization; in fact, in the next

subsection we show an example where the instability be-

comes obvious sooner. Also, there are some ways of noticing

in advance that the code is not converging. Namely, it seems

that the numerical solution has the expected power law

growth that the continuum linearized analysis predicts until

all of a sudden an exponential growth appears. But if one

looks at the Fourier components of the numerical solution,

one finds that there are nonzero components growing expo-

nentially from the very beginning, starting at the order of

truncation error !see Fig. 8".
One might expect that, since for WH systems the

frequency-dependent growth at the continuum is a power law

one, it is possible to get convergence by adjusting the dissi-

pation. In #2$ we show that even though certain amount of

dissipation might help, the code is never convergent and,

indeed, adding too much dissipation violates the von Neu-

mann condition, which leads to a much more severe numeri-

cal instability. We have systematically done numerical ex-

periments changing the value of %̃ without being able to

stabilize the simulations !more details are given below", veri-
fying, thus, the discrete predictions.

3. The CIP case (!ÄÀ1Õ2)

Figure 9 shows the error in the metric, for different reso-

lutions. As in the WH case, the errors originate mostly from

the nonzero frequencies !i.e. the ones that typically grow in
an unstable numerical scheme". But now they grow more

than 10 orders of magnitude in much less than one crossing

time and it is quite obvious that the code is not converging.

This is so because in the CIP case the instability grows ex-

ponentially with the number of gridpoints !see Fig. 10". This
can be seen performing a discrete analysis for the single ill

posed equation in 1D, v t!ivx . One gets that the symbol
&('(x) is real and cannot be bounded by 1 in magnitude,
making the difference scheme unstable !independently of
resolution". If one changed to characteristic variables exactly
this equation would appear in 1D as a subset of the system

that we are considering, so this model equation is, in the

FIG. 7. L2 norms of the errors for the metric. FIG. 8. Fourier components of the numerical metric for )
!0,4,8. Some of the components grow exponentially from the very
beginning.

FIG. 9. L2 norm of the errors for the metric.
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reaches the value !̃!0.32 the instability is even worse than
adding less dissipation, and the same thing happens if one

keeps on increasing !̃ beyond 0.32. So we next narrow the

interval in which the dissipation is fine tuned, we start at !̃
!0.24, and increase at intervals of 0.01. We find the same

result; at !̃"0.25 there is already too much dissipation and

the situation is worse. Fine tuning even more, we change !̃
in intervals of 0.001 around 0.250, but it is also found that

for !"0.250 the effect of more dissipation is adverse, as
also shown in Fig. 14.

The fact that beyond !̃!0.250 the situation becomes
worse is in perfect agreement with the discrete analysis of

"2#. There we show that a necessary condition for the von

Neumann condition to be satisfied is !̃$%1/8. Here the up-
per limit of 1/8 corresponds to, precisely, !̃!1/4. Exceeding
this value results in a violation of the von Neumann condi-

tion; as explained in "2#, when this happens there is a nu-
merical instability that grows exponentially with the number

of gridpoints &i.e. as in the CIP case', much faster than when

the von Neumann condition is satisfied &in which case the
growth goes as a power of the gridpoints'.
Finally, it is worthwhile to point out that we have also

tried with smaller Courant factors, using, in particular, values

often used in numerical relativity, like $!0.20 and $
!0.25, without ever being able to get a completely conver-
gent simulation.

3. The CIP case

Finally here we also use the parameters &21' with (!1,
but now we take )!#79/42, which implies $2!#1 and,
thus, the system is CIP. The results are as expected. There is

exponential, frequency-dependent growth that makes the nu-

merical scheme unstable, see Fig. 15.

C. Other simulations

Performing simulations with the ICN instead of the RK

method yields similar results, as predicted in "2#. Figure 16
shows, for example, evolutions changing the densitization of

the lapse, as in the first subsection, but using the ICN method

with two iterations &counting this number as in "9#'. This is
the minimum number of iterations that yields a stable

scheme for well posed equations but, as shown in "2#, it is
unstable for WH systems. The same values of the Courant

factor and dissipation as above were used in these runs. We

have also tried with other values of the Courant factor and

dissipation parameter, finding similar results. We were able

to confirm the lack of convergence predicted in "2# in every
WH or CIP formulation we used, including the ADM equa-

tions rewritten as first order equations in time space. Lack of

convergence with a 3D code, using the ADM equations writ-

ten as second order in space and the ICN method, for the

same initial data used here, has also been confirmed "10#.

V. DISCUSSION

We have shown that a linearized analysis of the KST

equations implies that flat space-time written in Cartesian

coordinates is a stable solution of the equations if the param-

FIG. 11. Amplification factor associated with the difference

scheme &12' approximating the ill posed equation v t!ivx .

FIG. 12. L2 norm of the errors for the metric.

FIG. 13. L2 norm of the errors for the metric. The simulation is

stopped once the determinant of the spatial metric becomes zero.
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Hyperbolic formulations and numerical relativity:
experiments using Ashtekar’s connection variables
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Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on
Ashtekar’s connection variables. The primary advantage for using this connection formulation in
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity.
Our numerical code demonstrates gravitational wave propagation in plane-symmetric spacetimes,
and we compare the accuracy of the simulation by monitoring the violation of the constraints.
By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

PACS numbers: 0420C, 0425, 0425D

1. Introduction

Numerical relativity—solving the Einstein equation numerically—is now an essential field in
gravity research. As is well known, critical collapse in gravity systems was first discovered by
numerical simulation [1]. The current mainstream of numerical relativity is to demonstrate the
final phase of compact binary objects related to gravitational wave observations†, and these
efforts are now again shedding light on the mathematical structure of the Einstein equations.

Up to a couple of years ago, the standard Arnowitt–Deser–Misner (ADM) decomposition
of the Einstein equation was taken as the standard formulation for numerical relativists.
Difficulties in accurate/stable long-term evolutions were supposed to be overcome by choosing
proper gauge conditions and boundary conditions. Recently, however, several numerical
experiments show that the standard ADM is not the best formulation for numerics, and finding
a better formulation has become one of the main research topics‡.

† The latest reviews are available in [2].
‡ Note that we are only concerned with the free evolution system of the initial data; that is, we only solve the constraint
equations on the initial hypersurface. The accuracy and/or stability of the system is normally observed by monitoring
the violation of constraints during the free evolution.
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N
˜
, Ni, Aa

0, which we call the densitized lapse function, shift vector and the triad lapse function.
The system has three constraint equations,

CASH
H := (i/2)εab

c Ẽi
aẼ

j
bF c

ij ≈ 0, (7)

CASH
Mi := −Fa

ij Ẽ
j
a ≈ 0, (8)

CASH
Ga := Di Ẽ

i
a ≈ 0, (9)

which are called the Hamiltonian, momentum and Gauss constraint equations, respectively.
The dynamical equations for a set of (Ẽi

a, Aa
i ) are

∂t Ẽ
i
a = −iDj (ε

cb
aN
˜
Ẽj

c Ẽi
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0εab
c Ẽi

c, (10)

∂tAa
i = −iεab

cN
˜
Ẽ

j
bF c

ij + NjF a
ji + DiAa

0, (11)

where Fa
ij := 2∂[iAa

j ] − iεa
bc Ab

i A
c
j is the curvature 2-form.

We have to consider the reality conditions when we use this formalism to describe the
classical Lorentzian spacetime. As we review in appendix A.2, the metric will remain on its
real-valued constraint surface during time evolution automatically if we prepare initial data
which satisfy the reality condition. More practically, we also require that the triad be real-
valued. However, again this reality condition appears as a gauge restriction on Aa

0, (A11),
which can be imposed at every time step. In our actual simulation, we prepare our initial data
using the standard ADM approach, so that we have no difficulties in maintaining these reality
conditions.

The set of dynamical equations (10) and (11) (hereafter we call these the original equations)
does have a weakly hyperbolic form [19], so that we regard the mathematical structure of
the original equations as one step advanced from the standard ADM. Furthermore, we can
construct higher levels of hyperbolic systems by restricting the gauge condition and/or by
adding constraint terms, CASH

H , CASH
Mi and CASH

Ga , to the original equations [19]. We extract only
the final expressions here.

In order to obtain a symmetric hyperbolic system†, we add constraint terms to the right-
hand side of (10) and (11). The adjusted dynamical equations,

∂t Ẽ
i
a = −iDj (ε

cb
aN
˜
Ẽj

c Ẽi
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0εab
c Ẽi

c + P i
ab CASH

G
b, (12)

where

P i
ab ≡ Niδab + iN

˜
εab

cẼi
c,

∂tAa
i = −iεab

cN
˜
Ẽ

j
bF c

ij + NjF a
ji + DiAa

0 + Qa
i C

ASH
H + Ri

ja CASH
Mj , (13)

where

Qa
i ≡ e−2N

˜
Ẽa

i , Ri
ja ≡ ie−2N

˜
εac

bẼ
b
i Ẽ

j
c

form a symmetric hyperbolicity if we further require the gauge conditions,

Aa
0 = Aa

i N
i, ∂iN = 0. (14)

We note that the adjusted coefficients, P i
ab, Q

a
i , Ri

ja , for constructing the symmetric
hyperbolic system are uniquely determined, and there are no other additional terms (say,
no CASH

H , CASH
M for ∂t Ẽ

i
a , no CASH

G for ∂tAa
i ) [19]. The gauge conditions, (14), are consequences

of the consistency with (triad) reality conditions.

† Iriondo et al [34] presented a symmetric hyperbolic expression in a different form. The differences between ours
and theirs are discussed in [19, 20]
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Figure 2. Images of gravitational wave propagation and comparisons of dynamical behaviour of
Ashtekar’s variables and ADM variables. We applied the same initial data of two +-mode pulse
waves (a = 0.2, b = 2.0, c = ±2.5 in equation (21) and K0 = −0.025), and the same slicing
condition, the standard geodesic slicing condition (N = 1). (a) Image of the 3-metric component
gyy of a function of proper time τ and coordinate x. This behaviour can be seen identically both
in ADM and Ashtekar evolutions, and both with the Brailovskaya and Crank–Nicholson time-
integration scheme. Part (b) explains this fact by comparing the snapshot of gyy at the same proper
time slice (τ = 10), where four lines at τ = 10 are looked at identically. Parts (c) and (d) are of the
real part of the densitized triad Ẽ

y
2 , and the real part of the connection A2

y , respectively, obtained
from the evolution of the Ashtekar variables.

When the pulses collide, then the amplitude seems simply to double, as they are superposed,
and the pulses keep travelling in their original propagation direction. That is, we observe
something like solitonic wave pulse propagation.

As we mentioned in section 3.2, we have to assume our background not to be flat, therefore
there are no exact solutions. The reader might think that if we set | tr K| to be small and pulse
wave shapes to be quite sharp then our simulations will be close to the analytic colliding
plane-wave solutions which produce the curvature singularity. However, from the numerical
side, these two requirements are contradictory (e.g. sharp wave input produces large curvature
which should be compensated by | tr K| in order to construct our initial data). Thus it is not
so surprising that our waves propagate like solitons, not forming a singularity.

In figure 2(a), we plot an image of wave propagation (a metric component gyy) up to
τ = 10, of +-mode pulse waves initially located at x = ±2.5. We took a small negative K0,
so that the background spacetime is slowly expanding.

Figure 2(b), then, tells us that our ADM evolution code and Ashtekar’s variable code give
us identical evolutions. We plotted a snapshot of gyy on the initial data (which is common to
all models here), and its snapshot at τ = 10.0. The fact that all four lines (ADM/Ashtekar, of
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between 3 levels of hyperbolicity.
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Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on
Ashtekar’s connection variables. The primary advantage for using this connection formulation in
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity.
Our numerical code demonstrates gravitational wave propagation in plane-symmetric spacetimes,
and we compare the accuracy of the simulation by monitoring the violation of the constraints.
By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

PACS numbers: 0420C, 0425, 0425D

1. Introduction

Numerical relativity—solving the Einstein equation numerically—is now an essential field in
gravity research. As is well known, critical collapse in gravity systems was first discovered by
numerical simulation [1]. The current mainstream of numerical relativity is to demonstrate the
final phase of compact binary objects related to gravitational wave observations†, and these
efforts are now again shedding light on the mathematical structure of the Einstein equations.

Up to a couple of years ago, the standard Arnowitt–Deser–Misner (ADM) decomposition
of the Einstein equation was taken as the standard formulation for numerical relativists.
Difficulties in accurate/stable long-term evolutions were supposed to be overcome by choosing
proper gauge conditions and boundary conditions. Recently, however, several numerical
experiments show that the standard ADM is not the best formulation for numerics, and finding
a better formulation has become one of the main research topics‡.

† The latest reviews are available in [2].
‡ Note that we are only concerned with the free evolution system of the initial data; that is, we only solve the constraint
equations on the initial hypersurface. The accuracy and/or stability of the system is normally observed by monitoring
the violation of constraints during the free evolution.
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Figure 6. Comparisons of the ‘adjusted’ system with the different multiplier, κ , in equations (31)
and (32). The model uses +-mode pulse waves (a = 0.1, b = 2.0, c = ±2.5) in equation (21) in a
background K0 = −0.025. Plots are of the L2 norm of the Hamiltonian and momentum constraint
equations, CASH

H and CASH
M ((a) and (b), respectively). We see some κ produce a better performance

than the symmetric hyperbolic system.

Our numerical code demonstrates gravitational wave propagation in plane-symmetric
spacetime, and we compare the ‘accuracy’ and/or ‘stability’ by monitoring the violation of
the constraints. Actually, our experiments in section 4 were the comparisons of accuracy
in evolutions, while in section 5 we observed cases of unstable evolution. By comparing
with the results obtained from the weakly hyperbolic system, we observe that the strongly
and symmetric hyperbolic system show better properties with little differences between them.
Therefore, we may conclude that higher levels of hyperbolic formulations help the numerics
more, though the differences are small.

However, we also found that the symmetric hyperbolic system is not always the best
one for controlling accuracy or stability, by introducing a multiplier for adjusted terms in
the equations of motion. This result suggests that a certain kind of hyperbolicity is enough
to control the violation of the constraint equation. In our case it is the strongly hyperbolic
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5. Experiments 2: another way to control the accuracy/stability

The results we have presented in the previous section indicate that both strongly and symmetric
hyperbolic systems show better performance than the original weakly hyperbolic system.
These systems are obtained by adding constraint terms (or ‘adjusted’ terms) to the right-hand
side of the original equations, (10) and (11). In this section, we report on simple experiments
in changing the magnitude of the multipliers of such adjusted terms.

We consider the following system, where the equations of motion are adjusted in the same
way as before, but with a real-valued constant multiplier κ:

∂t Ẽ
i
a = −iDj (ε

cb
aN
˜
Ẽj

c Ẽi
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0εab
c Ẽi

c + κP i
ab CASH

G
b, (31)

where P i
ab ≡ Niδab + iN

˜
εab

cẼi
c,

∂tAa
i = −iεab

cN
˜
Ẽ

j
bF c

ij + NjF a
ji + DiAa

0 + κQa
i C

ASH
H + κRi

ja CASH
Mj , (32)

where Qa
i ≡ e−2N

˜
Ẽa

i , Ri
ja ≡ ie−2N

˜
εac

bẼ
b
i Ẽ

j
c .

The set of equations (31) and (32) becomes the original weakly hyperbolic system if κ = 0,
becomes the symmetric hyperbolic system if κ = 1 and N = constant, and remains a strongly
hyperbolic system for other choices of κ except κ = 1

2 which only forms a weakly hyperbolic
system. We again remark that the coefficients for constructing the symmetric hyperbolic
system are uniquely determined.

We tried the same evolutions as in the previous section for different value of κ . In figure 6,
we plot the L2 norm of the Hamiltonian and momentum constraint equations, CASH

H and CASH
M .

