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Formulations of the Einstein Equations for Numerical Simulations

Hisaaki SHINKAT*
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(Received 24 January 2008)

We review recent efforts to re-formulate the Einstein equations for fully relativistic numerical
simulations. The so-called numerical relativity is a promising research field matching with ongo-
ing gravitational wave observations. In order to complete long-term and accurate simulations of
binary compact objects, people seek a robust set of equations against the violation of constraints.
Many trials have revealed that mathematically equivalent sets of evolution equations show differ-
ent numerical stabilities in free evolution schemes. In this article, we overview the efforts of the
community, categorizing them into three directions: (1) modifying of the standard Arnowitt-Deser-
Misner (ADM) equations initiated by the Kyoto group [the so-called Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) equations|, (2) rewriting the evolution equations in a hyperbolic form and (3)
constructing an “asymptotically constrained” system. We then introduce our series of works that
tries to explain these evolution behaviors in a unified way by using an eigenvalue analysis of the
constraint-propagation equations. The modifications of (or adjustments to) the evolution equations
change the character of constraint propagation and several particular adjustments using constraints
are expected to damp the constraint-violating modes. We show several sets of adjusted ADM and
BSSN equations, together with their numerical demonstrations.

arXiv:0805.0068



Goals of the Lecture

What is the guiding principle for
selecting evolution equations for
simulations in GR?

Why many groups use the BSSN
equations?

Are there an alternative formulation 1w s ee wee e
better than the BSSN?



Procedure of the Standard Numerical Relativity

H 3+1 (ADM) formulation

B Preparation of the Initial Data
& Assume the background metric
@ Solve the constraint equations

B Time Evolution
do time=1, time_end
& Specify the slicing condition
& Evolve the variables
& Check the accuracy

& Extract physical quantities  =: Initial 3-dimensional Surface
end do

time direction




The Standard ADM formulation (aka York 1978):

The fundamental dynamical variables are (v;;, /{;;), the three-metric and extrinsic
curvature. The three-hypersurface ¥ is foliated with gauge functions, («, 3), the
lapse and shift vector.

e [he evolution equations:

5’757@']’ = —QOéKZ'j -+ Dzﬁj + Djﬁia

0 K;; = a "R+ aKK;; — 20K, K*; — D;Dja
+(Diﬁk)Kkj + (Djﬂk)K/m’ + 5kaKij
—87TGO&{SZ']' + (1/2)72"7'(/01'] - tI’S)},

where K = K*;, and (3)RZ-]- and D, denote three-dimensional Ricci curvature,
and a covariant derivative on the three-surface, respectively.

e Constraint equations:

Hamiltonian constr. HAPM .— Bp 4 K% — Kinij ~ 0,

momentum constr. MAPM . — D.K?; — D;K = 0,

where G)R =0) Ri..




strategy 0 The standard approach :: Arnowitt-Deser-Misner (ADM) formulation (1962)

3+1 decomposition of the spacetime.
Evolve 12 variables (v;;, K;;)

with a choice of gauge condition. .
shift vector 182
4
,8 v dt %oordjnate constant line

e . ' B(t+db)
// )

lapse function Oy —, adt

< N 50

surface normal line

A
/ | = constant hypersurface
Maxwell egs. ADM Einstein eq.
| div E = 4mp OR 4+ (trK)? — Kij KV = 2kpg + 2A
constraints _ :
div B =0 D;K’; — DitrK = kJ;

1 4 o L DN+ DN,
_atE —rot B — _7TJ 815723 — QNKZ] =+ D]NZ =+ Dle7
¢ ¢ 0;Kij = N( WR;; + trKK;;) —2NKyK'; — D;D;N

— kafSij + 57ij(prw — trS)}

evolution egs.

1
—E?tB = —rot &
C




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM:

OH = ﬂj(@jH) + 20 KH — 20@”(&-/\/1]-)
+0(Oymi) (27" = A M = 497 (9,0) M,
875,/\/12- — —(1/2)&(@7’() — (8205)7'( + 6](@]./\/1@)
+aKM; — ﬁk’yﬂ(amk)-/\/lj + ((%ﬁk)vkj/\/lj.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).
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Primary / Secondary constraint
First-class / Second-class constraint

-

Primary Constraints constraint Cy(g, p) =~ 0

constraint Cs(g,p) =~ 0

Secondary Constraints
= when propagation of constraints require additional constraints

C; = {C\,H}p = {C;, H'(q,p) + \*Ci}p
= {Ci,H'}p + X*{C;,Ci}p =~ 0

First-Class Constraints

set of constraints C; satisfy {C;, Crx}p = 0
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Numerical Relativity in the 20th century

1960s

1970s

1980s

1990

1995

Hahn-Lindquist

May-White
OMurchadha-York

Smarr
Smarr-Cades-DeWitt-Eppley
Smarr-York

ed. by L.Smarr
Nakamura-Maeda-Miyama-Sasaki
Miyama

Bardeen-Piran

Stark-Piran
Shapiro-Teukolsky
Oohara-Nakamura
Seidel-Suen

Choptuik

NCSA group

Cook et al
Shibata-Nakao-Nakamura
Price-Pullin

NCSA group

NCSA group

Anninos et al
Scheel-Shapiro-Teukolsky
Shibata-Nakamura
Gunnersen-Shinkai-Maeda
Wilson-Mathews
Pittsburgh group
Brandt-Briugmann

lllinois group
Shibata-Baumgarte-Shapiro
BH Grand Challenge Alliance
Baumgarte-Shapiro
Brady-Creighton-Thorne
Meudon group

Shibata

2 BH head-on collision

spherical grav. collapse
conformal approach to initial data
3+1 formulation

2 BH head-on collision

gauge conditions

“Sources of Grav. Radiation”
axisym. grav. collapse

axisym. GW collapse

axisym. grav. collapse

axisym. grav. collapse

naked singularity formation

3D post-Newtonian NS coalesence
BH excision technique

critical behaviour

axisym. 2 BH head-on collision

2 BH initial data

BransDicke GW collapse

close limit approach

event horizon finder

hyperbolic formulation

close limit vs full numerical
BransDicke grav. collapse

3D grav. wave collapse

ADM to NP

NS binary inspiral, prior collapse?
Cauchy-characteristic approach
BH puncture data

synchronized NS binary initial data
2 NS inspiral, PN to GR
characteristic matching
Shibata-Nakamura formulation
intermediate binary BH
irrotational NS binary initial data
2 NS inspiral coalesence

AnaPhys29(1964)304
PR141(1966)1232
PRD10(1974)428
PhD thesis (1975)
PRD14(1976)2443
PRD17(1978)2529
Cambridge(1979)
PTP63(1980)1229
PTP65(1981)394
PhysRep96(1983)205
unpublished
PRL66(1991)994
PTP88(1992)307
PRL69(1992)1845
PRL70(1993)9
PRL71(1993)2851
PRD47(1993)1471
PRD50(1994)7304
PRL72(1994)3297
PRL74(1995)630
PRL75(1995)600
PRD52(1995)4462
PRD51(1995)4208
PRD52(1995)5428
CQG12(1995)133
PRL75(1995)4161
PRD54(1996)6153
PRL78(1997)3606
PRL79(1997)1182
PRD58(1998)023002
PRL80(1998)3915
PRD59(1998)024007
PRD58(1998)061501
PRL82(1999)892
PRD60(1999)104052
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Formation of Naked Singularities: The Violation of Cosmic Censorship

Stuart L. Shapiro and Saul A. Teukolsky

Center for Radiophysics and Space Research and Departments of Astronomy and Physics,
Cornell University, Ithaca, New York 14853

(Received 7 September 1990)

We use a new numerical code to evolve collisionless gas spheroids in full general relativity. In all cases
the spheroids collapse to singularities. When the spheroids are sufficiently compact, the singularities are
hidden inside black holes. However, when the spheroids are sufficiently large, there are no apparent hor-
izons. These results lend support to the hoop conjecture and appear to demonstrate that naked singulari-

ties can form in asymptotically flat spacetimes.
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FIG. 3. Growth of the Riemann invariant 7 (in units of
M ~*) vs time for the collapse shown in Fig. 2. The simulation
was repeated with various angular grid resolutions. Each curve
is labeled by the number of angular zones used. We use dots to
show where the singularity has caused the code to become

inaccurate,

FIG. 4. Profile of 7 in a merid
shown in Fig. 2. For the case of

the peak value of I is 24/M4
the matter.

ional plane for the collapse
32 angular zones shown here,
and occurs on the axis just outside



Critical Phenomena in Gravitational Collapse

TABLE L

Initial data specification for various one-param-

eter families discussed in text. For families (a)—(c), I specified
the initial pulses to be purely in-going. For family (d), the
functions X5 (r), Y<(r) and X5 (r), Y5 (r) are late-time fits
to subcritical and supercritical evolutions, respectively, of the
pulse shape shown in Fig. 1(d).