We checked first that κ = 0 and 1 produce the same results as those of weakly and symmetric
hyperbolic systems. What is interesting is the case of κ = 2 and 3. These κs produce
better performance than the symmetric hyperbolic system, although these cases are of strongly
hyperbolic levels. Therefore, as far as monitoring the violation of the constraints is concerned,
we may say that the symmetric hyperbolic form is not always the best. We note that the
negative κ will produce unstable evolution as we plotted, while too a large positive κ will also
result in unstable evolution in the end (see the κ = 3 lines).

We also tried similar experiments with the vacuum Maxwell equation. The original
Maxwell equation has a symmetric hyperbolicity, and additional constraint terms (with
multiplier κ) reduce the hyperbolicity to the strong or weak level. We show the details and a
figure in appendix B, but in short there may be no measurable differences between strongly
and symmetric hyperbolicities.

These experiments in changing κ are now reported in our paper II [41] more extensively.
There, we propose a plausible explanation as to why such adjusted terms work for stabilizing
the system. We introduce the idea in appendix C. Briefly, we will conjecture a criterion using
the eigenvalues of the ‘adjusted version’ of the constraint propagation equations. This analysis
may explain the appearance of phase differences between two systems, which is observed in
figures 4–6.

6. Discussion

Motivated by many recent proposals for hyperbolic formulations of the Einstein equation, we
studied numerically these accuracy/stability properties with the purpose of comparing three
mathematical levels of hyperbolicity: weakly hyperbolic, strongly hyperbolic and symmetric
hyperbolic systems. We apply Ashtekar’s connection formulation, because this is the only
known system in which we can compare three hyperbolic levels with the same interface.



BSSN Pros:

• With Bona-Masso-type α (1+log), and frozon β (∂tΓi ∼ 0), BSSN plus auxiliary
variables form a 1st-order symmetric hyperbolic system,

Heyer-Sarbach, [PRD 70 (2004) 104004]

• If we define 2nd order symmetric hyperbolic form, principal part of BSSN can be
one of them,

Gundlach-MartinGarcia, [PRD 70 (2004) 044031, PRD 74 (2006) 024016]

BSSN Cons:

• Existence of an ill-posed solution in BSSN (as well in ADM)
Frittelli-Gomez [JMP 41 (2000) 5535]

• Gauge shocks in Bona-Masso slicing is inevitable. Current 3D BH simulation is
lack of resolution.

Garfinke-Gundlach-Hilditch [arXiv:0707.0726]



strategy 2 Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group

“Well-posed!”, ||u(t)|| ≤ eκt||u(0)||

Mathematically Rigorous Proofs

IBVP in future



Initial Boundary Value Problem

GR-IBVP

Stewart, CQG15 (98) 2865

Tetrad formalism

Friedrich & Nagy, CMP201 (99) 619

Linearized Bianchi eq.

Buchman & Sarbach, CQG 23 (06) 6709

Constraint-preserving BC

Kreiss, Reula, Sarbach & Winicour, CQG 24 (07) 5973

Higher-order absorbing BC

Ruiz, Rinne & Sarbach, CQG 24 (07) 6349

Consistent treatment is available

only for symmetric hyperbolic

systems.
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strategy 2 Hyperbolic formulation (cont.)

Are they actually helpful?

“YES” group “Really?” group

“Well-posed!”, ||u(t)|| ≤ eκt||u(0)|| “not converging”, still blow-up

Mathematically Rigorous Proofs Proofs are only simple eqs.
Discuss only characteristic part.
Ignore non-principal part.

IBVP in future
...

Which level of hyperbolicity is necessary?

symmetric hyperbolic ⊂ strongly hyperbolic ⊂ weakly hyperbolic systems,

Advantages in Numerics (90s) These were vs. ADM

Advantages in sym. hyp.
– KST formulation by LSU

Not much differences in hyperbolic 3 levels
– FR formulation, by Hern
– Ashtekar formulation, by HS-Yoneda

sym. hyp. is not always the best
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Summary up to here  (1st half)

[Keyword 1] Formulation Problem 
Although mathematically equivalent, different set of equations

 shows different numerical stability. 

[Keyword 2] ADM formulation
The starting formulation (Historically & Numerically). 
Successes in 90s, but not for binary BH-BH/NS-NS problems.

[Keyword 3] BSSN formulation
New variables and gauge fixing to ADM, shows better stability. 
The reason why it is better was not known at first.
Many simulation groups uses BSSN. Technical tips are accumulated.

[Keyword 4] hyperbolic formulations
Mathematical classification of PDE shows "well-posedness", but its meaning 
is limited. 
Many versions of hyperbolic Einstein equations are available. 
Some group try to show the advantage of BSSN using "hyperbolicity".
But are they really helpful in numerics?

 



Goals of the Lecture

What is the guiding principle for 
selecting evolution equations for 
simulations in GR?

Why many groups use the BSSN 
equations?

Are there an alternative formulation 
better than the BSSN?



strategy 3 “Asymptotically Constrained” system /“Constraint Damping” system

Formulate a system which is “asymptotically constrained” against a violation of constraints
Constraint Surface as an Attractor

t=0 

Constrained  Surface
(satisfies  Einstein's constraints)

time

er
ro

r

Blow up

Stabilize?

?

method 1: λ-system (Brodbeck et al, 2000)

• Add aritificial force to reduce the violation of
constraints

• To be guaranteed if we apply the idea to a sym-
metric hyperbolic system.

method 2: Adjusted system (Yoneda HS, 2000,
2001)

• We can control the violation of constraints by
adjusting constraints to EoM.

• Eigenvalue analysis of constraint propagation
equations may prodict the violation of error.

• This idea is applicable even if the system is not
symmetric hyperbolic. ⇒
for the ADM/BSSN formulation, too!!



Idea of λ-system

Brodbeck, Frittelli, Hübner and Reula, JMP40(99)909

We expect a system that is robust for controlling the violation of constraints
Recipe

1. Prepare a symmetric hyperbolic evolution system ∂tu = J∂iu + K

2. Introduce λ as an indicator of violation of constraint
which obeys dissipative eqs. of motion

∂tλ = αC − βλ
(α "= 0, β > 0)

3. Take a set of (u,λ) as dynamical variables ∂t




u
λ



 #



A 0
F 0



 ∂i




u
λ





4. Modify evolution eqs so as to form
a symmetric hyperbolic system

∂t




u
λ



 =



A F̄
F 0



 ∂i




u
λ





Remarks

• BFHR used a sym. hyp. formulation by Frittelli-Reula [PRL76(96)4667]

• The version for the Ashtekar formulation by HS-Yoneda [PRD60(99)101502]
for controlling the constraints or reality conditions or both.

• Succeeded in evolution of GW in planar spacetime using Ashtekar vars. [CQG18(2001)441]

• Do the recovered solutions represent true evolution? by Siebel-Hübner [PRD64(2001)024021]

• The version for Z4 hyperbolic system by Gundlach-Calabrese-Hinder-MartinGarcia [CQG22(05)3767]
⇒ Pretorius noticed the idea of ”constraint damping” [PRL95(05)121101]



Maxwell-lambda system works 

as expected.
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with the initial data λE = λB = 0 and take (E, B, λE, λB) as a set of variables to evolve:

∂t











Ei

Bi

λE

λB











=











0 −cεi
j
l 0 0

cεi
j
l 0 0 0

α1δ
l
j 0 0 0

0 α2δ
l
j 0 0











∂l











Ej

Bj

λE

λB











+











0

0

−β1λE

−β2λB











. (2.14)

We immediately obtain an expected symmetric form as

∂t











Ei

Bi

λE

λB











=











0 −cεi
j
l α1δ

li 0

cεi
j
l 0 0 α2δ

li

α1δ
l
j 0 0 0

0 α2δ
l
j 0 0











∂l











Ej

Bj

λE

λB











+











0

0

−β1λE

−β2λB











. (2.15)

2.2.2. Analysis of eigenvalues. Now the evolution equations for the constraints CE and CB

become

∂tCE = α1('λE), ∂tCB = α2('λB) (2.16)

where ' = ∂i∂
i . We take the Fourier integrals for constraints Cs (2.16) and λs, (2.12) and

(2.13), in the form of (2.7), to obtain

∂t











ĈE

ĈB

λ̂E

λ̂B











=











0 0 −α1k
2 0

0 0 0 −α2k
2

α1 0 −β1 0

0 α2 0 −β2





















ĈE

ĈB

λ̂E

λ̂B











, (2.17)

where k2 = kik
i . We find the matrix to be constant. Note that this is an exact expression.

Since the eigenvalues are
(

−β1 ±
√

β2
1 − 4α2

1k
2
)

/2

and
(

−β2 ±
√

β2
2 − 4α2

2k
2
)

/2,

the negative eigenvalue requirement becomes α1, α2 "= 0 and β1, β2 > 0.

2.2.3. Numerical demonstration. We present a numerical demonstration of the above
Maxwell ‘λ system’. We prepare a code which produces electromagnetic propagation in
the xy-plane, and monitor the violation of the constraint during time integration. Specifically,
we prepare the initial data with a Gaussian packet at the origin,

Ei(x, y, z) =
(

−Ay e−B(x2+y2), Ax e−B(x2+y2), 0
)

, (2.18)

Bi(x, y, z) = (0, 0, 0), (2.19)

where A and B are constants, and let it propagate freely, under the periodic boundary
condition.

The code itself is quite stable for this problem. In figure 1, we plot the L2 norm of the
error (CE over the whole grid) as a function of time. The full curve (constant) in figure 1(a)
is of the original Maxwell equation. If we introduce λs, then we see that the error will be
reduced by a particular choice of α and β. Figure 1(a) is for changing α with β = 2.0,
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with the initial data λE = λB = 0 and take (E, B, λE, λB) as a set of variables to evolve:

∂t











Ei

Bi

λE

λB











=











0 −cεi
j
l 0 0

cεi
j
l 0 0 0

α1δ
l
j 0 0 0

0 α2δ
l
j 0 0











∂l











Ej

Bj

λE

λB











+











0

0

−β1λE

−β2λB











. (2.14)

We immediately obtain an expected symmetric form as

∂t
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







Ei

Bi

λE

λB











=











0 −cεi
j
l α1δ

li 0

cεi
j
l 0 0 α2δ

li

α1δ
l
j 0 0 0

0 α2δ
l
j 0 0











∂l











Ej

Bj

λE

λB











+











0

0

−β1λE

−β2λB











. (2.15)

2.2.2. Analysis of eigenvalues. Now the evolution equations for the constraints CE and CB

become

∂tCE = α1('λE), ∂tCB = α2('λB) (2.16)

where ' = ∂i∂
i . We take the Fourier integrals for constraints Cs (2.16) and λs, (2.12) and

(2.13), in the form of (2.7), to obtain

∂t











ĈE

ĈB

λ̂E

λ̂B











=











0 0 −α1k
2 0

0 0 0 −α2k
2

α1 0 −β1 0

0 α2 0 −β2





















ĈE

ĈB

λ̂E

λ̂B











, (2.17)

where k2 = kik
i . We find the matrix to be constant. Note that this is an exact expression.

Since the eigenvalues are
(

−β1 ±
√

β2
1 − 4α2

1k
2
)

/2

and
(

−β2 ±
√

β2
2 − 4α2

2k
2
)

/2,

the negative eigenvalue requirement becomes α1, α2 "= 0 and β1, β2 > 0.

2.2.3. Numerical demonstration. We present a numerical demonstration of the above
Maxwell ‘λ system’. We prepare a code which produces electromagnetic propagation in
the xy-plane, and monitor the violation of the constraint during time integration. Specifically,
we prepare the initial data with a Gaussian packet at the origin,

Ei(x, y, z) =
(

−Ay e−B(x2+y2), Ax e−B(x2+y2), 0
)

, (2.18)

Bi(x, y, z) = (0, 0, 0), (2.19)

where A and B are constants, and let it propagate freely, under the periodic boundary
condition.

The code itself is quite stable for this problem. In figure 1, we plot the L2 norm of the
error (CE over the whole grid) as a function of time. The full curve (constant) in figure 1(a)
is of the original Maxwell equation. If we introduce λs, then we see that the error will be
reduced by a particular choice of α and β. Figure 1(a) is for changing α with β = 2.0,
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Figure 1. Demonstration of the λ system in the Maxwell equation. (a) Constraint violation (L2
norm of CE ) versus time with constant β (= 2.0) but changing α. Here α = 0 means no λ system.
(b) The same plot with constant α (= 0.5) but changing β. We see better performance for β > 0,
which is the case of negative eigenvalues of the constraint propagation equation. The constants in
(2.18) were chosen as A = 200 and B = 1.
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proposed ‘λ system’, which introduces artificial flows to constraint surfaces
based on the symmetric hyperbolic formulation. We show that this system
works as expected for the wave propagation problem in the Maxwell system
and in general relativity using Ashtekar’s connection formulation. Second, we
propose a new mechanism to control the stability, which we call the ‘adjusted
system’. This is simply obtained by adding constraint terms in the dynamical
equations and adjusting their multipliers. We explain why a particular choice
of multiplier reduces the numerical errors from non-positive or pure-imaginary
eigenvalues of the adjusted constraint propagation equations. This ‘adjusted
system’ is also tested in the Maxwell system and in the Ashtekar system. This
mechanism affects more than the system’s symmetric hyperbolicity.
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1. Introduction

Numerical relativity, an approach to solving the Einstein equations numerically, is supposed
to be the only way to study highly nonlinear gravitational phenomena. Although the attempt
already has decades of history, we still do not have a definite recipe for integrating the Einstein
equations that will give us accurate and long-term stable time evolutions. Here and hereafter,
we mean by ‘stable evolution’ that the system keeps the violation of the constraints within a
suitable small value in its free numerical evolution.
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We introduce new variables (λ, λi , λa), obeying the dissipative evolution equations,

∂tλ = α1 CH − β1 λ, (2.26)

∂tλi = α2 C̃Mi − β2 λi , (2.27)

∂tλa = α3 CGa − β3 λa, (2.28)

where αi "= 0 (possibly complex) and βi > 0 (real) are constants.
If we take yα := (Ẽi

a, Aa
i , λ, λi , λa) as a set of dynamical variables, then the principal

part of (2.26)–(2.28) can be written as

∂tλ
∼= −iα1ε

bcdẼj
c Ẽl

d (∂lAb
j ), (2.29)

∂tλi
∼= α2[−eδl

i Ẽ
j
b + eδ

j
i Ẽ

l
b](∂lAb

j ), (2.30)

∂tλa
∼= α3∂l Ẽ

l
a. (2.31)

The characteristic matrix of the system uα is not Hermitian. However, if we modify
the right-hand side of the evolution equation of (Ẽi

a, Aa
i ), then the set becomes a symmetric

hyperbolic system. This is done by adding ᾱ3γ
il(∂lλa) to the equation of ∂t Ẽ

i
a , and by adding

iᾱ1ε
a
c
dẼc

i Ẽ
l
d (∂lλ)+ ᾱ2(−eγ lmẼa

i +eδm
i Ẽla)(∂lλm) to the equation of ∂tAa

i . The final principal
part is then written as

∂t













Ẽi
a

Aa
i

λ

λi

λa













∼=

















Ml
a
bi

j 0 0 0 ᾱ3γ
ilδa

b

0 N l a
i b

j iᾱ1ε
a
c
dẼc

i Ẽ
l
d ᾱ2e(δ

j
i Ẽ

la − γ lj Ẽa
i ) 0

0 −iα1εb
cdẼ

j
c Ẽl

d 0 0 0

0 α2e(δ
j
i Ẽ

l
b − δl

i Ẽ
j
b ) 0 0 0

α3δ
b
aδ

l
j 0 0 0 0

















×∂l













Ẽ
j
b

Ab
j

λ

λj

λb













, (2.32)

where

Mlabij = iεabcN
∼
Ẽl

cγ
ij + Nlγ ijδab, (2.33)

N labij = iN
∼
(εabcẼj

c γ li − εabcẼl
cγ

ji − e−2ẼiaεbcdẼj
c Ẽl

d − e−2εacdẼi
d Ẽ

l
cẼ

jb

+e−2εacdẼi
d Ẽ

j
c Ẽlb) + Nlδabγ ij . (2.34)

Clearly, the solution (Ẽi
a, Aa

i , λ, λi , λa) = (Ẽi
a, Aa

i , 0, 0, 0) represents the original
solution of the Ashtekar system.
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a, Aa

i , 0, 0, 0) represents the original
solution of the Ashtekar system.

448 G Yoneda and H Shinkai

We introduce new variables (λ, λi , λa), obeying the dissipative evolution equations,

∂tλ = α1 CH − β1 λ, (2.26)

∂tλi = α2 C̃Mi − β2 λi , (2.27)

∂tλa = α3 CGa − β3 λa, (2.28)

where αi "= 0 (possibly complex) and βi > 0 (real) are constants.
If we take yα := (Ẽi
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Ẽl

cγ
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N labij = iN
∼
(εabcẼj
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cẼ
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a, Aa

i , 0, 0, 0) represents the original
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Figure 3. Demonstration of the λ system in the Ashtekar equation. We plot the violation of the
constraint (the L2 norm of the Hamiltonian constraint equation, CH ) for the cases of plane-wave
propagation under the periodic boundary. To see the effect more clearly, we added an artificial error
at t = 6. Part (a) shows how the system goes bad depending on the amplitude of artificial error.
The error was of the form A2

y → A2
y(1 + error). All the curves are of the evolution of Ashtekar’s

original equation (no λ system). Part (b) shows the effect of the λ system. All the curves have
20% error amplitude, but show the difference of the evolution equations. The full curve is for
Ashtekar’s original equation (the same as in (a)), the dotted curve is for the strongly hyperbolic
Ashtekar equation. Other curves are of λ systems, which produce a better performance than that
of the strongly hyperbolic system.



Idea of “Adjusted system” and Our Conjecture
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General Procedure

1. prepare a set of evolution eqs. ∂tua = f(ua, ∂bua, · · ·)

2. add constraints in RHS ∂tua = f(ua, ∂bua, · · ·) +F (Ca, ∂bC
a, · · ·)

︸ ︷︷ ︸

3. choose appropriate F (Ca, ∂bCa, · · ·)
to make the system stable evolution

How to specify F (Ca, ∂bCa, · · ·) ?

4. prepare constraint propagation eqs. ∂tCa = g(Ca, ∂bCa, · · ·)

5. and its adjusted version ∂tCa = g(Ca, ∂bCa, · · ·) +G(Ca, ∂bC
a, · · ·)

︸ ︷︷ ︸

6. Fourier transform and evaluate eigenvalues ∂tĈk = A(Ĉa)
︸ ︷︷ ︸

Ĉk

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation eqs.
If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more stable.



Example: the Maxwell equations

Yoneda HS, CQG 18 (2001) 441

Maxwell evolution equations.

∂tEi = cεi
jk∂jBk + Pi CE + Qi CB,

∂tBi = −cεi
jk∂jEk + Ri CE + Si CB,

CE = ∂iE
i ≈ 0, CB = ∂iB

i ≈ 0,






sym. hyp ⇔ Pi = Qi = Ri = Si = 0,
strongly hyp ⇔ (Pi − Si)2 + 4RiQi > 0,
weakly hyp ⇔ (Pi − Si)2 + 4RiQi ≥ 0

Constraint propagation equations

∂tCE = (∂iP
i)CE + P i(∂iCE) + (∂iQ

i)CB + Qi(∂iCB),

∂tCB = (∂iR
i)CE + Ri(∂iCE) + (∂iS

i)CB + Si(∂iCB),





sym. hyp ⇔ Qi = Ri,
strongly hyp ⇔ (Pi − Si)2 + 4RiQi > 0,
weakly hyp ⇔ (Pi − Si)2 + 4RiQi ≥ 0

CAFs?

∂t




ĈE

ĈB



 =



∂iP i + P iki ∂iQi + Qiki

∂iRi + Riki ∂iSi + Siki



 ∂l




ĈE

ĈB



 ≈



P iki Qiki

Riki Siki








ĈE

ĈB



 =: T



ĈE

ĈB





⇒ CAFs = (P iki + Siki ±
√
(P iki + Siki)2 + 4(QikiRjkj − P ikiSjkj))/2

Therefore CAFs become negative-real when

P iki + Siki < 0, and QikiR
jkj − P ikiS

jkj < 0



Adjusted-Maxwell system works as well.
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Numerical relativity, an approach to solving the Einstein equations numerically, is supposed
to be the only way to study highly nonlinear gravitational phenomena. Although the attempt
already has decades of history, we still do not have a definite recipe for integrating the Einstein
equations that will give us accurate and long-term stable time evolutions. Here and hereafter,
we mean by ‘stable evolution’ that the system keeps the violation of the constraints within a
suitable small value in its free numerical evolution.
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a symmetric hyperbolic system (e.g. [2–5, 10]). We believe, however, that the above guidelines
yield the essential mechanism for our purpose of constructing a stable dynamical system.

In the following subsections and appendix A, we demonstrate that this adjusted system
actually works as desired in the Maxwell system and in the Ashtekar system of the Einstein
equations, in which the above two guidelines are applied, respectively.

3.2. Example 1: Maxwell equations

3.2.1. Adjusted system. Here we again consider the Maxwell equations (2.9)–(2.11). We
start from the adjusted dynamical equations

∂tEi = cεi
jk∂jBk + PiCE + pj

i(∂jCE) + QiCB + qj
i(∂jCB), (3.7)

∂tBi = −cεi
jk∂jEk + RiCE + rj

i(∂jCE) + SiCB + sj
i(∂jCB), (3.8)

where P, Q, R, S, p, q, r and s are multipliers. These dynamical equations adjust the
constraint propagation equations as

∂tCE = (∂iP
i)CE + P i(∂iCE) + (∂iQ

i)CB + Qi(∂iCB)

+(∂ip
ji)(∂jCE) + pji(∂i∂jCE) + (∂iq

ji)(∂jCB) + qji(∂i∂jCB), (3.9)

∂tCB = (∂iR
i)CE + Ri(∂iCE) + (∂iS

i)CB + Si(∂iCB)

+(∂i r
ji)(∂jCE) + rji(∂i∂jCE) + (∂i s

ji)(∂jCB) + sji(∂i∂jCB). (3.10)

This will be expressed using Fourier components by

∂t

(

ĈE

ĈB

)

=
(

∂iP
i + iP iki + ikj (∂ip

ji) − kikjp
ji ∂iQ

i + iQiki + ikj (∂iq
ji) − kikjq

ji

∂iR
i + iRiki + ikj (∂i r

ji) − kikj r
ji ∂iS

i + iSiki + ikj (∂i s
ji) − kikj s

ji

)

×
(

ĈE

ĈB

)

=: T

(

ĈE

ĈB

)

. (3.11)

Assuming the multipliers are constants or functions of E and B, we can truncate the principal
matrix as

(0)T =
(

iP iki − kikjp
ji iQiki − kikjq

ji

iRiki − kikj r
ji iSiki − kikj s

ji

)

, (3.12)

with eigenvalues

#± = p + s ±
√

p2 + 4 q r − 2 p s + s2

2
, (3.13)

where p := iP iki − kikjp
ji, q := iQiki − kikjq

ji, r := iRiki − kikj r
ji , s := iSiki − kikj s

ji .

If we fix q = r = 0, then #± = p, s. Furthermore, if we assume pji, sji > 0, and
set everything else to zero, then #± < 0, that is we can get all the eigenvalues which have a
negative real part. That is, our guideline (a) is satisfied. (Conversely, if we choose q = r = 0
and pji, sji < 0, then #± > 0.)

3.2.2. Numerical demonstration. We applied the above adjusted system to the same wave
propagation problem as in section 2.2.3. For simplicity, we fix κ = pij = sij and set other
multipliers equal to zero. In figure 4, we show the L2 norm of the constraint violation as a
function of time, with various κ . As was expected, we see better performance for κ > 0 (of
the system with a negative real part of the constraint propagation equation), while diverging
behaviour for κ < 0 (of the system with a positive real part of the constraint propagation
equation).

Hyperbolic formulations and numerical relativity: II 455

Figure 4. Demonstrations of the adjusted system in the Maxwell equation. We perform the same
experiments with section 2.2.3 (figure 1). Constraint violation (L2 norm of CE ) versus time are
plotted for various κ (= pj

i = sj
i ). We see that κ > 0 gives a better performance (i.e. negative

real part eigenvalues for the constraint propagation equation), while excessively large positive κ
makes the system divergent again.

3.3. Example 2: Einstein equations (Ashtekar equations)

3.3.1. Adjusted system for controlling constraint violations. Here we only consider the
adjusted system which controls the departures from the constraint surface. In the appendix,
we present an advanced system which controls the violation of the reality condition together
with a numerical demonstration.

Even if we restrict ourselves to adjusted equations of motion for (Ẽi
a, Aa

i ) with constraint
terms (no adjustment with derivatives of constraints), generally, we could adjust them as

∂t Ẽ
i
a = −iDj (ε

cb
aN∼ Ẽj

c Ẽi
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0ε
c

ab Ẽi
c + Xi

aCH + Y ij
a CMj + P ib

a CGb,

(3.14)

∂tAa
i = −iεab

cN∼ Ẽ
j
bF c

ij + NjF a
ji + DiAa

0 + $N
∼
Ẽa

i + Qa
i CH + Ri

jaCMj + Zab
i CGb, (3.15)

where Xi
a, Y

ij
a , Zab

i , P ib
a , Qa

i and R
aj
i are multipliers. However, in order to simplify the

discussion, we restrict multipliers so as to reproduce the symmetric hyperbolic equations
of motion [10, 11], i.e.

X = Y = Z = 0,

P ib
a = κ1(N

iδb
a + iN

∼
εa

bcẼi
c),

Qa
i = κ2(e

−2N
∼
Ẽa

i ),

Ri
ja = κ3(ie−2N

∼
εac

bẼ
b
i Ẽ

j
c ).

(3.16)



Example: the Ashtekar equations
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Adjusted dynamical equations:

∂tẼ
i
a = −iDj(ε

cb
aN∼ Ẽj

c Ẽ
i
b) + 2Dj(N

[jẼi]
a ) + iAb

0ε
c

ab Ẽi
c +Xi

aCH + Y ij
a CMj + P ib

a CGb︸ ︷︷ ︸
adjust

∂tAa
i = −iεab

cN∼ Ẽj
bF

c
ij + NjFa

ji + DiAa
0 + ΛN∼ Ẽa

i +Qa
iCH + Raj

i CMj + Zab
i CGb︸ ︷︷ ︸

adjust

Adjusted and linearized:

X = Y = Z = 0, P ia
b = κ1(iNiδa

b ), Qa
i = κ2(e−2N∼ Ẽa

i ), Raj
i = κ3(−ie−2N∼ ε

ac
dẼd

i Ẽ
j
c )

Fourier transform and extract 0th order of the characteristic matrix:

∂t





ĈH

ĈMi

ĈGa




=





0 i(1 + 2κ3)kj 0
i(1 − 2κ2)ki κ3εkj

ikk 0
0 2κ3δj

a 0









ĈH

ĈMj

ĈGb





Eigenvalues:
(

0, 0, 0,±κ3

√

−kx2 − ky2 − kz2,±
√

(−1 + 2κ2)(1 + 2κ3)(kx2 + ky2 + kz2)
)

In order to obtain non-positive real eigenvalues:

(−1 + 2κ2)(1 + 2κ3) < 0



Adjusted-Ashtekar system works as well.
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Abstract
We study asymptotically constrained systems for numerical integration of the
Einstein equations, which are intended to be robust against perturbative errors
for the free evolution of the initial data. First, we examine the previously
proposed ‘λ system’, which introduces artificial flows to constraint surfaces
based on the symmetric hyperbolic formulation. We show that this system
works as expected for the wave propagation problem in the Maxwell system
and in general relativity using Ashtekar’s connection formulation. Second, we
propose a new mechanism to control the stability, which we call the ‘adjusted
system’. This is simply obtained by adding constraint terms in the dynamical
equations and adjusting their multipliers. We explain why a particular choice
of multiplier reduces the numerical errors from non-positive or pure-imaginary
eigenvalues of the adjusted constraint propagation equations. This ‘adjusted
system’ is also tested in the Maxwell system and in the Ashtekar system. This
mechanism affects more than the system’s symmetric hyperbolicity.

PACS numbers: 0420C, 0425, 0425D

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Numerical relativity, an approach to solving the Einstein equations numerically, is supposed
to be the only way to study highly nonlinear gravitational phenomena. Although the attempt
already has decades of history, we still do not have a definite recipe for integrating the Einstein
equations that will give us accurate and long-term stable time evolutions. Here and hereafter,
we mean by ‘stable evolution’ that the system keeps the violation of the constraints within a
suitable small value in its free numerical evolution.
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Figure 5. Demonstration of the adjusted system in the Ashtekar equation. We plot the violation of
the constraint for the same model as figure 3(b). An artificial error term was added at t = 6, in the
form of A2

y → A2
y(1 + error), where error is + 20% as before. (a), (b) L2 norm of the Hamiltonian

constraint equation, CH , and momentum constraint equation, CMx , respectively. The full curve is
the case of κ = 0, that is the case of ‘no adjusted’ original Ashtekar equation (weakly hyperbolic
system). The dotted curve is for κ = 1, equivalent to the symmetric hyperbolic system. We see
that the other curve (κ = 2.0) shows better performance than the symmetric hyperbolic case.

Hyperbolic formulations and numerical relativity: II 455

Figure 4. Demonstrations of the adjusted system in the Maxwell equation. We perform the same
experiments with section 2.2.3 (figure 1). Constraint violation (L2 norm of CE ) versus time are
plotted for various κ (= pj

i = sj
i ). We see that κ > 0 gives a better performance (i.e. negative

real part eigenvalues for the constraint propagation equation), while excessively large positive κ
makes the system divergent again.

3.3. Example 2: Einstein equations (Ashtekar equations)

3.3.1. Adjusted system for controlling constraint violations. Here we only consider the
adjusted system which controls the departures from the constraint surface. In the appendix,
we present an advanced system which controls the violation of the reality condition together
with a numerical demonstration.

Even if we restrict ourselves to adjusted equations of motion for (Ẽi
a, Aa

i ) with constraint
terms (no adjustment with derivatives of constraints), generally, we could adjust them as

∂t Ẽ
i
a = −iDj (ε

cb
aN∼ Ẽj

c Ẽi
b) + 2Dj (N

[j Ẽi]
a ) + iAb

0ε
c

ab Ẽi
c + Xi

aCH + Y ij
a CMj + P ib

a CGb,

(3.14)

∂tAa
i = −iεab

cN∼ Ẽ
j
bF c

ij + NjF a
ji + DiAa

0 + $N
∼
Ẽa

i + Qa
i CH + Ri

jaCMj + Zab
i CGb, (3.15)

where Xi
a, Y

ij
a , Zab

i , P ib
a , Qa

i and R
aj
i are multipliers. However, in order to simplify the

discussion, we restrict multipliers so as to reproduce the symmetric hyperbolic equations
of motion [10, 11], i.e.

X = Y = Z = 0,

P ib
a = κ1(N

iδb
a + iN

∼
εa

bcẼi
c),

Qa
i = κ2(e

−2N
∼
Ẽa

i ),

Ri
ja = κ3(ie−2N

∼
εac

bẼ
b
i Ẽ

j
c ).

(3.16)



The Adjusted system (essentials):

Purpose: Control the violation of constraints by reformulating the system so as to have a
constrained surface an attractor.

Procedure: Add a particular combination of constraints to the evolution equations, and adjust
its multipliers.

Theoretical support: Eigenvalue analysis of the constraint propagation equations.