Family Form of initial data D
(a) $(r) = gor’exp (—[(r —10)/6]?) ¢o,70,6,q
(b) ¢(r) = ¢o tanh[(r — ro)/é] o
()  ¢(r+ro) = dor "[exp(1/r) — 1]~ ¢o
(d) X(r) = (1-n)Xc(r) +nX>(r) n
| Y(r) =(1-n)Y<(r) +nY>(r)
TABLE II. Numerically determined yz

exponent <y in the conjectured relationsh

Kmin and Lmax are the minimum and majime -
(1 = Mu/M) of the black holes computed in the snmula-.tlon
and « is the least-squares estimate of the scaling exponent.

Family Parameter Hmin Hmax @
(a) bo 79x107% 89x10"'  0.376
(a) b 1.3x107%  94x10°'  0.372
(a) q 31x107% 9.8x10"!  0.372
(a) T 1.3x107% 9.2x107'  0.379
(b) bo 28x 1072 4.0x10"!'  0.372
(c) bo 49%x107°  9.9x107!  0.366
(d) n 22x107°  1.7x107%  0.380

Choptuik, Phys. Rev. Lett. 70 (1993) 9

Spherical Sym., Massless Scalar Field

(1) scaling
(2) echoing
(3) universality
0.3 . T T T
Family (a) p =344 A =343
02 |- B
o X(p.)
e X(p-4,T-4,)
0.1 | £ -
>
0.0 = =
ilarity
_O‘I -
-0.2 I [ | |
-8 -6 -4 -2 0
. P
FIG. 2. Illustration of the rescaling or echoing property

observed in near-critical evolution of the scalar field. The
curve marked with open squares shows the profile of the scalar
field variable, X, at some proper central time Tp. The curve
marked with solid circles is the profile at a later time To+e®"
but on a scale e®? ~ 30 times smaller.



Head-on Collision of 2 Black-Holes (Misner initial data)
NCSA group 1995

Fig. C.8. 3D evolution of the radiation Geld ¥ of the head-on collmion of two
wujizaldlimss ack el shan as & Blhee and :l"“"'ﬂ wurli- ik



S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM:

OH = ﬂj(@jH) + 20 KH — 20@”(&-/\/1]-)
+0(Oymi) (27" = A M = 497 (9,0) M,
875,/\/12- — —(1/2)&(@7’() — (8205)7'( + 6](@]./\/1@)
+aKM; — ﬁk’yﬂ(amk)-/\/lj + ((%ﬁk)vkj/\/lj.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).




S. Frittelli, Phys. Rev. D55, 5992 (1997)
HS and G. Yoneda, Class. Quant. Grav. 19, 1027 (2002)

The Constraint Propagations of the Standard ADM:

OH = ﬂj(@jH) + 20 KH — 20é’yij(ai/\/lj)
+a(Dymi) (29" = ") My — 477 (9500 M,
875,/\/12- — —(1/2)&(027'() — (6205)7'( + 6](8]./\/1@)
+aKM; — ﬁk’yﬂ(a@%k)-/\/lj + ((%ﬁk)vkj/\/lj.

From these equations, we know that

if the constraints are satisfied on the initial slice >,
then the constraints are satisfied throughout evolution (in principle).

But this is NOT TRUE in NUMERICS....




e By the period of 1990s, NR had provided a lot of physics:
Gravitational Collapse, Critical Behavior, Naked Singularity, Event Horizons,
Head-on Collision of BH-BH and Gravitational Wavve, Cosmology, - - -

e However, for the BH-BH/NS-NS inspiral coalescence problem, - - - why 777

Many (too many) trials and errors, hard to find a definit recipe.

Blow up

J NT—/

time

€rror

Constrained / Surface
(satisfies / Einstein's constraints)

Best formulation of the Einstein eqs. for long-term stable & accurate simulation?




“Convergence”

S e S TR D SRR _JFETRGT R S e —

R e BN A N SR A

= higher resolution runs approach to the continuum limit.
(All numerical codes must have this property.)

e When the code has 2nd order finite difference scheme, O ((Ax)2)
then the error should be scaled with O ((Az)?)

e “Consistency”, Choptuik, PRD 44 (1991) 3124




“Accu racy”

e R S PR A IO BN

i N e T e T ™ D e il N S T P O e I, iy

= The numerical results represent the actual solutions.
(All numerical codes must have this property.)

e (Check the code with known results.

1e-08 §- % A T T T
5e-09 |- 3

L ot 0 1l : ’ Il
N
-5e-09 | / -

Exact .

-1e-08 |- P=2 4
p=
-1.5e-08 P ! " ! L Gauge wave test in BSSN;

06 -04 -02 0 02 04 06 Kiuchi, HS, PRD (2008)




“Stability”

R e IR AN N SE IR ~ e O T T N "l W ST S S b B ey
* We mean that a numerical simulation Blow up
continues without any blow-ups and
data remains on the constrained surface. E ?
— Stabilize?
- g




“Stability”

e R R TR SN N SE A ~ O T e T Tl W T Pt et B g
* We mean that a numerical simulation Blow up
continues without any blow-ups and
data remains on the constrained surface. E ?
—— Stabilize?
- g
time

e Mathematicians define in terms of the PDE well-posedness.

lu@)] < e™[|u(0)]]




“Stability”

g SR LS TN Uemp S PGS AR L IR e e —

We mean that a numerical simulation

continues without any blow-ups and
data remains on the constrained surface. E

Blow up

time

Mathematicians define in terms of the PDE well-posedness.
lu(®)]] < e™|[u(0)]]

Programmers define for selecting a finite differencing scheme <

(judged by von Neumann's analysis).
Lax's equivalence theorem says that if a numerical scheme is

consistent (converging) and stable, then the simulation represents
the right (converging)_ _so_lytion. =2 = e




Best formulation of the Einstein eqs. for long-term stable & accurate simulation?

e Many (too many) trials and errors, hard to find a definit recipe.

Blow up Blow up

ADM

error

BSSN

time

strategy 0:  Arnowitt-Deser-Misner (ADM) formulation

strategy 1:  Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation
strategy 2:  Hyperbolic formulations

strategy 3:  “Asymptotically constrained” against a violation of constraints

By adding constraints in RHS, we can kill error-growing modes
= How can we understand the features systematically?
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strategy 1| Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation

T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)
M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995)
T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)

The popular approach. Nakamura's idea in 1980s.
BSSN is a tricky nickname. BS (1999) introduced a paper of SN (1995).

e define new set of variables (¢, %j,K,flij,fi), instead of the ADM’s (,;,K;;) where

Yij = e Oy, Ay = e Ky — (13)yK), T =T,

and impose dety;; = 1 during the evolutions.

e The set of evolution equations become

(O — L) = —(1/6)aK,
(0 — Lo)i; = —20Ay,
0y — L3)K = aAj;AY + (1/3)aKk? —47(V,;V;a),
(0 — Ly)A; = —e 9V, V00" + e PaRY — e 1a(1/3)7,;R® + a(K A;; — 244 A%))
O = —2(0;0)AY — (4/3)a(0; KA + 120 A7(9;0) — 2 A7 (0;7™) — 20l A1 A"
—0; (B oY — 39 (048" = 7 (O + (2/3)77 (015Y))

Momentum constraint was used in ["-eq.



e Calculate Riemann tensor as

~

R;; = akrf} — @T% + Fﬁrﬁzk — Z;Ff%z =: Rjj + R?j
}??j = —2D;D;¢ — 2§;;D' D¢ +4(Di9) (Do) — 4§z'jN(Dl~¢)(Dz¢) o
Rij = —(1/2)§"™ QunGij + GraOnT" + DT (i + 26" TiL jypm + G T Ui

e Constraints are H, M.
But thre are additional ones, G', A, S.

Hamiltonian and the momentum constraint equations
HBSSN _ RBSSN 4+ K2 . KZ]KU,
BSSN ADM
M’i — MZ ,
Additionally, we regard the following three as the constraints:
| ey
gz = " — /yj sz‘a
A = A7V,
S

/N 7 N
o =
—— —

/N N
SN
S—

Why BSSN better than ADM?
Is the BSSN best? Are there any alternatives?




Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

e "The essential improvement is in the process of replacing terms by the momentum
constraints”

Alcubierre, et al, [PRD 62 (2000) 124011]

~

e [ is replaced by —0;7"/ where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

~

e ['-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]
Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]

Some guesses:

e BSSN has a wider range of parameters that give us stable evolutions in von
Neumann's stability analysis. Miller, [gr-qc/0008017]

e The eigenvalues of BSSN evolution equations has fewer “zero eigenvalues” than
those of ADM, and they conjectured that the instability can be caused by “zero

eigenvalues” that violate “gauge mode".
M. Alcubierre, et al, [PRD 62 (2000) 124011]
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strategy 2

Hyperbolic formulation

Construct a formulation which reveals a hyperbolicity explicitly.
For a first order partial differential equations on a vector u,

O

_u1_

U9

A

Oy

_u1_

U9

characteristic part

_|_

_u1_
B U9

\- -

lower order part




Hyperbolic Formulation
(1) Deflnltlon

A R e R N I SE IR s R = o TR
For a first order partial differential equations on a vector u,
u u u

O | us A O | uo + B us

. -

.

characteristic part lower order part

if the eigenvalues of A are
weakly hyperbolic all real.

strongly hyperbolic  all real and 3 a complete set of eigenvalues.

symmetric hyperbolic if A is real and symmetric (Hermitian). i i 9

- . - - - -~ - ) S - e Ty - . K
- v o, S, S L el — -




S R G SRS R G Gl A |
Hyperbolic Formulation 13
: (2) Expectatlons :
A R O R N T SE A A o -
If strongly/symmetric hyperbolic ==> well-posed system
— Given initial data + source terms -> a unique solution exists
— The solution depends continuously on the data
— Exists an upper bound on (unphysical) energy norm
KL
[lu(@®)]] < e™||u(0)]]
Better boundary treatments
<== existence of characteristic field (

Known numerical techniques in
Newtonian hydro-dynamics

'y \ U APPSR EATAY AMA R Y - v, > pIAL LA T AN LB 4 LW SUTEA o
TR s o AR U NG (1 VT B e S 7 IR i AR



strategy 2| Hyperbolic formulation

Construct a formulation which reveals a hyperbolicity explicitly.
For a first order partial differential equations on a vector u,

Uy _ _ Uy Uy
8t U9 | = A 893 U9 + B U9
characteristic part lower order part

However,
e ADM is not hyperbolic.
e BSSN is not hyperbolic.

e Many many hyperbolic formulations are presented. Why many? = Exercise.

One might ask ...

Are they actually helpful?

Which level of hyperbolicity is necessary?




Wave equation

(&@ — 6285,;85,;)11, =0




Exercise 1 of hyperbolic formulation Wave equation (0:0 — 20,0, )u = 0

[1a] use u as one of the fundamental variables.

o v = (1 5)e (1]

Eigenvalues = 4-c. Not a symmetric hyperbolic, but a kind of strongly hyperbolic.

o u]= (0 5)e(t]

Eigenvalues = 4+-c. Symmetric hyperbolic.

[2a] Let U = o,V =4/,
U 0 ¢ U
at(v)_(1 o)al’<v>

Eigenvalues = 4=c. Not a symmetric hyperbolic, but a kind of strongly hyperbolic.

2b] Let U =4,V = cu/,
U 0 c U
at(v)_(c o)ax(v)

Eigenvalues = 4=c. Symmetric hyperbolic.

[1b]




Exercise 1 of hyperbolic formulation Wave equation (0:0 — 20,0, )u = 0

[3a] Let v = u,w =7/,

U 0 0 O U v
Ol v | =10 0 |0, v |+]0
w 0O 1 O w 0

Eigenvalues = 0, ==c. Not a symmetric hyperbolic, nor a strongly hyperbolic.

[3b] Let v = u, w = ¢/,

U 0 0 O U v
Ol v | =10 0 ¢c|O,|l v |+]|O
w 0 ¢ O w 0

Eigenvalues = 0, ==c. Not a symmetric hyperbolic, nor a strongly hyperbolic.

[4] Let f=u—cu',g =u+ c,

()= o))

Eigenvalues = 4=c. Symmetric hyperbolic, de-coupled.

(10)

(11)

(12)




Exercise 2 of hyperbolic formulation Maxwell equations

Consider the Maxwell equations in the vacuum space,

divE = 0,
divB = 0,
10E
rotB——a— = 0,
1
rot B+ —— = 0.

c Ot



Exercise 2 of hyperbolic formulation

e Take a pair of variables as u' = (E}, E», E3, By, By, B3)!, and

(1d) in the matrix form

12

E;
ar

e In the Maxwell case, we see immed

@ui — C

or with the actual components

Eq
Es 0
Es |

at Bl = C ( Ol 5§l))
BQ _53 O
B; 0y —0)

Maxwell equations

4 5)o(5]

| )
| Cli] Dlij | B;
Hermitian?
lately
0 Eilm
_eldmo )@um
0 -6 &
o0 0 =4
l N LI
—6}
0 0
0

That is, symmetric hyperbolic system.

(cont.)

write (1c) and

(2)




Exercise 2 of hyperbolic formulation

Maxwell equations

e The eigen-equation of the characteristic matrix becomes

Alj N Bl

CH ol plg - Nl

):det

We therefore obtain the eigenvalues as

— )\
( ;
0
0
c[—%
0,

0
)\
0
0%
0
_5i

0 (2 multi),

0 0
0 J c( 04
V) B

" —)\!
ot ) ( 0
0 0

+¢/(01)2 + (83)2 + (64)2 = +c (2 each)

(cont.)

_5é
0
0}
0

)\

0

0,

0
0

0
)\

_5§)

|




Exercise 3 of hyperbolic formulation Adjusted Maxwell equations

By adding constraints (1a) and (1b) in the RHS of equations, and see what will be
happend.

0 —€;
Eilm 0

where x,y, z, w are parameters.

Im
@ui:c( )8lum+c(§)8kEk+c< )8kBk, (3)

Z
w



Exercise 3 of hyperbolic formulation Adjusted Maxwell equations (cont.)

By adding constraints (1a) and (1b) in the RHS of equations, and see what will be
happend.

_lm
&ui:c( 9m i )alum—l—C(x)akEk—l—C(Z)akBk, (3)
€ 0 Y w
where x,y, 2z, w are parameters.

e [he actual components are

E ot o, 4l st 8L ol 0 —dt 4 B,
) |6 ah o 2o o S|+ 6 0 -4 Ey
By | 5oL 4l ooooh o) \-ab 8 o Ey
O B | € st ol 6l VT —| st oL 6l 9 B,
By yldob 6 S|+ -0 0 ot w| ot o oL By
By ) oy =6t 0 ot ob ok Bs

We see that adding constraint terms break the symmetricity of the characteristic
matrix.

e [he eigenvalues will be changed as

g ([E‘ +w £ /2?2 — 22w + w? + 4yz> (0% + 05 + %) (1 each), +c (2 each).

The zero eigenvalues disappear by adding constraints, and they can be also |c| if
the parameters have the relation (yz — 2w — 1)* = (z + w)*
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Kidder-Scheel-Teukolsky hyperbolic formulation (Anderson-York + Frittelli-Reula)
Phys. Rev. D. 64 (2001) 064017

e Construct a First-order form using variables (K, gi;, diij) where dy;i; = Okgi;
Constraints are (H, M;, Cpij, Criij) where Cij = dyij — Orgij, and Cryij = Oppdyy;;

e Densitize the lapse, Q = log(Ng~7)
e Adjust equations with constraints
éogij = —QNKZ'j
QKij = () +7Ngi;H + CNgabCa(ij)b
Oodrij = (-+-) + NN ge ;M) + XN giz My,
e Re-deining the variables (P,;, gi;, Myi;)

by = Kij+ zgi; K,
Miij = (1/2)[kdrij + edgjye + gij(adi + bbe) + gri(cdyy + dby)],  die = g™ drapy bk = 9" i

The redefinition parameters

— do not change the eigenvalues of evolution egs.
— do not effect on the principal part of the constraint evolution egs.
— do affect the eigenvectors of evolution system.

— do affect nonlinear terms of evolution eqgs/constraint evolution egs.



Numerical experiments of KST hyperbolic formulation

Weak wave on flat spacetime.

-> No non-principal part.

-> We can observe the
features of hyperbolicity.

-> Using constraints in RHS
may improve the blow-up.

_Errors in the metric
Densitizing the lapse (WH case)

10 T T T T T T T T T T T T TTTT

10

| gﬂ - gﬂ axact I

T T .- 480 gp

10 100 1000 1000C

time

FIG. 7. L, norms of the errors for the metric.

| g::x - gxx exact |

PHYSICAL REVIEW D 66, 064011 (2002)

Stability properties of a formulation of Einstein’s equations

Gioel Calabrese,* Jorge Pullin,” Olivier Sarbach,* and Manuel Tiglio§
Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001
(Received 27 May 2002; published 19 September 2002)

We study the stability properties of the Kidder-Scheel-Teukolsky (KST) many-parameter formulation of
Einstein’s equations for weak gravitational waves on flat space-time from a continuum and numerical point of
view. At the continuum, performing a linearized analysis of the equations around flat space-time, it turns out
that they have, essentially, no non-principal terms. As a consequence, in the weak field limit the stability
properties of this formulation depend only on the level of hyperbolicity of the system. At the discrete level we
present some simple one-dimensional simulations using the KST family. The goal is to analyze the type of
instabilities that appear as one changes parameter values in the formulation. Lessons learned in this analysis
can be applied in other formulations with similar properties.