Advantages: Available even if the base system is not a symmetric hyperbolic.

Advantages: Keep the number of the variable same with the original system.

Conjecture on Constraint Amplification Factors (CAFs):

(A) If CAF has a negative real-part (the constraints are forced to be diminished), then we see more
stable evolution than a system which has positive CAF.

(B) If CAF has a non-zero imaginary-part (the constraints are propagating away), then we see more
stable evolution than a system which has zero CAF.



Adjusted ADM systems

PRD 63 (2001) 120419, CQG 19 (2002) 1027

We adjust the standard ADM system using constraints as:

∂tγij = −2αKij + ∇iβj + ∇jβi, (1)

+PijH + Qk
ijMk + pk

ij(∇kH) + qkl
ij(∇kMl), (2)

∂tKij = αR(3)
ij + αKKij − 2αKikK

k
j −∇i∇jα + (∇iβ

k)Kkj + (∇jβ
k)Kki + βk∇kKij,(3)

+RijH + Sk
ijMk + rk

ij(∇kH) + skl
ij(∇kMl), (4)

with constraint equations

H := R(3) + K2 − KijK
ij, (5)

Mi := ∇jK
j
i −∇iK. (6)

We can write the adjusted constraint propagation equations as

∂tH = (original terms) + Hmn
1 [(2)] + Himn

2 ∂i[(2)] + Hijmn
3 ∂i∂j[(2)] + Hmn

4 [(4)], (7)

∂tMi = (original terms) + M1i
mn[(2)] + M2i

jmn∂j[(2)] + M3i
mn[(4)] + M4i

jmn∂j[(4)].(8)



Original ADM The original construction by ADM uses the pair of (hij, πij).

L =
√
−gR =

√
hN [(3)R − K2 + KijK

ij], where Kij =
1

2
£nhij

then πij =
∂L
∂ḣij

=
√

h(Kij − Khij),

The Hamiltonian density gives us constraints and evolution eqs.

H = πijḣij − L =
√

h
{
NH(h, π) − 2NjMj(h, π) + 2Di(h

−1/2Njπ
ij)

}
,






∂thij =
δH
δπij

= 2
N√
h

(πij −
1

2
hijπ) + 2D(iNj),

∂tπij = − δH
δhij

= −
√

hN((3)Rij − 1

2
(3)Rhij) +

1

2

N√
h
hij(πmnπ

mn − 1

2
π2) − 2

N√
h

(πinπn
j − 1

2
ππij)

+
√

h(DiDjN − hijDmDmN) +
√

hDm(h−1/2Nmπij) − 2πm(iDmNj)

Standard ADM (by York) NRists refer ADM as the one by York with a pair of (hij, Kij).





∂thij = −2NKij + DjNi + DiNj,
∂tKij = N( (3)Rij + KKij) − 2NKilKl

j − DiDjN + (DjNm)Kmi + (DiNm)Kmj + NmDmKij

In the process of converting, H was used, i.e. the standard ADM has already adjusted.



3 Constraint propagation of ADM systems

3.1 Original ADM vs Standard ADM

Try the adjustment Rij = κ1αγij and other multiplier zero, where κ1 =






0 the standard ADM
−1/4 the original ADM

• The constraint propagation eqs keep the first-order form (cf Frittelli, PRD55(97)5992):

∂t




H
Mi



 "



βl −2αγjl

−(1/2)αδl
i + Rl

i − δl
iR βlδj

i



 ∂l




H
Mj



 . (5)

The eigenvalues of the characteristic matrix:

λl = (βl, βl, βl ±
√

α2γll(1 + 4κ1))

The hyperbolicity of (5):






symmetric hyperbolic when κ1 = 3/2
strongly hyperbolic when α2γll(1 + 4κ1) > 0
weakly hyperbolic when α2γll(1 + 4κ1) ≥ 0

• On the Minkowskii background metric, the linear order terms of the Fourier-transformed
constraint propagation equations gives the eigenvalues

Λl = (0, 0,±
√

−k2(1 + 4κ1)).

That is,






(two 0s, two pure imaginary) for the standard ADM BETTER STABILITY
(four 0s) for the original ADM



Comparisons of Adjusted ADM systems (Teukolsky wave)
3-dim, harmonic slice, periodic BC HS original Cactus/GR code
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Figure 1: Violation of Hamiltonian constraints versus time: Adjusted ADM systems applied for Teukolsky wave initial data evolution
with harmonic slicing, and with periodic boundary condition. Cactus/GR/evolveADMeq code was used. Grid = 243, ∆x = 0.25, iterative
Crank-Nicholson method.



4 Constraint propagations in spherically symmetric spacetime

4.1 The procedure

The discussion becomes clear if we expand the constraint Cµ := (H,Mi)T using vector harmonics.

Cµ =
∑

l,m

(
Alm(t, r)alm(θ, ϕ) + Blmblm + Clmclm + Dlmdlm

)
, (1)

where we choose the basis of the vector harmonics as

alm =





Ylm

0
0
0





, blm =





0
Ylm

0
0





, clm =
r

√
l(l + 1)





0
0

∂θYlm

∂ϕYlm





, dlm =
r

√
l(l + 1)





0
0

− 1
sin θ∂ϕYlm

sin θ ∂θYlm





.

The basis are normalized so that they satisfy

〈Cµ, Cν〉 =
∫ 2π

0
dϕ

∫ π

0
C∗

µCρ ηνρ sin θdθ,

where ηνρ is Minkowskii metric and the asterisk denotes the complex conjugate. Therefore

Alm = 〈alm
(ν), Cν〉, ∂tA

lm = 〈alm
(ν), ∂tCν〉, etc.

We also express these evolution equations using the Fourier expansion on the radial coordinate,

Alm =
∑

k
Âlm

(k)(t) eikr etc. (2)

So that we will be able to obtain the RHS of the evolution equations for (Âlm
(k)(t), · · · , D̂lm

(k)(t))
T

in a homogeneous form.



4.2 Constraint propagations in Schwarzschild spacetime

1. the standard Schwarzschild coordinate

ds2 = −(1 − 2M

r
)dt2 +

dr2

1 − 2M/r
+ r2dΩ2, (the standard expression)

2. the isotropic coordinate, which is given by, r = (1 + M/2riso)2riso:

ds2 = −(
1 − M/2riso

1 + M/2riso
)2dt2 + (1 +

M

2riso
)4[dr2

iso + r2
isodΩ2], (the isotropic expression)

3. the ingoing Eddington-Finkelstein (iEF) coordinate, by tiEF = t + 2M log(r − 2M) :

ds2 = −(1 − 2M

r
)dt2iEF +

4M

r
dtiEFdr + (1 +

2M

r
)dr2 + r2dΩ2 (the iEF expression)

4. the Painlevé-Gullstrand (PG) coordinates,

ds2 = −


1 − 2 M

r



 dt2PG + 2

√√√√√
2 M

r
dtPG dr + dr2 + r2dΩ2 , (the PG expression)

which is given by tPG = t +
√

8Mr − 2M log{(
√
r/2M + 1)/(

√
r/2M − 1)}



Example 1: standard ADM vs original ADM (in Schwarzschild coordinate)
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Figure 1: Amplification factors (AFs, eigenvalues of homogenized constraint propagation equations) are shown for the standard
Schwarzschild coordinate, with (a) no adjustments, i.e., standard ADM, (b) original ADM (κF = −1/4). The solid lines and
the dotted lines with circles are real parts and imaginary parts, respectively. They are four lines each, but actually the two
eigenvalues are zero for all cases. Plotting range is 2 < r ≤ 20 using Schwarzschild radial coordinate. We set k = 1, l = 2, and
m = 2 throughout the article.

∂tγij = −2αKij + ∇iβj + ∇jβi,

∂tKij = αR(3)
ij + αKKij − 2αKikK

k
j −∇i∇jα + (∇iβ

k)Kkj + (∇jβ
k)Kki + βk∇kKij + κFαγijH,



Example 2: Detweiler-type adjusted (in Schwarzschild coord.)

-1

-0.5

0

0.5

1

0 5 1 0 1 5 2 0

Detweiler type, !
L
 = + 1/2

(b)

R
e

a
l 

/ 
Im

a
g

in
a

ry
  

p
a

rt
s
 o

f 
E

ig
e

n
v
a

lu
e

s
 (

A
F

)

r
sch

-1

-0.5

0

0.5

1

0 5 1 0 1 5 2 0

Detweiler type, !
L
 = - 1/2

R
e

a
l 

/ 
Im

a
g

in
a

ry
  

p
a

rt
s
 o

f 
E

ig
e

n
v
a

lu
e

s
 (

A
F

)

(c)

r
sch

Figure 2: Amplification factors of the standard Schwarzschild coordinate, with Detweiler type adjustments. Multipliers used in
the plot are (b) κL = +1/2, and (c) κL = −1/2.

∂tγij = (original terms) + PijH,

∂tKij = (original terms) + RijH + Sk
ijMk + skl

ij(∇kMl),

where Pij = −κLα3γij, Rij = κLα3(Kij − (1/3)Kγij),

Sk
ij = κLα2[3(∂(iα)δk

j) − (∂lα)γijγ
kl], skl

ij = κLα3[δk
(iδ

l
j) − (1/3)γijγ

kl],



Detweiler’s criteria vs Our criteria

• Detweiler calculated the L2 norm of the constraints, Cα, over the 3-hypersurface and imposed
its negative definiteness of its evolution,

Detweiler’s criteria ⇔ ∂t

∫ ∑

α
C2

α dV < 0,

This is rewritten by supposing the constraint propagation to be ∂tĈα = Aα
βĈβ in the Fourier

components,

⇔ ∂t

∫ ∑

α
Ĉα

¯̂Cα dV =
∫ ∑

α
Aα

βĈβ
¯̂Cα + ĈαĀα

β ¯̂Cβ dV < 0, ∀ non zero Ĉα

⇔ eigenvalues of (A + A†) are all negative for ∀k.

• Our criteria is that the eigenvalues of A are all negative. Therefore,

Our criteria # Detweiler’s criteria

• We remark that Detweiler’s truncations on higher order terms in C-norm corresponds our
perturbative analysis, both based on the idea that the deviations from constraint surface (the
errors expressed non-zero constraint value) are initially small.



Constraint propagation of ADM systems

(2) Detweiler’s system

Detweiler’s modification to ADM [PRD35(87)1095] can be realized in our notation as:

Pij = −Lα3γij,

Rij = Lα3(Kij − (1/3)Kγij),

Sk
ij = Lα2[3(∂(iα)δk

j) − (∂lα)γijγ
kl],

skl
ij = Lα3[2δk

(iδ
l
j) − (1/3)γijγ

kl], and else zero, where L is a constant.

• This adjustment does not make constraint propagation equation in the first order form, so
that we can not discuss the hyperbolicity nor the characteristic speed of the constraints.

• For the Minkowskii background spacetime, the adjusted constraint propagation equations
with above choice of multiplier become

∂tH = −2(∂jMj) + 4L(∂j∂jH),

∂tMi = −(1/2)(∂iH) + (L/2)(∂k∂kMi) + (L/6)(∂i∂kMk).

Constraint Amp. Factors (the eigenvalues of their Fourier expression) are

Λl = (−(L/2)k2(multiplicity 2),−(7L/3)k2 ± (1/3)
√

k2(−9 + 25L2k2).)

This indicates negative real eigenvalues if we chose small positive L.



Example 3: standard ADM (in isotropic/iEF coord.)
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Figure 3: Comparison of amplification factors between different coordinate expressions for the standard ADM formulation (i.e.
no adjustments). Fig. (a) is for the isotropic coordinate (1), and the plotting range is 1/2 ≤ riso. Fig. (b) is for the iEF
coordinate (1) and we plot lines on the t = 0 slice for each expression. The solid four lines and the dotted four lines with circles
are real parts and imaginary parts, respectively.



Example 4: Detweiler-type adjusted (in iEF/PG coord.)
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Figure 4: Similar comparison for Detweiler adjustments. κL = +1/2 for all plots.



“Einstein equations” are time-reversal invariant. So ...

Why all negative amplification factors (AFs) are available?

Explanation by the time-reversal invariance (TRI)

• the adjustment of the system I,

adjust term to ∂t︸︷︷︸
(−)

Kij︸ ︷︷ ︸
(−)

= κ1 α︸︷︷︸
(+)

γij︸︷︷︸
(+)

H︸︷︷︸
(+)

preserves TRI. ... so the AFs remain zero (unchange).

• the adjustment by (a part of) Detweiler

adjust term to ∂t︸︷︷︸
(−)

γij︸︷︷︸
(+)

= −L α︸︷︷︸
(+)

γij︸︷︷︸
(+)

H︸︷︷︸
(+)

violates TRI. ... so the AFs can become negative.

Therefore

We can break the time-reversal invariant feature of the “ADM equations”.



Adjusted ADM systems

PRD 63 (2001) 120419, CQG 19 (2002) 1027

We adjust the standard ADM system using constraints as:

∂tγij = −2αKij + ∇iβj + ∇jβi, (1)

+PijH + Qk
ijMk + pk

ij(∇kH) + qkl
ij(∇kMl), (2)

∂tKij = αR(3)
ij + αKKij − 2αKikK

k
j −∇i∇jα + (∇iβ

k)Kkj + (∇jβ
k)Kki + βk∇kKij,(3)

+RijH + Sk
ijMk + rk

ij(∇kH) + skl
ij(∇kMl), (4)

with constraint equations

H := R(3) + K2 − KijK
ij, (5)

Mi := ∇jK
j
i −∇iK. (6)

We can write the adjusted constraint propagation equations as

∂tH = (original terms) + Hmn
1 [(2)] + Himn

2 ∂i[(2)] + Hijmn
3 ∂i∂j[(2)] + Hmn

4 [(4)], (7)

∂tMi = (original terms) + M1i
mn[(2)] + M2i

jmn∂j[(2)] + M3i
mn[(4)] + M4i

jmn∂j[(4)].(8)
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Table 3. List of adjustments we tested in the Schwarzschild spacetime. The column of adjustments are nonzero multipliers in terms of (13) and (14). The column ‘1st?’ and ‘TRS’ are
the same as in table 1. The effects to amplification factors (when κ > 0) are commented for each coordinate system and for real/imaginary parts of AFs, respectively. The ‘N/A’ means
that there is no effect due to the coordinate properties; ‘not apparent’ means the adjustment does not change the AFs effectively according to our conjecture; ‘enl./red./min.’ means
enlarge/reduce/minimize, and ‘Pos./Neg.’ means positive/negative, respectively. These judgements are made at the r ∼ O(10M) region on their t = 0 slice.

Schwarzschild/isotropic coordinates iEF/PG coordinates
No in

No table 1 Adjustment 1st? TRS Real Imaginary Real Imaginary

0 0 – no adjustments yes – – – – –
P-1 2-P Pij −κLα3γij no no makes 2 Neg. not apparent makes 2 Neg. not apparent
P-2 3 Pij −κLαγij no no makes 2 Neg. not apparent makes 2 Neg. not apparent
P-3 – Pij Prr = −κ or Prr = −κα no no slightly enl.Neg. not apparent slightly enl.Neg. not apparent
P-4 – Pij −κγij no no makes 2 Neg. not apparent makes 2 Neg. not apparent
P-5 – Pij −κγrr no no red. Pos./enl.Neg. not apparent red.Pos./enl.Neg. not apparent
Q-1 – Qk

ij καβkγij no no N/A N/A κ ∼ 1.35 min. vals. not apparent
Q-2 – Qk

ij Qr
rr = κ no yes red. abs vals. not apparent red. abs vals. not apparent

Q-3 – Qk
ij Qr

ij = κγij or Qr
ij = καγij no yes red. abs vals. not apparent enl.Neg. enl. vals.