Errors in the metric

T Errors in the metric
Densitizing the lapse I(CIP C?SE:' Adding the hamiltonian constraint (SH case)

T L L B B | T T T T TTT] T LN S e e

] T 10
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FIG. 9. L, norm of the errors for the metric. FIG. 12. L, norm of the errors for the metric.
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Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein *
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison (o) (d) e
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on 14 0.4 "’;QI”“"’.! \
Ashtekar’s connection variables. The primary advantage for using this connection formulation in 7 llllllll,,, ' 0.2 ’Q"\ " ‘\
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity. ,%,’” IIIIII| 1.2 ’ ‘ ‘ ‘ \‘ .“’5“ ’ W )
Our numerical code demonstrates gravi?ationa.l wave prop:aga.tion in plz'me-s.ymmetric spacetirpes, ity III ”””I ” I ’ IIII’III‘\' \\\\ 1 Ery 2 B2y 0Fs ’ ‘ ‘"' \‘ i.l“’”"."(\\ / . ’ vv
and we compare the accuracy of the simulation by monitoring the violation of the constraints. """: ST I {‘“’I““ 0.3 - ~0.2 \\"0 w ()

‘\\ \ ‘/

\ ),

By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail. 10.0 -5.0 10.0 -5.0

""lllllllllll\ll
LU

Figure 2. Images of gravitational wave propagation and comparisons of dynamical behaviour of
Ashtekar’s variables and ADM variables. We applied the same initial data of two +-mode pulse
- - - - waves (a = 0.2,b = 2.0, ¢ = £2.5 in equation (21) and Ky = —0.025), and the same slicing
i . ch ] i [ ] i] - 1b Cc i condition, the standard geodesic slicing condition (N = 1). (a) Image of the 3-metric component
at E a = _ID J (6 a Iy E C E ]9) + 2D J (N E a ) + 1A() Gab E c? gyy of a function of proper time 7 and coordinate x. This behaviour can be seen identically both
in ADM and Ashtekar evolutions, and both with the Brailovskaya and Crank—Nicholson time-
a - ab nd ] c P, a integration scheme. Part (b) explains this fact by comparing the snapshot of g, at the same proper
8t Ai = —1€ c N Eb Fi . + N] F i + Dl A ) time slice (z = 10), where four lines at T = 10 are looked at identically. Parts (c) and (d) are of the
~ J J real part of the densitized triad E3, and the real part of the connection .42, respectively, obtained
from the evolution of the Ashtekar variables. )
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Hyperbolic formulations and numerical relativity:
experiments using Ashtekar’s connection variables
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Abstract. In order to perform accurate and stable long-time numerical integration of the Einstein
equation, several hyperbolic systems have been proposed. Here we present a numerical comparison
between weakly hyperbolic, strongly hyperbolic and symmetric hyperbolic systems based on
Ashtekar’s connection variables. The primary advantage for using this connection formulation in
this experiment is that we can keep using the same dynamical variables for all levels of hyperbolicity.
Our numerical code demonstrates gravitational wave propagation in plane-symmetric spacetimes,
and we compare the accuracy of the simulation by monitoring the violation of the constraints.
By comparing with results obtained from the weakly hyperbolic system, we observe that the
strongly and symmetric hyperbolic system show better numerical performance (yield less constraint
violation), but not so much difference between the latter two. Rather, we find that the symmetric
hyperbolic system is not always the best in terms of numerical performance.

This study is the first to present full numerical simulations using Ashtekar’s variables. We
also describe our procedures in detail.

= —iD; (e’ ,NE/E}) +2D;(NVE) +iAbe,,c E\ + kP!, COSHY,

where P'yp = N'0ap +iNey, EL,

—ie NE) Ff; + NV F§, + DA+ k QICH + kR ot

where QY =e *NEY, R/ =ie *Ne“,E'E/.
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Figure 6. Comparisons of the ‘adjusted’ system with the different multiplier, «, in equations (31)
and (32). The model uses +-mode pulse waves (a = 0.1, b = 2.0, ¢ = £2.5) in equation (21) in a
background Ko = —0.025. Plots are of the L2 norm of the Hamiltonian and momentum constraint

equations, CI‘_}SH and Cf,ISH ((a) and (b), respectively). We see some k produce a better performance
than the symmetric hyperbolic system.

No drastic differences in stability
between 3 levels of hyperbolicity.



BSSN Pros:

e With Bona-Masso-type o (1+log), and frozon 3 (0;I"" ~ 0), BSSN plus auxiliary
variables form a 1st-order symmetric hyperbolic system,

Heyer-Sarbach, [PRD 70 (2004) 104004]

e If we define 2nd order symmetric hyperbolic form, principal part of BSSN can be
one of them,

Gundlach-MartinGarcia, [PRD 70 (2004) 044031, PRD 74 (2006) 024016]

BSSN Cons:

e Existence of an ill-posed solution in BSSN (as well in ADM)
Frittelli-Gomez [JMP 41 (2000) 5535]

e Gauge shocks in Bona-Masso slicing is inevitable. Current 3D BH simulation is
lack of resolution.

Garfinke-Gundlach-Hilditch [arXiv:0707.0726]



strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES" group

“Well-posed!”, [|u(t)|| < e"||u(0)]]
Mathematically Rigorous Proofs

IBVP in future
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Consistent treatment is available 4
only for symmetric hyperbolic
systems. t

GR-IBVP
Stewart, CQG15 (98) 2865
Tetrad formalism =0 X
Friedrich & Nagy, CMP201 (99) 619
Linearized Bianchi eq.
Buchman & Sarbach, CQG 23 (06) 6709 " Weakly hyp. 8
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strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES" group “Really?”" group
“Well-posed!”, [|u(t)|| < e"||u(0)]] “not converging”, still blow-up
Mathematically Rigorous Proofs Proofs are only simple egs.

Discuss only characteristic part.
gnore non-principal part.

IBVP in future




strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES" group “Really?”" group
“Well-posed!”, [|u(t)|| < e"||u(0)]] “not converging”, still blow-up
Mathematically Rigorous Proofs Proofs are only simple egs.

Discuss only characteristic part.
gnore non-principal part.

IBVP in future

Which level of hyperbolicity is necessary?

symmetric hyperbolic C strongly hyperbolic C weakly hyperbolic systems,

Advantages in Numerics (90s)

Advantages in sym. hyp.
— KST formulation by LSU




strategy 2| Hyperbolic formulation (cont.)

Are they actually helpful?

“YES" group “Really?”" group
“Well-posed!”, [|u(t)|| < e"||u(0)]] “not converging”, still blow-up
Mathematically Rigorous Proofs Proofs are only simple egs.

Discuss only characteristic part.
gnore non-principal part.

IBVP in future

Which level of hyperbolicity is necessary?

symmetric hyperbolic C strongly hyperbolic C weakly hyperbolic systems,

Advantages in Numerics (90s) These were vs. ADM
Advantages in sym. hyp. Not much differences in hyperbolic 3 levels
— KST formulation by LSU — FR formulation, by Hern

— Ashtekar formulation, by HS-Yoneda
sym. hyp. is not always the best
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[Keyword 1]

Summary up to here (1st half)

Formulation Problem
Although mathematically equivalent, different set of equations
shows different numerical stability.

[Keyword 2] ADM formulation

[Keyword 3]

[Keyword 4]

The starting formulation (Historically & Numerically).
Successes in 90s, but not for binary BH-BH /NS-NS problems.

BSSN formulation

New variables and gauge fixing to ADM, shows better stability.

The reason why it is better was not known at first.

Many simulation groups uses BSSN. Technical tips are accumulated.

hyperbolic formulations

Mathematical classification of PDE shows "well-posedness", but its meaning
is limited.

Many versions of hyperbolic Einstein equations are available.

Some group try to show the advantage of BSSN using "hyperbolicity".

But are they really helpful in numerics?



Goals of the Lecture

What is the guiding principle for
selecting evolution equations for
simulations in GR?

Why many groups use the BSSN
equations?

Are there an alternative formulation 1w s ee wee e
better than the BSSN?



strategy 3‘ “Asymptotically Constrained” system /“Constraint Damping” system

Formulate a system which is “asymptotically constrained” against a violation of constraints
Constraint Surface as an Attractor

method 1: \-system (Brodbeck et al, 2000)

e Add aritificial force to reduce the violation of

/ \ constraints

/4 \ e To be guaranteed if we apply the idea to a sym-
< P metric hyperbolic system.
T
~_ A t=0 method 2: Adjusted system (Yoneda HS, 2000,
2001)
Constrained / Surface e We can control the violation of constraints by

(satisfies /Einstein's constraints)

adjusting constraints to EoM.

e Eigenvalue analysis of constraint propagation
equations may prodict the violation of error.

e This idea is applicable even if the system is not

symmetric hyperbolic. =
for the ADM /BSSN formulation, too!!




ldea of \-system
Brodbeck, Frittelli, Hiibner and Reula, JMP40(99)909

We expect a system that is robust for controlling the violation of constraints

Recipe
1. Prepare a symmetric hyperbolic evolution system O = Jou+ K

2. Introduce A as an indicator of violation of constraint 9\ = aC — 3\

which obeys dissipative eqs. of motion (a#0,8>0)
: : u A 0 U
3. Take a set of (u, \) as dynamical variables Oy ()\) ~ (F O) 0; ()\)
4. Modify evolution eqs so as to form 5 (u) B (A F) 5 (u)
a symmetric hyperbolic system W) \F 0) T
Remarks

e BFHR used a sym. hyp. formulation by Frittelli-Reula [PRL76(96)4667]

e The version for the Ashtekar formulation by HS-Yoneda [PRD60(99)101502]
for controlling the constraints or reality conditions or both.

e Succeeded in evolution of GW in planar spacetime using Ashtekar vars. [CQG18(2001)441]
e Do the recovered solutions represent true evolution? by Siebel-Hiibner [PRD64(2001)024021]

e The version for Z4 hyperbolic system by Gundlach-Calabrese-Hinder-MartinGarcia [CQG22(05)3767]
= Pretorius noticed the idea of " constraint damping” [PRL95(05)121101]
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Maxwell-lambda system works
as expected.
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Figure 1. Demonstration of the A system in the Maxwell equation. (a) Constraint violation (L2
norm of Cg) versus time with constant 8 (= 2.0) but changing «. Here @ = 0 means no A system.
(b) The same plot with constant & (= 0.5) but changing 8. We see better performance for § > 0,
which is the case of negative eigenvalues of the constraint propagation equation. The constants in
(2.18) were chosen as A =200 and B = 1.
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Ashtekar-lambda system works
as expected, as well.
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Figure 3. Demonstration of the A system in the Ashtekar equation. We plot the violation of the
constraint (the L2 norm of the Hamiltonian constraint equation, Cp ) for the cases of plane-wave
propagation under the periodic boundary. To see the effect more clearly, we added an artificial error
att = 6. Part (a) shows how the system goes bad depending on the amplitude of artificial error.
The error was of the form Ag — Ag (1 + error). All the curves are of the evolution of Ashtekar’s
original equation (no A system). Part (b) shows the effect of the A system. All the curves have
20% error amplitude, but show the difference of the evolution equations. The full curve is for
Ashtekar’s original equation (the same as in (a)), the dotted curve is for the strongly hyperbolic
Ashtekar equation. Other curves are of A systems, which produce a better performance than that
of the strongly hyperbolic system.



ldea of “Adjusted system”™ and Our Conjecture
CQG18 (2001) 441, PRD 63 (2001) 120419, CQG 19 (2002) 1027

General Procedure
1. prepare a set of evolution egs. ou® = f(u®, Opu, - - -)

2. add constraints in RHS du® = f(u®, dpus,---)+F(C* 9,C°, )

3. choose appropriate F(C, 9,C%, - -)
to make the system stable evolution

How to specify F'(C*, 9,C%, --+) ?
4. prepare constraint propagation egs. 9, C* = g(C*, 0,C?, - )

5. and its adjusted version 0,C* = g(C*, 0,C, - - ) +G(C, 0,C", - - )

6. Fourier transform and evaluate eigenvalues 9,C* = A(C") C*

N——

Conjecture: Evaluate eigenvalues of (Fourier-transformed) constraint propagation egs.
If their (1) real part is non-positive, or (2) imaginary part is non-zero, then the system is more stable.




Example: the Maxwell equations

Yoneda HS, CQG 18 (2001) 441

Maxwell evolution equations.

OE; = ce"0,B, + P,Cp +Q; Cp, sym. hyp & P =Q;=R;=5=0,
0;B; = —ce/"0,Ey + R Cp + S; Cp, strongly hyp < (P, — S;)° +4R,Q; > 0,
Cp=0,F"~0, Cp=0B ~0, weakly hyp & (B — 5i)* +4R,Q; > 0

Constraint propagation equations

0,Cgp = (&PZ)CE + P%@ZCE) + ((ZQZ)CB + QZ(@Z'CB),
0,Cp = (O;R)Cg + R(9,Cg) + (8;S")Cp + S (9,Cp),
sym. hyp & Q= R,

strongly hyp < (P — S;)* + 4R,Q; > 0,
| weakly hyp < (P — S;)> +4R:Q; > 0

CAFs?
5 (Q’E) B (8¢Pi+Piki @Qi‘FQikz)a (QE)N(PZkz Qiki) (QE) _.T((?E)
"\Cs) — \OR + Rk 05 +Sk ) '\Cp) " \REk Sk )\Cg) " \Cp

= CAFs = (P'k; + S'k; £ (P'k; + S'k;)2 + 4(Q'k; Rikj — Pik;S7k;)) /2

Therefore CAFs become negative-real when

P'k;+ S'k; < 0, and Q'k;R'k; — P'k;Sk; <0
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Adjusted-Maxwell system works as well. =~ = **% TTo—. T |
-2.00 e
) ) ) ) L K=+ 0.2 ]
3.2.1. Adjusted system. Here we again consider the Maxwell equations (2.9)—(2.11). We L 7
start from the adjusted dynamical equations I ]
& E; = ce By + PiCp + p’:(3;Cg) + QiCp + ¢’ (9;Cp), 3.7 -2.50 -— — — — — ‘
e r p"’ £)+ Gl qf(f ) G-7) 0.0 2.0 4.0 6.0 8.0 10.0
0; B; =—ce,-kajEk+Rl~CE+rf,-(8jCE)+S,~CB +SJ,'(8J'CB), (38) time
where P, Q, R, S, p,q,r and s are multipliers. These dynamical equations adjust the . ) ] ) )

. . . Figure 4. Demonstrations of the adjusted system in the Maxwell equation. We perform the same
constraint propagation equations as experiments with section 2.2.3 (figure 1). Constraint violation (L2 norm of Cg) versus time are
9,Cp = (8iPi)CE + Pi(ai Cg) + (9; Qi)CB + Qi(ai Cp) plotted for. various k (= p/; = sj,-): We see thgt/( >0 gives ab«.etter perfqrmance (.e. ne.gative

- - - - real part eigenvalues for the constraint propagation equation), while excessively large positive «
+@ ™)@ Cr) + p7 (3:0,CE) + (ig”) (0;Cp) + 7 (3:0;C), (3.9 makes the system divergent again.
9Cp = (0; R)CE + R'(3;Cg) + (0;S)Cp + S'(3;Cp)
+(3;r7")(8;CE) +1r71(8;0;CE) + (3;57)(3,Cp) + 57" (3;0;Cp). (3.10)

This will be expressed using Fourier components by
3 (6E> (8,-Pi+iPik,-+ikj(8ipfi)—kikjpf" 8,-Qi+iQiki+ikj(8,~qfi)—kiqufi>
' éB N 8,-Ri+iRiki+ikj(8,~rji) —kikj}"ji 3,'Si +iSiki+ikj(8,'Sji) —kikjsji

x(CE>:T<CE) (3.11)
Cp Cp



Example: the Ashtekar equations
HS Yoneda, CQG 17 (2000) 4799

Adjusted dynamical equations:

OE, = —iD;(e? NE!E}) 4+ 2D;(NVE]) + iAje, EL+X.Ch + Y,'Car; + B,'Ca
adﬁst
QA = —ie" NE|FS + NVFf,+ DA+ ANE +Q{Cy + R Cuy; + Z{"Cay
adjust

Adjusted and linearized:
X=Y=2=0, P“= k1 (iN6}), Q* = ko(e 2NE?), RY; = k3(—ie 2Ne*EIEJ)

Fourier transform and extract Oth order of the characteristic matrix:

Cu 0 i(142k3)k; 0\ [ Cy
c‘?t CM?L = i(l — 2/@2)]@ /igekji/{k 0 CM]'
Caa 0 2307 0/ \ Cayp

Eigenvalues:

(O, 0, 0, ﬂ:/ig\/—kilf2 — ky? — k22, j:\/(—l + 2k9)(1 + 2K3)(kx? + ky? + k22)>
In order to obtain non-positive real eigenvalues:

(—1 + 2/%2)(1 + 2/433) < 0
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Adjusted-Ashtek tem work [T
justed-Ashtekar system works as well. ; ST
L N k=1.0 (strongly hyp.
3.3.1. Adjusted system for controlling constraint violations. ~Here we only consider the 0.040 | :
adjusted system which controls the departures from the constraint surface. In the appendix, I &
we present an advanced system which controls the violation of the reality condition together g i ’&\
with a numerical demonstration. .- 0.030 | i
Even if we restrict ourselves to adjusted equations of motion for (E’, A¢) with constraint 5 - b
terms (no adjustment with derivatives of constraints), generally, we could adjust them as g 000 | H
=} . v
= .
O E, = —iD;(e” ,NE!E}) +2D;(NVE) +iAfe,, ‘E. + X\Cy + Y/ Cyj + PCap, 3 f Yk
I i
(3.14) 0.010 ‘ !
O A¢ = —ie”’ NEj Ff;+ NF§, + DiA§ + ANE{ + QCy + R7“Cyr; + Z{"Ciy, (3.15)
i) ; j - . o 0.000 ‘ L ‘
where X', Y, Z%, P’ Q% and R’ are multipliers. However, in order to simplify the 8.0 120 16.0
discussion, we restrict multipliers so as to reproduce the symmetric hyperbolic equations )
of motion [10, 11], i.e. time

Figure 5. Demonstration of the adjusted system in the Ashtekar equation. We plot the violation of
the constraint for the same model as figure 3(b). An artificial error term was added at r = 6, in the
form of A§ — Ag (1+ error), where error is + 20% as before. (a), (b) L2 norm of the Hamiltonian

X=Y=72=0,

Pi b = K| (Nl Sb +iNe be E‘i ) constraint equation, C, and momentum constraint equation, Cyy,, respectively. The full curve is
a a ~ 4 e the case of k = 0, that is the case of ‘no adjusted’ original Ashtekar equation (weakly hyperbolic
a 2 Pa (3 16) system). The dotted curve is for k = 1, equivalent to the symmetric hyperbolic system. We see
Q i — K2 (e Iy E i ), that the other curve (k = 2.0) shows better performance than the symmetric hyperbolic case.