Q-4 – Qk
ij Qr

rr = κγrr no yes red. abs vals. not apparent red. abs vals. not apparent
R-1 1 Rij κF αγij yes yes κF = −1/4 min. abs vals. κF = −1/4 min. vals.
R-2 4 Rij Rrr = −κµα or Rrr = −κµ yes no not apparent not apparent red.Pos./enl.Neg. enl. vals.
R-3 – Rij Rrr = −κγrr yes no enl. vals. not apparent red.Pos./enl.Neg. enl. vals.
S-1 2-S Sk

ij κLα2[3(∂(iα)δk
j) − (∂lα)γijγ

kl ] yes no not apparent not apparent not apparent not apparent

S-2 – Sk
ij καγ lk(∂lγij ) yes no makes 2 Neg. not apparent makes 2 Neg. not apparent

p-1 – pk
ij pr

ij = −καγij no no red. Pos. red. vals. red. Pos. enl. vals.
p-2 – pk

ij pr
rr = κα no no red. Pos. red. vals. red.Pos/enl.Neg. enl. vals.

p-3 – pk
ij pr

rr = καγrr no no makes 2 Neg. enl. vals. red. Pos. vals. red. vals.
q-1 – qkl

ij qrr
ij = καγij no no κ = 1/2 min. vals. red. vals. not apparent enl. vals.

q-2 – qkl
ij qrr

rr = −καγrr no yes red. abs vals. not apparent not apparent not apparent
r-1 – rk

ij rr
ij = καγij no yes not apparent not apparent not apparent enl. vals.

r-2 – rk
ij rr

rr = −κα no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
r-3 – rk

ij rr
rr = −καγrr no yes red. abs vals. enl. vals. red. abs vals. enl. vals.

s-1 2-s skl
ij κLα3[δk

(iδ
l
j) − (1/3)γij γ kl ] no no makes 4 Neg. not apparent makes 4 Neg. not apparent

s-2 – skl
ij srr

ij = −καγij no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.
s-3 – skl

ij srr
rr = −καγrr no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.



Numerical Tests (method)
• Cactus-based original “GR” code
  http://www.cactuscode.org/
  [CactusBase+CactusPUGH+GR]

• 3+1dim，linear wave evolution
(Teukolsky wave)

• harmonic slice
• periodic boundary, [-3,+3]
• iterative Crank-Nicholson method
• 12^3, 24^3, 48^3, 96^3

Towards standard testbeds for numerical relativity
Mexico Numerical Relativity Workshop 2002 Participants
CQG 21 (2004) 589-613



Numerical Tests (Detweiler-type)
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Numerical Tests (Simplified Detweiler)
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Numerical Tests (Detweiler, k-adjust)
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Numerical Tests (Detweiler, k-adjust)
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Numerical Tests (Detweiler, k-adjust)
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strategy 1 Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)

M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995)
T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)

The popular approach. Nakamura’s idea in 1980s.
BSSN is a tricky nickname. BS (1999) introduced a paper of SN (1995).

• define new set of variables (φ, γ̃ij,K,Ãij ,Γ̃i), instead of the ADM’s (γij,Kij) where

γ̃ij ≡ e−4φγij, Ãij ≡ e−4φ(Kij − (1/3)γijK), Γ̃i ≡ Γ̃i
jkγ̃

jk,

and impose detγ̃ij = 1 during the evolutions.

• The set of evolution equations become

(∂t − Lβ)φ = −(1/6)αK,

(∂t − Lβ)γ̃ij = −2αÃij,

(∂t − Lβ)K = αÃijÃ
ij + (1/3)αK2 − γij(∇i∇jα),

(∂t − Lβ)Ãij = −e−4φ(∇i∇jα)TF + e−4φαR(3)
ij − e−4φα(1/3)γijR

(3) + α(KÃij − 2ÃikÃ
k
j)

∂tΓ̃
i = −2(∂jα)Ãij − (4/3)α(∂jK)γ̃ij + 12αÃji(∂jφ) − 2αÃk

j(∂jγ̃
ik) − 2αΓ̃k

ljÃ
j
kγ̃

il

−∂j

(

βk∂kγ̃
ij − γ̃kj(∂kβ

i) − γ̃ki(∂kβ
j) + (2/3)γ̃ij(∂kβ

k)
)

Momentum constraint was used in Γi-eq.



• Calculate Riemann tensor as

Rij = ∂kΓ
k
ij − ∂iΓ

k
kj + Γm

ijΓ
k
mk − Γm

kjΓ
k
mi =: R̃ij + Rφ

ij

Rφ
ij = −2D̃iD̃jφ − 2g̃ijD̃

lD̃lφ + 4(D̃iφ)(D̃jφ) − 4g̃ij(D̃
lφ)(D̃lφ)

R̃ij = −(1/2)g̃lm∂lmg̃ij + g̃k(i∂j)Γ̃
k + Γ̃kΓ̃(ij)k + 2g̃lmΓ̃k

l(iΓ̃j)km + g̃lmΓ̃k
imΓ̃klj

• Constraints are H,Mi.
But thre are additional ones, Gi,A,S.

Hamiltonian and the momentum constraint equations

HBSSN = RBSSN + K2 − KijK
ij, (1)

MBSSN
i = MADM

i , (2)

Additionally, we regard the following three as the constraints:

Gi = Γ̃i − γ̃jkΓ̃i
jk, (3)

A = Ãijγ̃
ij, (4)

S = γ̃ − 1, (5)

Why BSSN better than ADM?
Is the BSSN best? Are there any alternatives?



Constraints in BSSN system
The normal Hamiltonian and momentum constraints

HBSSN = RBSSN + K2 − KijK
ij, (1)

MBSSN
i = MADM

i , (2)

Additionally, we regard the following three as the constraints:

Gi = Γ̃i − γ̃jkΓ̃i
jk, (3)

A = Ãijγ̃
ij, (4)

S = γ̃ − 1, (5)

Adjustments in evolution equations

∂B
t ϕ = ∂A

t ϕ + (1/6)αA− (1/12)γ̃−1(∂jS)βj, (6)

∂B
t γ̃ij = ∂A

t γ̃ij − (2/3)αγ̃ijA + (1/3)γ̃−1(∂kS)βkγ̃ij, (7)

∂B
t K = ∂A

t K − (2/3)αKA− αHBSSN + αe−4ϕ(D̃jGj), (8)

∂B
t Ãij = ∂A

t Ãij + ((1/3)αγ̃ijK − (2/3)αÃij)A + αe−4ϕ((1/2)(∂kγ̃ij) − (1/6)γ̃ijγ̃
−1(∂kS))Gk

+αe−4ϕγ̃k(i(∂j)Gk) − (1/3)αe−4ϕγ̃ij(∂kGk) (9)

∂B
t Γ̃i = ∂A

t Γ̃i − ((2/3)(∂jα)γ̃ji + (2/3)α(∂jγ̃
ji) + (1/3)αγ̃jiγ̃−1(∂jS) − 4αγ̃ij(∂jϕ))A

−(2/3)αγ̃ji(∂jA) + 2αγ̃ijMj − (1/2)(∂kβ
i)γ̃kjγ̃−1(∂jS) + (1/6)(∂jβ

k)γ̃ijγ̃−1(∂kS)

+(1/3)(∂kβ
k)γ̃ijγ̃−1(∂jS) + (5/6)βkγ̃−2γ̃ij(∂kS)(∂jS) + (1/2)βkγ̃−1(∂kγ̃

ij)(∂jS)

+(1/3)βkγ̃−1(∂jγ̃
ji)(∂kS). (10)



A Full set of BSSN constraint propagation eqs.

∂BS
t





HBS

Mi

Gi

S
A





=





A11 A12 A13 A14 A15

−(1/3)(∂iα) + (1/6)∂i αK A23 0 A25

0 αγ̃ij 0 A34 A35

0 0 0 βk(∂kS) −2αγ̃
0 0 0 0 αK + βk∂k









HBS

Mj

Gj

S
A





A11 = +(2/3)αK + (2/3)αA + βk∂k

A12 = −4e−4ϕα(∂kϕ)γ̃kj − 2e−4ϕ(∂kα)γ̃jk

A13 = −2αe−4ϕÃk
j∂k − αe−4ϕ(∂jÃkl)γ̃

kl − e−4ϕ(∂jα)A− e−4ϕβk∂k∂j − (1/2)e−4ϕβkγ̃−1(∂jS)∂k

+(1/6)e−4ϕγ̃−1(∂jβ
k)(∂kS) − (2/3)e−4ϕ(∂kβ

k)∂j

A14 = 2αe−4ϕγ̃−1γ̃lk(∂lϕ)A∂k + (1/2)αe−4ϕγ̃−1(∂lA)γ̃lk∂k + (1/2)e−4ϕγ̃−1(∂lα)γ̃lkA∂k + (1/2)e−4ϕγ̃−1βmγ̃lk∂m∂l∂k

−(5/4)e−4ϕγ̃−2βmγ̃lk(∂mS)∂l∂k + e−4ϕγ̃−1βm(∂mγ̃lk)∂l∂k + (1/2)e−4ϕγ̃−1βi(∂j∂iγ̃
jk)∂k

+(3/4)e−4ϕγ̃−3βiγ̃jk(∂iS)(∂jS)∂k − (3/4)e−4ϕγ̃−2βi(∂iγ̃
jk)(∂jS)∂k + (1/3)e−4ϕγ̃−1γ̃pj(∂jβ

k)∂p∂k

−(5/12)e−4ϕγ̃−2γ̃jk(∂kβ
i)(∂iS)∂j + (1/3)e−4ϕγ̃−1(∂kγ̃

ij)(∂jβ
k)∂i − (1/6)e−4ϕγ̃−1γ̃mk(∂k∂lβ

l)∂m

A15 = (4/9)αKA− (8/9)αK2 + (4/3)αe−4ϕ(∂i∂jϕ)γ̃ij + (8/3)αe−4ϕ(∂kϕ)(∂lγ̃
lk) + αe−4ϕ(∂j γ̃

jk)∂k

+8αe−4ϕγ̃jk(∂jϕ)∂k + αe−4ϕγ̃jk∂j∂k + 8e−4ϕ(∂lα)(∂kϕ)γ̃lk + e−4ϕ(∂lα)(∂kγ̃
lk) + 2e−4ϕ(∂lα)γ̃lk∂k

+e−4ϕγ̃lk(∂l∂kα)

A23 = αe−4ϕγ̃km(∂kϕ)(∂j γ̃mi) − (1/2)αe−4ϕΓ̃m
klγ̃

kl(∂j γ̃mi)

+(1/2)αe−4ϕγ̃mk(∂k∂j γ̃mi) + (1/2)αe−4ϕγ̃−2(∂iS)(∂jS) − (1/4)αe−4ϕ(∂iγ̃kl)(∂j γ̃
kl) + αe−4ϕγ̃km(∂kϕ)γ̃ji∂m

+αe−4ϕ(∂jϕ)∂i − (1/2)αe−4ϕΓ̃m
klγ̃

klγ̃ji∂m + αe−4ϕγ̃mkΓ̃ijk∂m + (1/2)αe−4ϕγ̃lkγ̃ji∂k∂l

+(1/2)e−4ϕγ̃mk(∂j γ̃im)(∂kα) + (1/2)e−4ϕ(∂jα)∂i + (1/2)e−4ϕγ̃mkγ̃ji(∂kα)∂m

A25 = −Ãk
i(∂kα) + (1/9)(∂iα)K + (4/9)α(∂iK) + (1/9)αK∂i − αÃk

i∂k

A34 = −(1/2)βkγ̃ilγ̃−2(∂lS)∂k − (1/2)(∂lβ
i)γ̃lkγ̃−1∂k + (1/3)(∂lβ

l)γ̃ikγ̃−1∂k − (1/2)βlγ̃in(∂lγ̃mn)γ̃mkγ̃−1∂k

+(1/2)βkγ̃ilγ̃−1∂l∂k

A35 = −(∂kα)γ̃ik + 4αγ̃ik(∂kϕ) − αγ̃ik∂k



BSSN Constraint propagation analysis in flat spacetime

• The set of the constraint propagation equations, ∂t(HBSSN,Mi,Gi,A,S)T ?

• For the flat background metric gµν = ηµν, the first order perturbation equations of (6)-(10):

∂t
(1)ϕ = −(1/6)(1)K + (1/6)κϕ

(1)A (11)

∂t
(1)γ̃ij = −2(1)Ãij − (2/3)κγ̃δij

(1)A (12)

∂t
(1)K = −(∂j∂j

(1)α) + κK1∂j
(1)Gj − κK2

(1)HBSSN (13)

∂t
(1)Ãij = (1)(RBSSN

ij )TF − (1)(D̃iD̃jα)TF + κA1δk(i(∂j)
(1)Gk) − (1/3)κA2δij(∂k

(1)Gk) (14)

∂t
(1)̃Γi = −(4/3)(∂i

(1)K) − (2/3)κΓ̃1(∂i
(1)A) + 2κΓ̃2

(1)Mi (15)

We express the adjustements as

κadj := (κϕ, κγ̃, κK1, κK2, κA1, κA2, κΓ̃1, κΓ̃2). (16)

• Constraint propagation equations at the first order in the flat spacetime:

∂t
(1)HBSSN = (κγ̃ − (2/3)κΓ̃1 − (4/3)κϕ + 2) ∂j∂j

(1)A + 2(κΓ̃2 − 1)(∂j
(1)Mj), (17)

∂t
(1)Mi = (−(2/3)κK1 + (1/2)κA1 − (1/3)κA2 + (1/2)) ∂i∂j

(1)Gj

+(1/2)κA1∂j∂j
(1)Gi + ((2/3)κK2 − (1/2)) ∂i

(1)HBSSN, (18)

∂t
(1)Gi = 2κΓ̃2

(1)Mi + (−(2/3)κΓ̃1 − (1/3)κγ̃)(∂i
(1)A), (19)

∂t
(1)S = −2κγ̃

(1)A, (20)

∂t
(1)A = (κA1 − κA2)(∂j

(1)Gj). (21)



Effect of adjustments

No. Constraints (number of components) Amplification Factors (AFs)
H (1) Mi (3) Gi (3) A (1) S (1) in Minkowskii background

0. standard ADM use use - - - (0, 0,!,!)
1. BSSN no adjustment use use use use use (0, 0, 0, 0, 0, 0, 0,!,!)
2. the BSSN use+adj use+adj use+adj use+adj use+adj (0, 0, 0,!,!,!,!,!,!)

3. no S adjustment use+adj use+adj use+adj use+adj use no difference in flat background
4. no A adjustment use+adj use+adj use+adj use use+adj (0, 0, 0,!,!,!,!,!,!)
5. no Gi adjustment use+adj use+adj use use+adj use+adj (0, 0, 0, 0, 0, 0, 0,!,!)
6. no Mi adjustment use+adj use use+adj use+adj use+adj (0, 0, 0, 0, 0, 0, 0,",") Growing modes!
7. no H adjustment use use+adj use+adj use+adj use+adj (0, 0, 0,!,!,!,!,!,!)

8. ignore Gi, A, S use+adj use+adj - - - (0, 0, 0, 0)
9. ignore Gi, A use+adj use+adj use+adj - - (0,!,!,!,!,!,!)
10. ignore Gi use+adj use+adj - use+adj use+adj (0, 0, 0, 0, 0, 0)
11. ignore A use+adj use+adj use+adj - use+adj (0, 0,!,!,!,!,!,!)
12. ignore S use+adj use+adj use+adj use+adj - (0, 0,!,!,!,!,!,!)



New Proposals :: Improved (adjusted) BSSN systems

TRS breaking adjustments

In order to break time reversal symmetry (TRS) of the evolution eqs, to adjust ∂tφ,∂tγ̃ij,∂tΓ̃i using S,Gi, or to adjust
∂tK, ∂tÃij using Ã.