R = k3(ie > Ne“, EPEY).



The Adjusted system (essentials):

Purpose: Control the violation of constraints by reformulating the system so as to have a
constrained surface an attractor.

Procedure: Add a particular combination of constraints to the evolution equations, and adjust
its multipliers.

Theoretical support: Eigenvalue analysis of the constraint propagation equations.
Advantages: Available even if the base system is not a symmetric hyperbolic.

Advantages: Keep the number of the variable same with the original system.

Conjecture on Constraint Amplification Factors (CAFs):

(A) If CAF has a negative real-part (the constraints are forced to be diminished), then we see more
stable evolution than a system which has positive CAF.

(B) If CAF has a non-zero imaginary-part (the constraints are propagating away), then we see more
stable evolution than a system which has zero CAF.




Adjusted ADM systems

PRD 63 (2001) 120419, CQG 19 (2002) 1027

We adjust the standard ADM system using constraints as:

Oyij = —2aKi;+ VB + Vb,
+PH + Q%M + 0" (ViH) + ¢ (ViM,),

—|‘R¢jH + Skw./\/lk + Tkw(ka) + Sklij(vk./\/l[),

with constraint equations

H = R(3)+K2—KZ‘]‘KU,
MZ' L= VJK]Z—VZK

O I = ozRS$> +aK K — 20K K" —V,V,a+ (V.8 Ky, + (V") Ky + 8"V K

(1)
(2)
(3)
(4)

—~
Sy O
— —

We can write the adjusted constraint propagation equations as

OH = (original terms) + H{™[(2)] + Hy™"9,[(2)] + H5"™"9,0,((2)] + H{™[(4)],

(7)

(%/\/ll- — (original terms) + Mhmn[(2>] + Mgﬂmn@[@)] + Mgzmn[<4)] + M4Z]mn5’][(4>]<8)




Original ADM | The original construction by ADM uses the pair of (h;;, 7).

g 1
L = \/— RZ\/EN[(g)R—KQ—FKZjKZ]], where Kz’j:§£nhz’j

then 7% = oL —\/_(K” Kh'),
Ohy,

The Hamiltonian density gives us constraints and evolution egs.

H = why; = £ = VR{NH(h,7) = 2N;M (h, ) +2D,(h~2N;7)}

' oH N 1
&lej = 571'&‘77_[ = 2@(77’2']' — éhijﬂ') + 2D(ZN) . .
- 1 . 1 1 . : 1 -
ol = — — /AN Rzy ~(3 )Rhm hzy - mn T2\ 9" (min nj i
s 5T VAN (8 5 )+ NG (T — T ) \/E<7T m ST )
k +VR(D'DIN — h'iD™D,,N) + VhD,,(h"/2N™"7ii) — 27 D, , NJ)

Standard ADM (by York) | NRists refer ADM as the one by York with a pair of (h;;, K;;).

Ohiy; = —2NK,;;+ D;N; + D;N;,
0;Kij = N(®R;;+ KK;;) —2NKyK'; — D;D;N 4 (D;N™)K,; + (D;N™) K ,j + N" Dy, K

In the process of converting, 'H was used, i.e. the standard ADM has already adjusted.




3 Constraint propagation of ADM systems

3.1 Original ADM vs Standard ADM

0 the standard ADM
—1/4 the original ADM

e The constraint propagation eqs keep the first-order form (cf Frittelli, PRD55(97)5992):

()= (o g 0005) o

The eigenvalues of the characteristic matrix:
A= (8,8, 8"+ a2yl (1 + 4ky))

[ symmetric hyperbolic when x; = 3/2

Try the adjustment R;; = k1ay;; and other multiplier zero, where k1 = {

The hyperbolicity of (5): { strongly hyperbolic ~ when o?~4"(1 + 4x;) > 0

| weakly hyperbolic when oy (1 + 4k1) > 0

e On the Minkowskii background metric, the linear order terms of the Fourier-transformed
constraint propagation equations gives the eigenvalues

A= (0,0, 4/ —k2(1 + 4r1)).

(two Os, two pure imaginary) for the standard ADM BETTER STABILITY
(four Os) for the original ADM

That s, {



Comparisons of Adjusted ADM systems (Teukolsky wave)

3-dim, harmonic slice, periodic BC HS original Cactus/GR code
10° /
=
‘s 107 - .
= Original ADM
5
O 1072 ]‘lH
g
i Standard ADM
S8 3
= 1070 4 .
£ ‘1‘
i&‘ A Adjusted ADM (SimpDet)
“— 10-4 B el A i
o AT Ny
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Q 5
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—
107 | |
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time

Figure 1: Violation of Hamiltonian constraints versus time: Adjusted ADM systems applied for Teukolsky wave initial data evolution
with harmonic slicing, and with periodic boundary condition. Cactus/GR/evolveADMeq code was used. Grid = 243, Az = 0.25, iterative
Crank-Nicholson method.



4 Constraint propagations in spherically symmetric spacetime

4.1 The procedure

The discussion becomes clear if we expand the constraint C), := (H, M) using vector harmonics.

O,u = > (Alm<t, T)G,lm(e, gD) + Blmbgm + Clmclm —+ Dlmdlm) , (1)
Im
where we choose the basis of the vector harmonics as
Yin, 0 0 0
0 0 ho_ Yin S r 0 g r 0
" o 1" o T ) | 0 | i+ 1) | 55500 Yim
0 0 Qlem sin @ O Y,

The basis are normalized so that they satisfy
(Cy,Cy) = 027 dy /OW C,C,n"" sinOdo,
where 1"? is Minkowskii metric and the asterisk denotes the complex conjugate. Therefore
A = (alh, Cy,  BA™ = (a(), 0Cy), et

We also express these evolution equations using the Fourier expansion on the radial coordinate,

Al = % AZ(ZL) (t) e etc. (2)
So that we will be able to obtain the RHS of the evolution equations for (AZ(ZL) (1), -, ZA?% ()t

in a homogeneous form.



4.2 Constraint propagations in Schwarzschild spacetime

1. the standard Schwarzschild coordinate

2M dr?
2 1AM 2
ds” = (L= )+ o,

+ 7r2d0?, (the standard expression)

2. the isotropic coordinate, which is given by, r = (1 + M /27;5,)*7is0:

1_M/2Tz'30
1—|—M/27°Z'50

ds* = —( VHdri, 4+ 72, d9A, (the isotropic expression)

150 150

2 742
dt 1
> " < " 2702'30

3. the ingoing Eddington-Finkelstein (iEF) coordinate, by t;pr =t + 2M log(r — 2M)

2M AM 2M
ds* = —(1 — =)dt’pp + ——dtippdr + (1 4+ ——)dr* + r*dQ*  (the iEF expression)
r r r
4. the Painlevé-Gullstrand (PG) coordinates,
2M 2M
ds* = — (1 — ) dtpe + 2| ——dtpg dr + dr® + r*dQ* (the PG expression)
r r

which is given by tpg =t + V8Mr — 2M log{(\/r/2M + 1)/(r/2M — 1)}



Example 1: standard ADM vs original ADM (in Schwarzschild coordinate)
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Figure 1: Amplification factors (AFs, eigenvalues of homogenized constraint propagation equations) are shown for the standard
Schwarzschild coordinate, with (a) no adjustments, i.e., standard ADM, (b) original ADM (kg = —1/4). The solid lines and
the dotted lines with circles are real parts and imaginary parts, respectively. They are four lines each, but actually the two
eigenvalues are zero for all cases. Plotting range is 2 < r < 20 using Schwarzschild radial coordinate. We set £k = 1,1 = 2, and
m = 2 throughout the article.

Ovij = —2aK;+ V6 + V0,
8th‘j = &RZ(?) +aKK;j — QQKZ'/{;KICJ' - V;V,a+ (VZﬁk>K}C] + (Vjﬁk>Kkz + 5kkaZ] + krayiiH,



Example 2:
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Figure 2: Amplification factors of the standard Schwarzschild coordinate, with Detweiler type adjustments. Multipliers used in
the plot are (b) Ky, = +1/2, and (¢) kK, = —1/2.

@%‘j
ath'j

(original terms) + P, ’H,

(original terms) -+ R, /H + S*; i My, + 5™, (ViM,),

_ 3
where f)z'j — —RLO 75,

Rij = ko’ (Kij — (1/3)K~i)),

S*y = kr?[3(030)0) — ()™, sMiy = kra’[605 — (1/3)yy™],



Detweller’s criteria vs OQur criteria

e Detweiler calculated the L2 norm of the constraints, C,,, over the 3-hypersurface and imposed
its negative definiteness of its evolution,

Detweiler’s criteria < 875/202 dV <0,

This is rewritten by supposing the constraint propagation to be 0,C, = AOﬁCA’ﬁ in the Fourier
components,

& 8t/ZC’@6’a dV = /ZAaﬁé’géa -+ C’@Aaﬁé’g dV < 0, V non zero C’a

& eigenvalues of (A + A") are all negative for Vk.

e Qur criteria is that the eigenvalues of A are all negative. Therefore,

Our criteria © Detweiler’s criteria

e We remark that Detweiler’'s truncations on higher order terms in C'-norm corresponds our
perturbative analysis, both based on the idea that the deviations from constraint surface (the

errors expressed non-zero constraint value) are initially small.



Constraint propagation of ADM systems

(2) Detweiler’s system

Detweiler's modification to ADM [PRD35(87)1095| can be realized in our notation as:
Pj = —La’y,
Rij = Lo’ (Ky — (1/3)Kry),
Sfj = L@Q[S@(z‘@)(ﬁ) — (@Oé)%ﬂkl],
sf} = Lozg[%@-é;) — (1/3)viy™, and else zero, where L is a constant.
e This adjustment does not make constraint propagation equation in the first order form, so
that we can not discuss the hyperbolicity nor the characteristic speed of the constraints.

e For the Minkowskii background spacetime, the adjusted constraint propagation equations
with above choice of multiplier become

OH = —2(0;M;) +4L(0,0,H),
M = —(1/2)(OH) + (L/2)(0k0pM;) + (L/6)(0;0.My).
Constraint Amp. Factors (the eigenvalues of their Fourier expression) are
Al = (—(L/2)k*(multiplicity 2), —(7L/3)k* & (1/3)/k2(—9 + 25L2k2).)

This indicates negative real eigenvalues if we chose small positive L.




Example 3: standard ADM (in isotropic/iEF coord.)

(b)
(a) iEF coordinate, no adjustments (standard ADM)
isotropic coordinate, no adjustments (standard ADM) ™ 2
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Figure 3: Comparison of amplification factors between different coordinate expressions for the standard ADM formulation (i.e.
no adjustments). Fig. (a) is for the isotropic coordinate (1), and the plotting range is 1/2 < r;5,. Fig. (b) is for the iEF
coordinate (1) and we plot lines on the ¢t = 0 slice for each expression. The solid four lines and the dotted four lines with circles
are real parts and imaginary parts, respectively.



Example 4:
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Figure 4: Similar comparison for Detweiler adjustments. x; = +1/2 for all plots.



“Einstein equations” are time-reversal invariant. So ...

Why all negative amplification factors (AFs) are available?

Explanation by the time-reversal invariance (TRI)

e the adjustment of the system I,

adjust term to QLKU = K1Y H
) Oy (+) (7 )
preserves TRI. ... so the AFs remain zero (unchange).

e the adjustment by (a part of) Detweiler

adjust term to Qf/%j =—-Lav;H

S (+) () (1)
violates TRI. ... so the AFs can become negative.

Therefore

We can break the time-reversal invariant feature of the “ADM equations”.




Adjusted ADM systems

PRD 63 (2001) 120419, CQG 19 (2002) 1027

We adjust the standard ADM system using constraints as:

Opyij = —20K;; + V0 + V[, (1)
+PH + Q"M+ 0" (ViH) + ¢ (ViMy), (2)
0K, = aRY +aKK;; — 20K K", — V¥V 0+ (Vi) Ky + (V8" K + 8V K 5(3)
+RiH A+ SY My 4+ 18 (VH) + 8T (VM) (4)

with constraint equations
H = R® 4 K? - K;; K", (5)
M; = V,K’; — VK. (6)

We can write the adjusted constraint propagation equations as

M = (original terms) + H{"™[(2)] + Hy""0,[(2)] + Hy™"0,0,[(2)] + H{™[(4)], ()
(915/\/1@- — (original terms) + Mlzmn[<2)] -+ Mgz‘jmna][(Q)] + Mgzmn[(4)] + M4Z]mna][(4>](8)



Table 3. List of adjustments we tested in the Schwarzschild spacetime. The column of adjustments are nonzero multipliers in terms of (13) and (14). The column ‘1st?’ and “TRS’ are
the same as in table 1. The effects to amplification factors (when « > 0) are commented for each coordinate system and for real/imaginary parts of AFs, respectively. The ‘N/A’ means
that there is no effect due to the coordinate properties; ‘not apparent’ means the adjustment does not change the AFs effectively according to our conjecture; ‘enl./red./min.” means

enlarge/reduce/minimize, and ‘Pos./Neg.” means positive/negative, respectively. These judgements are made at the r ~ O (10M) region on their ¢ = 0 slice.

No in Schwarzschild/isotropic coordinates iEF/PG coordinates
No table 1 Adjustment Ist? TRS  Real Imaginary Real Imaginary
0 0 no adjustments yes - - - - -
P-1 2-P P;j —kra’y; | no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
pP-2 3 P;; —KLaYij no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
P-3 - P;; P, = —kor P, = —k« no no slightly enl.Neg. not apparent  slightly enl.Neg. not apparent
P-4 - P; —KYij no no makes 2 Neg. not apparent  makes 2 Neg. not apparent
P-5 - Pij —K Vrr no no red. Pos./enl.Neg. not apparent  red.Pos./enl.Neg. not apparent
Q-1 - Qk,'j kapt Vij no no N/A N/A k ~ 1.35 min. vals.  not apparent
Q-2 - ok i Q' =k no yes red. abs vals. not apparent  red. abs vals. not apparent
Q-3 Qkij Q"ij =kyijor Q" = kay;; no yes red. abs vals. not apparent  enl.Neg. enl. vals.
Q-4 - ok i O =KVer no yes red. abs vals. not apparent  red. abs vals. not apparent
R-1 1 R;j KFaYij yes yes kr = —1/4 min. abs vals. kr = —1/4 min. vals.
R-2 4 R;; Ry = —kyaor Ry = —ky, yes no not apparent not apparent  red.Pos./enl.Neg. enl. vals.
R-3 - R;; Ry = —KVyr yes no enl. vals. not apparent  red.Pos./enl.Neg. enl. vals.
S-1 2-S Sk, j Ko’ [3(8(,-05)51]‘.) — (O@)yij Y1 yes no not apparent not apparent  not apparent not apparent
S-2 - Sk | kay® @y, i) yes  no makes 2 Neg. not apparent ~ makes 2 Neg. not apparent
p-1 - pk,-] plij = —kay;j no no red. Pos. red. vals. red. Pos. enl. vals.
p-2 - pkij P =ka no no red. Pos. red. vals. red.Pos/enl.Neg. enl. vals.
p-3 - pk,-j P = KaYyy no no makes 2 Neg. enl. vals. red. Pos. vals. red. vals.
q-1 - qklij q"ij = Kkay;; no no k = 1/2 min. vals.  red. vals. not apparent enl. vals.
q-2 - gk i g = Koy, no yes red. abs vals. not apparent  not apparent not apparent
r-1 - rk; ; r’ii = Kkay;j no yes not apparent not apparent  not apparent enl. vals.
r-2 - rk; | r' = —ka no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
r-3 - rk; J e = =Ky no yes red. abs vals. enl. vals. red. abs vals. enl. vals.
s-1 2-s skl,-j KLO£3[555§-) — (1/3)yij ! no no makes 4 Neg. not apparent  makes 4 Neg. not apparent
s-2 - sk, | s = —kay;j no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.
s-3 - skl ij S = —KA Yy no no makes 2 Neg. red. vals. makes 2 Neg. red. vals.
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Numerical Tests (method)

- Cactus-based original “GR” code

http://www.cactuscode.org/
[CactusBase+CactusPUGH+GR]

- 3+1dim, linear wave evolution

(Teukolsky wave)

- harmonic slice

- periodic boundary, [-3,+3]

- |terative Crank-Nicholson method
- 1273, 2473, 4873, 963

Towards standard testbeds for numerical relativity
Mexico Numerical Relativity Workshop 2002 Participants
CQG 21 (2004) 589-613



error (norm of Hamiltonian constraint)

Numerical Tests (Detweiler-type)

Orvy = —20Ki;+ Vil + VB — ko, H PRD35(1987)1095
8Ky = aRY + aK Ky — 20Ky K*; — ViV, + (Vi Ky, + (V85 Ky + ¥V K,
+/<;Lc;v3([x (1/3)K7i) H + ko “I3 (O (y)d — {010 )%y ,“]Mk
+rpa®[0505 — (1/3)v7™]) (VM)

2473

ADM (standard)
Detweiler k=0.025
-1 Detweiler k=0.01 -1

T T T T T T T T T T T T T T T . 0 1
10 Detweiler k=0.005 | 0

ADM (standard)
Detweiler 4873 k=0.02
Detweiler 48"3 k=0.01
Detweiler 483 k=0.005 |
Detweiler 4823 k=0.0025 |