∂tφ = ∂BS
t φ + κφHαHBS + κφGαD̃kGk + κφS1αS + κφS2αD̃jD̃jS

∂tγ̃ij = ∂BS
t γ̃ij + κγ̃Hαγ̃ijHBS + κγ̃G1αγ̃ijD̃kGk + κγ̃G2αγ̃k(iD̃j)Gk + κγ̃S1αγ̃ijS + κγ̃S2αD̃iD̃jS

∂tK = ∂BS
t K + κKMαγ̃jk(D̃jMk) + κKÃ1αÃ + κKÃ2αD̃jD̃jÃ

∂tÃij = ∂BS
t Ãij + κAM1αγ̃ij(D̃

kMk) + κAM2α(D̃(iMj)) + κAÃ1αγ̃ijÃ + κAÃ2αD̃iD̃jÃ
∂tΓ̃

i = ∂BS
t Γ̃i + κΓ̃HαD̃iHBS + κΓ̃G1αG

i + κΓ̃G2αD̃jD̃jGi + κΓ̃G3αD̃iD̃jGj + κΓ̃SαD̃iHBS

or in the flat background

∂ADJ
t

(1)φ = +κφH
(1)HBS + κφG∂k

(1)Gk + κφS1
(1)S + κφS2∂j∂j

(1)S
∂ADJ

t
(1)γ̃ij = +κγ̃Hδij

(1)HBS + κγ̃G1δij∂k
(1)Gk + (1/2)κγ̃G2(∂j

(1)Gi + ∂i
(1)Gj) + κγ̃S1δij

(1)S + κγ̃S2∂i∂j
(1)S

∂ADJ
t

(1)K = +κKM∂j
(1)Mj + κKÃ1

(1)Ã + κKÃ2∂j∂j
(1)Ã

∂ADJ
t

(1)Ãij = +κAM1δij∂k
(1)Mk + (1/2)κAM2(∂iMj + ∂jMi) + κAÃ1δijÃ + κAÃ2∂i∂jÃ

∂ADJ
t

(1)̃Γi = +κΓ̃H∂i
(1)HBS + κΓ̃G1

(1)Gi + κΓ̃G2∂j∂j
(1)Gi + κΓ̃G3∂i∂j

(1)Gj + κΓ̃S∂i
(1)S



Constraint Amplification Factors with each adjustment

adjustment CAFs diag? effect of the adjustment
∂tφ κφH αH (0, 0,±

√
−k2(∗3), 8κφHk2) no κφH < 0 makes 1 Neg.

∂tφ κφG αD̃kGk (0, 0,±
√
−k2(∗2), long expressions) yes κφG < 0 makes 2 Neg. 1 Pos.

∂tγ̃ij κSD αγ̃ijH (0, 0,±
√
−k2(∗3), (3/2)κSDk2) yes κSD < 0 makes 1 Neg. Case (B)

∂tγ̃ij κγ̃G1 αγ̃ijD̃kGk (0, 0,±
√
−k2(∗2), long expressions) yes κγ̃G1 > 0 makes 1 Neg.

∂tγ̃ij κγ̃G2 αγ̃k(iD̃j)Gk (0,0, (1/4)k2κγ̃G2 ±
√

k2(−1 + k2κγ̃G2/16)(∗2),
long expressions)

yes κγ̃G2 < 0 makes 6 Neg. 1 Pos. Case (E1)

∂tγ̃ij κγ̃S1 αγ̃ijS (0, 0,±
√
−k2(∗3), 3κγ̃S1) no κγ̃S1 < 0 makes 1 Neg.

∂tγ̃ij κγ̃S2 αD̃iD̃jS (0, 0,±
√
−k2(∗3),−κγ̃S2k2) no κγ̃S2 > 0 makes 1 Neg.

∂tK κKM αγ̃jk(D̃jMk)
(0, 0, 0,±

√
−k2(∗2),

(1/3)κKMk2 ± (1/3)
√

k2(−9 + k2κ2
KM))

no κKM < 0 makes 2 Neg.

∂tÃij κAM1 αγ̃ij(D̃kMk) (0, 0,±
√
−k2(∗3),−κAM1k2) yes κAM1 > 0 makes 1 Neg.

∂tÃij κAM2 α(D̃(iMj))
(0,0, −k2κAM2/4 ±

√

k2(−1 + k2κAM2/16)(∗2) ,
long expressions)

yes κAM2 > 0 makes 7 Neg Case (D)

∂tÃij κAA1 αγ̃ijA (0, 0,±
√
−k2(∗3), 3κAA1) yes κAA1 < 0 makes 1 Neg.

∂tÃij κAA2 αD̃iD̃jA (0, 0,±
√
−k2(∗3),−κAA2k2) yes κAA2 > 0 makes 1 Neg.

∂tΓ̃i κΓ̃H αD̃iH (0, 0,±
√
−k2(∗3),−κAA2k2) no κΓ̃H > 0 makes 1 Neg.

∂tΓ̃i κΓ̃G1 αGi (0, 0, (1/2)κΓ̃G1 ±
√

−k2 + κ2
Γ̃G1

(∗2) , long.) yes κΓ̃G1 < 0 makes 6 Neg. 1 Pos. Case (E2)

∂tΓ̃i κΓ̃G2 αD̃jD̃jGi (0, 0,−(1/2)κΓ̃G2 ±
√

−k2 + κ2
Γ̃G2

(∗2) , long.) yes κΓ̃G2 > 0 makes 2 Neg. 1 Pos.

∂tΓ̃i κΓ̃G3 αD̃iD̃jGj (0, 0,−(1/2)κΓ̃G3 ±
√

−k2 + κ2
Γ̃G3

(∗2) , long.) yes κΓ̃G3 > 0 makes 2 Neg. 1 Pos.

Yoneda-HS, PRD66 (2002) 124003



An Evolution of Adjusted BSSN Formulation

by Yo-Baumgarte-Shapiro, PRD 66 (2002) 084026
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∂tΓ̃
i = (· · ·) +

2

3
Γ̃iβi

,j − (χ +
2

3
)Giβj

,j χ = 2/3 for (A4)-(A8)

∂tγ̃ij = (· · ·) − καγ̃ijH κ = 0.1 ∼ 0.2 for (A5), (A6) and (A8)
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Some known fact (technical):

• Trace-out Aij at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

• “The essential improvement is in the process of replacing terms by the momentum
constraints”,

Alcubierre, et al, [PRD 62 (2000) 124011]

• Γ̃i is replaced by −∂jγ̃ij where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

• Γ̃i-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]

Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]



Some known fact (technical):

• Trace-out Aij at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

This is because A-violation affects to all other constraint violations.

• “The essential improvement is in the process of replacing terms by the momentum
constraints”,

Alcubierre, et al, [PRD 62 (2000) 124011]
This is because M-replacement in Γi equation kills the positive real eigenvalues
of CAFs. eigenvalues

• Γ̃i is replaced by −∂jγ̃ij where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

This is because G-violation affects to H,Mi-violation constraint violations.

• Γ̃i-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]

Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]
No doubt about this.



Numerical Experiments of Adjusted BSSN Systems

Kenta Kiuchi Waseda University
　　木内　健太 早稲田大学 理工学部

kiuchi@gravity.phys.waseda.ac.jp

Hisa-aki Shinkai Osaka Institute of Technology
　　真貝寿明 大阪工業大学 情報科学部

shinkai@is.oit.ac.jp

• BSSN vs adjusted BSSN Numerical tests

• gauge-wave, linear wave, and Gowdy-wave tests, proposed by the Mexico workshop 2002

• 3 adjusted BSSN systems.

• Work as Expected

– When the original BSSN system already shows satisfactory good evolutions (e.g., linear wave test),
the adjusted versions also coincide with those evolutions.

– For some cases (e.g., gauge-wave or Gowdy-wave tests) the simulations using the adjusted systems
last 10 times longer than the standard BSSN.

arXiv:0711.3575, to be published in Phys. Rev. D. (2008)



Adjusted BSSN systems; we tested

from the proposals in Yoneda & HS, Phys. Rev. D66 (2002) 124003

1. Ã-equation with the momentum constraint:

∂tÃij = ∂B
t Ãij + κAαD̃(iMj), (1)

with κA > 0 (predicted from the eigenvalue analysis).

2. γ̃-equation with G constraint:

∂tγ̃ij = ∂B
t γ̃ij + κγ̃αγ̃k(iD̃j)Gk, (2)

with κγ̃ < 0.

3. Γ̃-equation with G constraint:

∂tΓ̃
i = ∂B

t Γ̃i + κΓ̃αG
i. (3)

with κΓ̃ < 0.



Numerical Testbed Models A: Gauge-wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589

The trivial Minkowski space-time, but time-dependent tilded slice.

ds2 = −Hdt2 + Hdx2 + dy2 + dz2,

H = H(x − t) = 1 − A sin

(
2π(x − t)

d

)

,

Parameters:

• Gauge-wave parameters: d = 1 and A = 10−2

• Simulation domain: x∈[−0.5, 0.5], y = z = 0

• Grid: xi = −0.5 + (n − 1
2)dx with n = 1, · · · 50ρ, where dx = 1/(50ρ) with ρ = 2, 4, 8

• Time step: dt = 0.25dx

• Periodic boundary condition in x direction

• Gauge conditions: ∂tα = −α2K, βi = 0.

The 1D simulation is carried out for a T = 1000 crossing-time or until the code crashes, where one
crossing-time is defined by the length of the simulation domain.



Error evaluation methods

It should be emphasized that the adjustment effect has two meanings, improvement of stability and of
accuracy. Even if a simulation is stable, it does not imply that the result is accurate.

• We judge the stability of the evolution by monitoring the L2 norm of each constraint,

||δC||2(t) ≡
√

1

N

∑

x,y,z

(C(t; x, y, z))2,

where N is the total number of grid points,

• We judge the accuracy by the difference of the metric components gij(t; x, y, z) from the exact

solution g(exact)
ij (t; x, y, z),

||δgij||2(t) ≡
√

1

N

∑

x,y,z

(

gij − g(exact)
ij

)2
.



Numerical Results A: Gauge-wave test (1)

A.1 The plain BSSN system
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FIG. 1: The one-dimensional gauge-wave test with the plain BSSN system. The L2 norm of H and Mx, rescaled by ρ2/4, are plotted with a function of the crossing-time. The
amplitude of the wave is A = 0.01. The loss of convergence at the early time, near the 20 crossing-time, can be seen, and it will produce the blow-ups of the calculation in the
end.

• The poor performance of the plain BSSN system has been reported.
Jansen, Bruegmann, & Tichy, PRD 74 (2006) 084022.

• The 4th-order finite differencing scheme improves the results.
Zlochower, Baker, Campanelli, & Lousto, PRD 72 (2005) 024021.



Numerical Results A: Gauge-wave test (2)

A.2 Adjusted BSSN with Ã-equation
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FIG. 2: The one-dimensional gauge-wave test with the adjusted BSSN system in the Ã-equation (1). The L2 norm of H and Mx, rescaled by ρ2/4, are plotted with a function
of the crossing-time. The wave parameter is the same as with Fig. 1, and the adjustment parameter κA is set to κA = 0.005. We see the higher resolution runs show convergence
longer, i.e., the 300 crossing-time in H and the 200 crossing-time in Mx with ρ = 4 and 8 runs. All runs can stably evolve up to the 1000 crossing-time.

• We found that the simulation continues 10 times longer.

• Convergence behaviors are apparently improved than those of the plain BSSN.

• However, growth of the error in later time at higher resolution.

∂tÃij = −e−4φ [DiDjα + αRij]
TF + αKÃij − 2αÃikÃ

k
j + ∂iβ

kÃkj + ∂jβ
kÃki −

2

3
∂kβ

kÃij + βk∂kÃij+κAαD̃(iMj)



Numerical Results A: Gauge-wave test (4)

A.4 Evaluation of Accuracy

• L2 norm of the error in γxx, (4), with the function of time.

• The error is induced by distortion of the wave; the both phase and amplitude errors.
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FIG. 4: Evaluation of the accuracy of the one-dimensional gauge-wave testbed. Lines show the plain BSSN, the adjusted BSSN with A-equation, and with Γ̃-equation. (a) The
L2 norm of the error in γxx, using (4). (b) A snapshot of the exact and numerical solution at T = 100.



Numerical Testbed Models B: Linear wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589

Check the ability of handling a travelling gravitational wave.

ds2 = −dt2 + dx2 + (1 + b)dy2 + (1 − b)dz2,

b = A sin

(
2π(x − t)

d

)

Parameters:

• Linear wave parameters: d = 1 and A = 10−8

• Simulation domain: x∈[−0.5, 0.5], y = 0, z = 0

• Grid: xi = −0.5 + (n − 1
2)dx with n = 1, · · · 50ρ, where dx = 1/(50ρ) with ρ = 2, 4, 8

• Time step: dt = 0.25dx

• Periodic boundary condition in x direction

• Gauge conditions: α = 1 and βi = 0

The 1D simulation is carried out for a T = 1000 crossing-time or until the code crashes.



Numerical Results B: Linear Wave Test
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Snapshots of the one-dimensional linear wave at different resolutions with the plain
BSSN system at the simulation time 500 crossing-time. We see there exists phase
error, but they are convergent away at higher resolution runs.

Snapshot of errors with the exact solution for the Linear Wave testbed with the plain
BSSN system and the adjusted BSSN system with the Ã equation at T = 500. The
highest resolution ρ = 8 is used in both runs. The difference between the plain and
the adjusted BSSN system with the Ã equation is indistinguishable. Note that the
maximum amplitude is set to be 10−8 in this problem.

• The linear wave testbed does not produce a significant constraint violation.

• The plain BSSN and adjusted BSSN results are indistinguishable.
This is because the adjusted terms of the equations are small due to the small violations of constraints.



Numerical Testbed Models C: Collapsing polarized Gowdy-wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589

Check the formulation in a strong field context using the polarized Gowdy metric.

ds2 = t−1/2eλ/2(−dt2 + dz2) + t(ePdx2 + e−Pdy2).

P = J0(2πt) cos(2πz),

λ = −2πtJ0(2πt)J1(2πt) cos2(2πz) + 2π2t2[J2
0 (2πt) + J2

1 (2πt)]

−
1

2
[(2π)2[J2

0 (2π) + J2
1 (2π)] − 2πJ0(2π)J1(2π)],

where Jn is the Bessel function.
Parameters:

• Perform the evolution in the collapsing (i.e. backward in time) direction.

• Simulation domain: z ∈ [−0.5, 0.5], x = y = 0

• Grid: z = −0.5 + (n − 1
2)dz with n = 1, · · · 50ρ, where dz = 1/(50ρ) with ρ = 2, 4, 8

• Time step: dt = 0.25dz

• Periodic boundary condition in z-direction

• Gauge conditions: the harmonic slicing ∂tα = −α2K, βi = 0. and βi = 0

• Set the initial lapse function is 1, using coordinate transformation.

The 1D simulation is carried out for a T = 1000 crossing-time or until the code crashes.



Numerical Results C: Collapsing polarized Gowdy-wave testbed (1)

C.1 The plain BSSN
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FIG. 5: Collapsing polarized Gowdy-wave test with the plain BSSN system. The L2 norm of H and Mz, rescaled by ρ2/4, are plotted with a function of the crossing-time.
(Simulation proceeds backwards from t = 0.) We see almost perfect overlap for the initial 100 crossing-time, and the higher resolution runs crash earlier. This result is quite
similar to those achieved with the Cactus BSSN code, reported by [? ].

• Our result shows similar crashing time with that of Cactus BSSN code.
Alcubierre et al. CQG 21, 589 (2004)

• Higher order differencing scheme with Kreiss-Oliger dissipation term improves the results.
Zlochower, Baker, Campanelli & Lousto, PRD 72, 024021 (2005)



Numerical Results C: Collapsing polarized Gowdy-wave testbed (2)

C.2 Adjusted BSSN with Ã-equation
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FIG. 6: Collapsing polarized Gowdy-wave test with the adjusted BSSN system in the Ã-equation (1), with κA = −0.001. The style is the same as in Fig. 5 and note that both
constraints are normalized by ρ2/4. We see almost perfect overlap for the initial 1000 crossing-time in both constraint equations, H and Mz, even for the highest resolution run.

• Adjustment extends the life-time of the simulation 10 times longer.

• Almost perfect convergence upto t = 1000tcross for both H and Mz, while we find oscillations in Mz

later time.

∂tÃij = −e−4φ [DiDjα + αRij]
TF + αKÃij − 2αÃikÃ

k
j + ∂iβ

kÃkj + ∂jβ
kÃki −

2

3
∂kβ

kÃij + βk∂kÃij+κAαD̃(iMj)



Numerical Results C: Collapsing polarized Gowdy-wave testbed (3)

C.3 Adjusted BSSN with γ̃-equation
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FIG. 7: Collapsing polarized Gowdy-wave test with the adjusted BSSN system in the γ̃-equation (2), with κγ̃ = 0.000025. The figure style is the same as Figure 5. Note the
almost perfect overlap for 200 crossing-time in the both the Hamiltonian and Momentum constraint and the ρ = 2 run can evolve stably for 1000 crossing-time.

• Almost perfect convergence up to t = 200tcross in both H and Mz.

∂tγ̃ij = −2αÃij + γ̃ik∂jβ
k + γ̃jk∂iβ

k −
2

3
γ̃ij∂kβ

k + βk∂kγ̃ij + κγ̃αγ̃k(iD̃j)Gk



Numerical Results C: Collapsing polarized Gowdy-wave testbed (4)

C.4 Adjustment works for Accuracy
Error of γzz to the exact solution normalized by γzz.

• Accurate Evolution ⇔ Error < 1 %.
(Zlochower, et al., PRD72 (2005) 024021 )

the Plain BSSN ≈ t = 200tcross
adjusted BSSN Ã-eq ≈ t = 1000tcross
adjusted BSSN γ̃-eq ≈ t = 400tcross
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Comparisons of systems in the collapsing polarized Gowdy-wave test.
The L2 norm of the error in γzz, rescaled by the L2 norm of γzz, for the
plain BSSN, adjusted BSSN with Ã-equation, and with γ̃-equation are
shown. The highest resolution run, ρ = 8, is depicted for the plots. We
can conclude that the adjustments make longer accurate runs available.
Note that the evolution is backwards in time.



A Full set of BSSN constraint propagation eqs.

∂BS
t





HBS

Mi

Gi

S
A





=





A11 A12 A13 A14 A15

−(1/3)(∂iα) + (1/6)∂i αK A23 0 A25

0 αγ̃ij 0 A34 A35

0 0 0 βk(∂kS) −2αγ̃
0 0 0 0 αK + βk∂k









HBS

Mj

Gj

S
A





A11 = +(2/3)αK + (2/3)αA + βk∂k

A12 = −4e−4ϕα(∂kϕ)γ̃kj − 2e−4ϕ(∂kα)γ̃jk

A13 = −2αe−4ϕÃk
j∂k − αe−4ϕ(∂jÃkl)γ̃

kl − e−4ϕ(∂jα)A− e−4ϕβk∂k∂j − (1/2)e−4ϕβkγ̃−1(∂jS)∂k

+(1/6)e−4ϕγ̃−1(∂jβ
k)(∂kS) − (2/3)e−4ϕ(∂kβ

k)∂j

A14 = 2αe−4ϕγ̃−1γ̃lk(∂lϕ)A∂k + (1/2)αe−4ϕγ̃−1(∂lA)γ̃lk∂k + (1/2)e−4ϕγ̃−1(∂lα)γ̃lkA∂k + (1/2)e−4ϕγ̃−1βmγ̃lk∂m∂l∂k

−(5/4)e−4ϕγ̃−2βmγ̃lk(∂mS)∂l∂k + e−4ϕγ̃−1βm(∂mγ̃lk)∂l∂k + (1/2)e−4ϕγ̃−1βi(∂j∂iγ̃
jk)∂k

+(3/4)e−4ϕγ̃−3βiγ̃jk(∂iS)(∂jS)∂k − (3/4)e−4ϕγ̃−2βi(∂iγ̃
jk)(∂jS)∂k + (1/3)e−4ϕγ̃−1γ̃pj(∂jβ

k)∂p∂k

−(5/12)e−4ϕγ̃−2γ̃jk(∂kβ
i)(∂iS)∂j + (1/3)e−4ϕγ̃−1(∂kγ̃

ij)(∂jβ
k)∂i − (1/6)e−4ϕγ̃−1γ̃mk(∂k∂lβ

l)∂m

A15 = (4/9)αKA− (8/9)αK2 + (4/3)αe−4ϕ(∂i∂jϕ)γ̃ij + (8/3)αe−4ϕ(∂kϕ)(∂lγ̃
lk) + αe−4ϕ(∂j γ̃

jk)∂k

+8αe−4ϕγ̃jk(∂jϕ)∂k + αe−4ϕγ̃jk∂j∂k + 8e−4ϕ(∂lα)(∂kϕ)γ̃lk + e−4ϕ(∂lα)(∂kγ̃
lk) + 2e−4ϕ(∂lα)γ̃lk∂k

+e−4ϕγ̃lk(∂l∂kα)

A23 = αe−4ϕγ̃km(∂kϕ)(∂j γ̃mi) − (1/2)αe−4ϕΓ̃m
klγ̃

kl(∂j γ̃mi)

+(1/2)αe−4ϕγ̃mk(∂k∂j γ̃mi) + (1/2)αe−4ϕγ̃−2(∂iS)(∂jS) − (1/4)αe−4ϕ(∂iγ̃kl)(∂j γ̃
kl) + αe−4ϕγ̃km(∂kϕ)γ̃ji∂m

+αe−4ϕ(∂jϕ)∂i − (1/2)αe−4ϕΓ̃m
klγ̃

klγ̃ji∂m + αe−4ϕγ̃mkΓ̃ijk∂m + (1/2)αe−4ϕγ̃lkγ̃ji∂k∂l

+(1/2)e−4ϕγ̃mk(∂j γ̃im)(∂kα) + (1/2)e−4ϕ(∂jα)∂i + (1/2)e−4ϕγ̃mkγ̃ji(∂kα)∂m

A25 = −Ãk
i(∂kα) + (1/9)(∂iα)K + (4/9)α(∂iK) + (1/9)αK∂i − αÃk

i∂k

A34 = −(1/2)βkγ̃ilγ̃−2(∂lS)∂k − (1/2)(∂lβ
i)γ̃lkγ̃−1∂k + (1/3)(∂lβ

l)γ̃ikγ̃−1∂k − (1/2)βlγ̃in(∂lγ̃mn)γ̃mkγ̃−1∂k

+(1/2)βkγ̃ilγ̃−1∂l∂k

A35 = −(∂kα)γ̃ik + 4αγ̃ik(∂kϕ) − αγ̃ik∂k



Which constraint should be monitored?

Yoneda & HS, PRD 66 (2002) 124003 Kiuchi & HS, arXiv:0711.3575, PRD (2008)

Order of constraint violation?

• A and S constraints propagate independently of
the other constraints.

• G-constraint is triggered by the violation of the
momentum constraint.

• H and M constraints are affected by all the other
constraints.
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The violation of all constraints normalized with their initial values, ||δC||2(t)/||δC||2(0),

are plotted with a function of time. The evolutions of the gauge-wave testbeds with

the plain BSSN system are shown.

By observing which constraint triggers the other constraint’s violation from the constraint propagation
equations, we may guess the mechanism by which the entire system is violating accuracy and stability.



Summary up to here  (2nd half)

[Keyword 1] Adjusted Systems
Adjusting the EoM with constraints is common to all previous approaches.
Just add constraints to evolution eqs, while lambda-system requires 
symmetric hyperbolicity. 

[Keyword 2]  Constraint Propagation Analysis -> Constraint Damping System
By evaluating the propagation eqs of constraints, we can predict the suitable 
adjustments to the EoM in advance.

       (Step 1)  Fourier mode expression of all terms of constraint propagation eqs.
       (Step 2)  Eigenvalues and Diagonalizability of constraint propagation matrix.

Eigenvalues = Constraint Amplification Factors
       (Step 3)  If CAF=negatives -> Constraint surface becomes the attractor.

[Keyword 3]  Adjusted ADM systems
We show the standard ADM has constraint violating mode.
We predict several adjustments, which give better stability. 

[Keyword 3]  Adjusted BSSN systems
We show the advantage of BSSN is the adjustment using M.
We predict several adjustments, which give better stability.





Discussion
Application 1 : Constraint Propagation in N + 1 dim. space-time

HS-Yoneda, GRG 36 (2004) 1931
Dynamical equation has N -dependency
Only the matter term in ∂tKij has N -dependency.

0 ≈ CH ≡ (Gµν − 8πTµν)n
µnν =

1

2
((N)R + K2 − KijKij) − 8πρH − Λ,

0 ≈ CMi ≡ (Gµν − 8πTµν)n
µ⊥ν

i = DjK
j
i − DiK − 8πJi,

∂tγij = −2αKij + Djβi + Diβj,

∂tKij = α(N)Rij + αKKij − 2αK(
jKi( − DiDjα

+βk(DkKij) + (Djβ
k)Kik + (Diβ

k)Kkj − 8πα


Sij −
1

N − 1
γijT



−
2α

N − 1
γijΛ,

Constraint Propagations remain the same
From the Bianchi identity, ∇νSµν = 0 with Sµν = Xnµnν + Yµnν + Yνnµ + Zµν, we get

0 = nµ∇νSµν = −Zµν(∇µnν) −∇µYµ + Yνn
µ∇µn

ν − 2Yµnν(∇νnµ) − X(∇µnµ) − nµ(∇µX),

0 = hi
µ∇νSµν = ∇µZiµ + Yi(∇µnµ) + Yµ(∇µni) + X(∇µni)nµ + nµ(∇µYi).

• (Sµν, X, Yi, Zij) = (Tµν, ρH, Ji, Sij) with ∇µTµν = 0 ⇒ matter eq.

• (Sµν, X, Yi, Zij) = (Gµν − 8πTµν, CH, CMi, κγijCH) with ∇µ(Gµν − 8πTµν) = 0 ⇒ CP eq.



Discussion
Future : Construct a robust adjusted system

HS-Yoneda, in preparation

(1) dynamic & automatic determination of κ under a suitable principle.

e.g.) Efforts in Multi-body Constrained Dynamics simulations

∂

∂t
pi = Fi + λa

∂Ca

∂xi
, with Ca(xi, t) ≈ 0

• J. Baumgarte (1972, Comp. Methods in Appl. Mech. Eng.)
Replace a holonomic constraint ∂2

t C = 0 as ∂2
t C + α∂tC + β2C = 0.

• Park-Chiou (1988, J. Guidance), “penalty method”
Derive “stabilization eq.” for Lagrange multiplier λ(t).

• Nagata (2002, Multibody Dyn.)
Introduce a scaled norm, J = CTSC, apply ∂tJ + w2J = 0, and adjust λ(t).

e.g.) Efforts in Molecular Dynamics simulations

• Constant pressure · · · · · · potential piston!

• Constant temperature · · · · · · potential thermostat!! (Nosé, 1991, PTP)



(2) target to control each constraint violation by
adjusting multipliers.

CP-eigenvectors indicate directions of con-
straint grow/decay, if CP-matrix is diagonal-
izable.

(3) clarify the reasons of non-linear violation in the
last stage of current test evolutions.

Hamiltonian constr.

Momentum constr.

decay

decay

grow

grow

(4) Alternative new ideas?

– control theories, optimization methods (convex functional theories), mathematical pro-
gramming methods, or ....

(5) Numerical comparisons of formulations, links to other systems, ...

– “Comparisons of Formulations” (e.g. Mexico NR workshop, 2002-2003); more formula-
tions to be tested, ...

Find a RECIPE for all. Avoid un-essential techniques.



Goals of the Lecture
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Goals of the Lecture

What is the guiding principle for 
selecting evolution equations for 
simulations in GR?

--- Constraint Propagation eqs. 
Why many groups use the BSSN 
equations?

--- Just rush, not to be late.
Are there an alternative 
formulation better than the BSSN?

--- Yes, there are. But we do not the best one.  



Discussion
Application 2 : Constraint Propagation of Maxwell field in Curved space

HS-Yoneda, in preparation

Towards a robust GR-MHD system:

• Maxwell eqs in curved space-time

∂tE
i = εijkDj(αBk) − 4παJi + αKEi + £βE

i

∂tB
i = −εijkDj(αEk) + αKBi + £βB

i

CE := DiE
i − 4πρe

CB := DiB
i

• CP of Maxwell system in curved space-time

∂tCE = αKCE + βjDjCE

∂tCB = αKCB + βjDjCB

• CP of ADM+Maxwell

∂t













CE

CB

H
Mi













=













∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

























CE

CB

H
Mi













• CP of ADM+Maxwell+Hydro
in progress.



Constraint propagation and constraint-damping
for C2-adjusted formulations
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ADM case: Phys. Rev. D 83, 064032 (2011)

BSSN case: [gr-qc/1109.5782], submitted
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ADM formulation࠸࡞ࢀࡽ࠸⏝ࡣ

Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulationࡀᗈ
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ືᶵ࡜◊✲⫼ᬒ

formulationࢆᨵၿࡿࡍ ௜ࢆᣊ᮰᪉⛬ᘧ࡟Ⓨᒎ᪉⛬ᘧ,࡚ࡋ࡜᪉ἲࡢࡘ1
ຍࡿࡍ᪉ἲࡿ࠶ࡀ. ࢆࢀࡇ) constraint damping technique࡜࿧ࡪ.)

⿵ṇ࣒ࢸࢫࢩ 1! "
:ࡿࡍ௜ຍࢆᣊ᮰᪉⛬ᘧ࡟Ⓨᒎ᪉⛬ᘧࡿ࠶

∂tu
i = [Original Terms] + f (Ci , ∂jC

i , · · · ) (1)

Ⓨᒎ᪉⛬ᘧࡢᣊ᮰᪉⛬ᘧ,ࡁ࡜ࡢࡇ (ᣊ᮰ఏ᧛᪉⛬ᘧ)ࡣ

∂tC
i = [Original Terms] + g(Ci , ∂jC

i , · · · ) (2)

.ࡿࡍኚ໬࡜ ୍⯡ⓗࡣ࡟, ⫼ᬒ᫬✵ࢆᅛᐃ࡚ࡋ, ᅛ᭷ࡢิ⾜ಀᩘࡢ(2)
್ゎᯒ࡛࡜ࡇ࠺⾜ࢆ,᪂࠸ࡋ᪉⛬ᘧ⣔ࡢᏳᐃᛶࢆㄪࡿࡁ࡛ࡀ࡜ࡇࡿ࡭.

# $
௜ຍ㡯࡟࠺ࡼࡢ࡝ f (Ci , ∂jC

i , · · · 㸽࠿࠸ࡼࡤࢀ࠼ຍࢆ(
ィ⟬࡟ࡶ࡜࡜⫼ᬒ᫬✵ࡀኚ໬ࡃ࠸࡚ࡋሙྜࡢࡇ࡟ゎᯒࡣṇ࠿ࡢ࠸ࡋ㸽

⇒⫼ᬒ᫬✵࡟౫Ꮡ࠸࡞ࡋ௜ຍ㡯ࢆタᐃࡿࡍ .ࡿࡍ௓⤂ࢆ᪉ἲࡢࡘ1
,ࡀࢀࡑ C2-adjusted system࡛ࡿ࠶.

1G. Yoneda and H. Shinkai in PRD 63, 124019 and PRD 66, 124003
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C2-adjusted Systemࡢㄝ᫂

Ⓨᒎ᪉⛬ᘧࡁᣊ᮰᮲௳௜ࡿ࠶

{
∂tu

i = f i(ui , ∂ju
i , . . . )

Ci = gi(ui , ∂ju
i , . . . ) ≈ 0

(3)

:ࡿࡍಟṇࢆⓎᒎ᪉⛬ᘧ࡟࠺ࡼࡢ௨ୗ,࡚ࡋᑐ࡟

∂tu
i = f i(ui , ∂ju

i , . . . )−κij δC2

δuj
(4)

where, C2 =

∫
CiCidx3, κij : Positive definite (5)

,ࡁ࡜ࡢࡇ C2ࡢᣊ᮰ఏ᧛᪉⛬ᘧࡣ௨ୗࡿ࡞࡟࠺ࡼࡢ:

∂tC
2 = [Original terms]−κij

(
δC2

δui

)(
δC2

δuj

)
(6)

ࡣ࠼⪄ࡢࡇ) D. R. Fiske (Phys. Rev. D 69, 047501 (ࡓࢀࡉᥦ᱌࡚ࡗࡼ࡟((2004)
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C2-adjusted Systemࡢㄝ᫂

Ⓨᒎ᪉⛬ᘧࡁᣊ᮰᮲௳௜ࡿ࠶

{
∂tu

i = f i(ui , ∂ju
i , . . . )

Ci = gi(ui , ∂ju
i , . . . ) ≈ 0

(3)

:ࡿࡍಟṇࢆⓎᒎ᪉⛬ᘧ࡟࠺ࡼࡢ௨ୗ,࡚ࡋᑐ࡟

∂tu
i = f i(ui , ∂ju

i , . . . )−κij δC2

δuj
(4)

where, C2 =

∫
CiCidx3, κij : Positive definite (5)

,ࡁ࡜ࡢࡇ C2ࡢᣊ᮰ఏ᧛᪉⛬ᘧࡣ௨ୗࡿ࡞࡟࠺ࡼࡢ:

∂tC
2 = [Original terms]−κij

(
δC2

δui

)(
δC2

δuj

)
< 0 (6)

ࡣ࠼⪄ࡢࡇ) D. R. Fiske (Phys. Rev. D 69, 047501 (ࡓࢀࡉᥦ᱌࡚ࡗࡼ࡟((2004)
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Standard ADM Formulation

Einstein᪉⛬ᘧ (Gµν = 8πTµν)ࡢ᫬✵ศゎ2.

Σ(t)

Σ(t+ dt)
αdt

nµ

βi

xµ

P

Q
P ′

P ′′

Figure: ᫬✵ศゎࡢᴫᛕᅗ

nµnνGµν = 8πρH . (7)

Pµ
i n

νGµν = −8πJi . (8)

Pµ
iP

ν
iGµν = 8πSij . (9)

,ࡋࡔࡓ Pµν = gµν + nµnν ,
nµ .ࣝࢺࢡ࣋⥺༢఩ἲࡢ㉸᭤㠃ୖࡣ

2J. W. York, Jr., in Sources of Gravitational Radiation, edited by L. Smarr
(Cambridge University Press, Cambridge, England, 1979);
L. Smarr and J. W. York, Jr., Phys. Rev. D 17, 2529 (1978).
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Standard ADM Formulation

Ⓨᒎ᪉⛬ᘧ:

∂tγij = −2αKij + Diβj + Djβi (10)

∂tKij = α(Rij + KKij − 2Ki
!K!j)− DiDjα

+ Ki!Djβ
! + Kj!Diβ

! + β!D!Kij (11)

ᣊ᮰᪉⛬ᘧ:

HADM = R + K 2 − KijK
ij ≈ 0 (12)

MADM
i = DjK

j
i − DiK ≈ 0 (13)
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C2-adjusted ADM Formulation

C2-adjusted ADM formulationࡢⓎᒎ᪉⛬ᘧ:

∂tγij = [Original Terms]− κγijmn
δ(CADM)2

δγmn
(14)

∂tKij = [Original Terms]− κKijmn
δ(CADM)2

δKmn
(15)

where

(CADM)2 =

∫ {
(HADM)2 + γ ij(MADM

i )(MADM
j )

}
dx3 (16)
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Constraint Propagation Equations

⫼ᬒ᫬✵ࢆMinkowskii, Lagrange஌ᩘಀᩘࢆ
κγijmn = κγδimδjn,κKijmn = κK δimδjnࡁ࡜ࡓࡋ࡜,ྛᣊ᮰ఏ᧛᪉⛬ᘧࡣ௨ୗ
:ࡿ࡞࡟࠺ࡼࡢ

∂tH = [Original Terms]−2κγ∆
2H (17)

∂tMi = [Original Terms]+κK∆Mi + 3κK∂j∂iM
j (18)

⿵ṇ㡯ࡢ㒊ศ࡟ᣑᩓ㡯ࡿࢀ⌧ࡀ. ࢆᙳ㡪࡞ࡁ኱࡟ῶᑡࢀ◚ࡢᣊ᮰್ࡀࢀࡇ
୚ࡿࢀࡽ࠼⪄࡜ࡿ࠼.
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Standard BSSN Formulation

BSSN formulationࡢⓎᒎኚᩘ:

ϕ =
1

12
log(det(γij)) (19)

γ̃ij = e−4ϕγij (20)

K = γ ijKij (21)

Ãij = e−4ϕ

(
Kij −

1

3
γijK

)
(22)

Γ̃i = γ̃abΓ̃i
ab (23)
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Standard BSSN Formulation

Ⓨᒎ᪉⛬ᘧ

∂tϕ = −(1/6)αK + (1/6)(∂iβ
i) + β i(∂iϕ) (24)

∂tK = αÃij Ã
ij + (1/3)αK 2 − DiD

iα+ β i(∂iK ) (25)

∂t γ̃ij = −2αÃij − (2/3)γ̃ij(∂!β
!) + γ̃j!(∂iβ

!) + γ̃i!(∂jβ
!) + β!(∂!γ̃ij) (26)

∂t Ãij = αK Ãij − 2αÃi!Ã
!
j + αe−4ϕRij

TF − e−4ϕ(DiDjα)
TF

− (2/3)Ãij(∂!β
!) + (∂iβ

!)Ãj! + (∂jβ
!)Ãi! + β!(∂!Ãij) (27)

∂t Γ̃
i = 2α{6(∂jϕ)Ã

ij + Γ̃i
j!Ã

j! − (2/3)γ̃ ij(∂jK )}− 2(∂jα)Ã
ij

+ (2/3)Γ̃i(∂jβ
j) + (1/3)γ̃ ij(∂!∂jβ

!) + β!(∂!Γ̃
i)− Γ̃j(∂jβ

i)

+ γ̃ j!(∂j∂!β
i) (28)
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Standard BSSN formulation

ᣊ᮰᪉⛬ᘧ:
“㐠ືᏛⓗ”ᣊ᮰᪉⛬ᘧ:

HBSSN ≡ e−4ϕR̃ − 8e−4ϕ(D̃i D̃
iϕ+ (D̃mϕ)(D̃mϕ)) + (2/3)K 2

− Ãij Ã
ij − (2/3)AK ≈ 0 (29)

MBSSN
i ≡ −(2/3)D̃iK + 6(D̃jϕ)Ã

j
i + D̃j Ã

j
i − 2(D̃iϕ)A ≈ 0 (30)

“௦ᩘⓗ”ᣊ᮰᪉⛬ᘧ:

G i ≡ Γ̃i − γ̃ j"Γ̃i
j" ≈ 0 (31)

A ≡ Ãij γ̃ij ≈ 0 (32)

S ≡ det(γ̃ij)− 1 ≈ 0 (33)

௦ᩘⓗᣊ᮰᪉⛬ᘧ,ࡋࡶ ,ሙྜ࠸࡞ࢀࡉࡓ‶ࡀ(33)-(31) BSSN
formulationᩘࡣᏛⓗ࡟ ADM formulation࠸࡞ࡋ⮴୍࡟.
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C2-adjusted BSSN Formulation

C2-adjusted BSSN formulationࡢⓎᒎ᪉⛬ᘧ:

∂tϕ = [Original Terms]− λϕ

(
δ(CBSSN)2

δϕ

)
(34)

∂tK = [Original Terms]− λK

(
δ(CBSSN)2

δK

)
(35)

∂t γ̃ij = [Original Terms]− λγ̃ijmn

(
δ(CBSSN)2

δγ̃mn

)
(36)

∂t Ãij = [Original Terms]− λ
Ãijmn

(
δ(CBSSN)2

δÃmn

)
(37)

∂t Γ̃
i = [Original Terms]− λij

Γ̃

(
δ(CBSSN)2

δΓ̃j

)
(38)

where

(CBSSN)2=

∫
{(HBSSN)2 + γ ij(MBSSN)i(M

BSSN)j + γijG
iG j +A2 + S2}dx3
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ᣊ᮰ఏ᧛᪉⛬ᘧ

⫼ᬒ᫬✵ࢆMinkowskii, Lagrange஌ᩘಀᩘࢆ λγ̃ijmn = λγ̃δimδjn,

λ
Ãijmn

= λ
Ã
δimδjn, λij

Γ̃
= λ

Γ̃
δij ࠺ࡼࡢ௨ୗࡣᣊ᮰ఏ᧛᪉⛬ᘧྛ,ࡁ࡜ࡓࡋ࡜

:ࡿ࡞࡟

∂tH = [Original Terms] + {−128λϕ∆
2−(3/2)λγ̃∆

2+2λ
Γ̃
∆}H

+ {−(1/2)λγ̃∆∂m − 2λ
Γ̃
∂m}G

m + 3λγ̃∆S (39)

∂tMa = [Original Terms]− 2λ
Ã
∂aA

+ {(8/9)λK δ
bc∂a∂b+λ

Ã
∆δa

c + λ
Ã
δbc∂a∂b}Mc (40)

∂tG
a = [Original Terms] + δab{(1/2)λγ̃∂b∆+ 2λ

Γ̃
∂b}H

− λγ̃δ
ab∂bS +

(
λγ̃∆δa

b + (1/2)λγ̃δ
ac∂c∂b−2λ

Γ̃
δa

b

)
Gb (41)

∂tA = [Original Terms] + 2λ
Ã
δij(∂iMj)−6λ

Ã
A (42)

∂tS = [Original Terms] + 3λγ̃∆H+ λγ̃∂#G
#−6λγ̃S (43)

ᣑᩓ㡯ࡀࢀࡇ,ࢀ⌧ࡀᣊ᮰್ࡢࢀ◚ࡢῶᑡ࡟኱࡞ࡁᙳ㡪ࢆ୚ࡽ࠼⪄࡜ࡿ࠼
.ࡿࢀ
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ᣊ᮰ఏ᧛᪉⛬ᘧ

,ࡋࡶ (CBSSN)2ࡀ௦ᩘᏛⓗᣊ᮰᪉⛬ᘧ (G i , A, S)࠸࡞ࡲྵࢆሙྜ:

(CBSSN)2 =

∫ {
(HBSSN)2 + γ ij(MBSSN)i(M

BSSN)j

}
dx3,

ᣊ᮰ఏ᧛᪉⛬ᘧࡣ௨ୗࡿ࡞࡟࠺ࡼࡢ:

∂tH = [Original Terms] + {−128λϕ∆
2−(3/2)λγ̃∆

2+2λ
Γ̃
∆}H (44)

∂tMa = [Original Terms]

+ {(8/9)λK δ
bc∂a∂b+λ

Ã
∆δa

c + λ
Ã
δbc∂a∂b}Mc (45)

∂tG
a = [Original Terms] + δab{(1/2)λγ̃∂b∆+ 2λ

Γ̃
∂b}H (46)

∂tA = [Original Terms] + 2λ
Ã
δij(∂iMj) (47)

∂tS = [Original Terms] + 3λγ̃∆H (48)

௦ᩘⓗᣊ᮰ఏ᧛᪉⛬ᘧ .ࡿ࡞ࡃ࡞ࡲྵࢆᣑᩓ㡯ࡀ(48)-(46)
⇒ (CBSSN)2 .ࡿ࠶࡛ࡁ࡭ࡴྵࢆ௦ᩘⓗᣊ᮰್ࡣ
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Testィ㔞

Polarized Gowdy wave test-bed (Apples-with-Apples test3 (ࡘ࡜ࡦࡢ

ds2 = t−1/2eλ/2(−dt2 + dx2) + t(ePdy2 + e−Pdz2) (49)

P = J0(2πt) cos(2πx) (50)

λ = −2πtJ0(2πt)J1(2πt) cos2(2πx) + 2π2t2[J2
0 (2πt)

+ J2
1 (2πt)]− (1/2){(2π)2[J2

0 (2π) + J2
1 (2π)]

− 2πJ0(2π)J1(2π)} (51)

,࡛ࡇࡇ Jn ࡣ Bessel㛵ᩘ.
ࡢ࠿࡯ Apples-with-Applesࢺࢫࢸ (gauge-wave࡜ Linear wave)ࡗ⾜ࡶ
Gowdyࡣ௒ᅇ,ࡀࡓ waveࡢ⤖ᯝࢆࡅࡔ⤂௓ࡿࡍ.

3Alcubierre et al., Class. Quant. Grav. 21, 589 (2004)
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ᩘ್⤖ᯝ (ADM Formulation)
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Standard ADM formulation

Hamiltonian constraint
momentum constraints
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C2-adjusted ADM formulation

Hamiltonian constraint
momentum constraints

C2-adjusted ADM formulationࡢሙྜ (ྑᅗ)ࡀ࠺࡯ࡢ, standard
ADM formualtionࡢሙྜ (ᕥᅗ)ࡶࡾࡼィ⟬᫬㛫ࡀ⣙ 1.7ಸ࡟ఙࡓࡧ

C2-adjusted ADM formulationࡢᣊ᮰್ࡀࢀ◚ࡢῶᑡࡓࡋ

(T. Tsuchiya, G. Yoneda, and H. Shinkai, Phys. Rev. D 83, 064032 (2011))
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ᩘ್⤖ᯝ (BSSN Formulation)
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C2-adjusted BSSN formulation

Hamiltonian constraint
momentum constraint
G-constraint
A-constraint
S-constraint

C2-adjusted BSSN formulationࡢሙྜ (ྑᅗ)ࡀ࠺࡯ࡢ standard
BSSN formulationࡢሙྜ (ᕥᅗ)ࡶࡾࡼᑑ࿨ࡀ 2ಸ㛗ࡓࡗ࡞ࡃ

C2-adjusted BSSN formulationࡢᣊ᮰್୍ࡀࢀ◚ࡢᐃࡓࡗ࡞࡟

(T. Tsuchiya, G. Yoneda, and H. Shinkai, arXiv[gr-qc/1109.5782])
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ᒎᮃࡢ௒ᚋ࡜ࡵ࡜ࡲ

ࡵ࡜ࡲ

C2-adjusted systemࢆ ADM formulation࡜ BSSN formulation࡟㐺
.ࡓࡋ⏝

C2-adjusted ADM formulation࡜ C2-adjusted BSSN formulationࡢ
ᣊ᮰ఏ᧛᪉⛬ᘧࢆᑟฟࡋ, damping㡯ࡓࡋ♧ࢆ࡜ࡇࡿ࠸࡚ࢀࡲྵࡀ.

C2-adjusted BSSN formulation࡟ᑐࡢࡑ,࡚ࡋᣊ᮰ఏ᧛᪉⛬ᘧࡽ࠿
C2ࡀ௦ᩘⓗᣊ᮰್ࡓࡋ♧ࢆ࡜ࡇࡿ࠶࡛ࡁ࡭ࡴྵࢆ.

ᐇ㝿࡟ C2-adjusted ADM formulation࡜ C2-adjusted BSSN
formulation್ᩘ࡚࠸⏝ࢆィ⟬ࡢࡑ,࠸⾜ࢆィ⟬᫬㛫ࡀᘏࢆ࡜ࡇࡿࡧ
.ࡓࡋ♧

௒ᚋࡢᒎᮃ

first order ADM formulationࡢ࡬㐺⏝.

Lagrange஌ᩘಀᩘࢆタᐃࡿࡍ᪉ἲࢆ⪃᱌ࡿࡍ.
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