48"3
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T T TTTTT
1

I
1

1

10° 107
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107 10
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error (norm of Hamiltonian constraint)
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Numerical Tests (Simplified Detweiler)

&%j = —204ng S V?ﬂj + Vjﬁg — KLYy H
. (3) k k k k
8,;[(@- — OJR@' -+ OZKK@' — 20K K j— VZ'VJ'OZ -+ (Vzﬁ )Kkj -+ (V,,ﬂ )Km‘ -+ 6 ka@'j
0 ADM (standard) 2413 ; ADM (standard) 483

107 ¢ { : simp. Det. 243 k=01 |3 107 — - ; simp. Det. 483 k=0.01
= § simp. Det. 24A3k=0.05 | T = - simp. Det. 483 k=0.0025 -
C - . _ 4 C - J
-§ i simp. Det. 2473 k=0.01 | | -§ i i
W 107 L - B i i
S - & 10% - E
& N i (&) o a
(- n _ C r i
© 2 o i ]
C 10 = — [
L2 - 1 L I |
£ - - E 10° ]
© . © [ ]
L 10% % - \ ]
© ;‘ ] o i
£ 1 E |
@) B 3 . e) 10-4 - |
£ 10_4 — t‘ﬂ't = = ; ;
S - St S i ]
& i | 1o - 1 '
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time time



Numerical Tests (Detweiler, k-adjust)

Orvii = —2aK;;+Vif;+ V6 — K rovii H

Oy = (:YRE;) ot (ZYKK.,-.,- — 2('YK,';{I\"I‘ i — MY q00+ V-(’?k)[\"k.,' + ( Vjﬁk VK + ,A’?kaKZ;J-
Fip o K;; — (1/3)K~;;) H+ kraf ] (Opucx) () — (Ov) ,,,',”| M,
'I—H.,,('r:;[()'(/‘,()'i) — (1 /-':>,-‘,-,.,-",-/‘/| (VM)

ADM (standard)
Detweiler k=0.05
2413 Zero
10-1 L — L —— — Detweiler k=0.05 cut 10/\{'4} 10-1 all
= Detweiler k=0.05 cut 107{-5}
= B ‘ cut4
.% i i cuts
% 102 L I 102
C C -
O C 7
(&) L 4
S i 1
= 10° [ T i 1 10°
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E B | ]
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Numerical Tests (Detweiler, k-adjust)

Oryi; = —20Ky;+ ViB; + VB — kray; H
Oy = (ZYR,,(;;) + aKK;j — 20K K*; — V,V,a + (Vi85 Ky; + (V85 Ky + B*Vi K

Fepot (K — (1/3)Kv)) H+ K /_,(_vi)[.’»’( 0, ,(1*)(5?') - ((‘)/(y)",v,_,,ﬂ,-/"/| M,
Frpa®[0g0h — (1/3)7i4™) (VeM))

ADM (standard)
1273 Detweiler k=0.05, slope1-4
Detweiler k=0.05, slope1-5 ; zero
10" Detweiler k=0.05, slope1-6 | 10 all

& Detweiler k=0.05 H
= - H slope15
c L i slope16
S 10?7 . 102
& - E
Q ]
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Numerical Tests (Detweiler, k-adjust)

Orvii = —2aK;;+Vif;+ V6 — K Loy H
oK = (ZYREJ) + aK K — 2aK; K l‘\‘,‘ — ViV -+ (V(:,dl‘)[\. ki + (V‘.,;dk)[\ P VB
Fepo (K — (1/3)K7) H + ko [3(00 ﬁ)()ﬁf) — (v }”,,,'“;/'/] M,

... “A E/ [ £9% \‘/ { / .
bR ’[(){,()” — l/.%)";,,‘-/ ] (VM)
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APCTP Winter School, January 25-26, 2008

Formulation Problem in Numerical Relativity

Hisaaki Shinkai (Osaka Institute of Technology, Japan)
17t ol Sl Ator7

1. Introduction
2. The Standard Approach to Numerical Relativity
ADM /BSSN /hyperbolic formulations
3. Robust system for Constraint Violation
Adjusted systems
Adjusted ADM system -- why the standard ADM brows up?
Adjusted BSSN system -- should be better than BSSN
4. Outlook



strategy 1| Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation

T. Nakamura, K. Oohara and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)
M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995)
T.W. Baumgarte and S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)

The popular approach. Nakamura's idea in 1980s.
BSSN is a tricky nickname. BS (1999) introduced a paper of SN (1995).

e define new set of variables (¢, %j,K,Aij,ﬁ), instead of the ADM’s (,;,K;) where

Yij = e Oy, Ay = e Ky — (13)yK), T =T,

and impose detv;; = 1 during the evolutions.

e The set of evolution equations become

(O — L) = —(1/6)aK,
(0 — Lo)yi; = —20Ay;,
0y — L3)K = aAj;AY + (1/3)aKk? — 49 (V,;V;a),
(0 — Ly)A;; = —e YV, V00" + e PaRY — e a(1/3)7,;R® + (K A;; — 243 A%))
O = —2(0;0)AY — (4/3)a(0; KA + 120 A7 (9;0) — 20 A7 (0;7™) — 20l A 1A
—0; (B o7 — 39 (08" = 7 (O + (2/3)77 (015Y))

Momentum constraint was used in ["-eq.



e Calculate Riemann tensor as

~

R;; = akrfj — @T% + Fﬂrﬁzk — Z;Ff%z =: Rjj + R?j
}??j = —2D;D;¢ — 2§;;D' D¢ +4(Di9) (Do) — 4§ij~(Dl~¢)(qu§) o
Rij = —(1/2)§"™ QunGij + GraOnT" + T*T (i + 26" TiL jyem + G T Ui

e Constraints are H, M.
But thre are additional ones, G', A, S.

Hamiltonian and the momentum constraint equations
HBSSN _ RBSSN 4+ K2 . KZ]KU,
BSSN ADM
M’i — MZ ,
Additionally, we regard the following three as the constraints:
| Ny
gz = " — /yj sz‘a
A = A7V,
S

/N 7 N
o =
N—— N—

/N N
SN
S—

Why BSSN better than ADM?
Is the BSSN best? Are there any alternatives?




Constraints in BSSN system
The normal Hamiltonian and momentum constraints

HBSSN _ RBSSN+K2 —KZJKZ], <1)
MBSSN _ MADM <2)
Additionally, we regard the following three as the constraints:
G' = I" =T, (3)
Adjustments in evolution equations
O = dfp+(1/6)aA —(1/12)771(9,8)5, (6)
0% = 0/ % — (2/3)ay; A+ (1/3)7 1 (0kS)B iy, (7)
OPK = 0K — (2/3)aK A +ae ¥ (D,;G7), (8)
0f Aij = O Ay + ((1/3)0i, K — (2/3)adij) A+ ae™ 2 ((1/2)(047) — (1/6)77H(,S))G"
+ae”¥3,(9)G") — (1/3)ae™%3;,(0,G") 9)

OFT! = 0T = ((2/3)(0;0)7" + (2/3)a(0;7"") + (1/3)a3”' 571 (9;8) — 47" (9;0)) A
—(2/3)a3"(0;A) + 205 M; — (1/2)(048)77571(0;S) + (1/6)(9;8")777 7 (OkS)
+(1/3)(0B8)3757H0;S) + (5/6)8"3 77 (9rS8)(9;S) + (1/2)3°3 (9177 (9;S)
+(1/3)8"3 19,37 )(9hS). (10)




A Full

Ais

A23

set of BSSN constraint propagation eqs.

HB5 A A Az Au Az HB5
M, —(1/3)(8204) + (1/6)({92 aK Ao 0 Ao Mj
G' | = 0 ay’ 0 Aszy Ass G’
S 0 0 0 BhS) —2a7 S
A 0 0 0 0 aK + 3%0, A

= +(2/3)aK + (2/3)aA + 3%0,
= —de”¥a(0p)7" — 267 (Ope) 7"
= 20 A0, — ae (0,47 — e (0,0) A — e ¥ 3500, — (1/2)e*3571(0,8)0),

+(1/6)e™"571(0;8%)(0kS) — (2/3)e™ " (Oh3*)0;
= 20e 7 15*(010) A0y + (1/2)ae™ %371,
—(5/4)e™*7723m3%(0,,8) 0,0 + €~ 490
+(3/4)e 4‘“ 23'57M(0,8)(9;8) 0k — (3/4) P3726(077)(9;8) 0k + (1/3)e ™37 1349 (9;87) 0,0
e OO0, + (183 0N, (10 @40
49K A (900K + (30 P (Od,2)3 + (§/Boe(@ee)05) + 000,
—|—8ae_4“’7yjk(8jg0)8k + 046_4“’&9"“8]-8/~C + 8¢~ (0100) () 7™ + e (0,0) (ORF™*) + 272 (0) 7 Oy,
+e 3% (9,0,)
AR (D) (07mi) — (1/2) e ™ PTAM (87ms)
+(1/2)ae™ 3™ (040 7mi) + (1/2)ae™ 5 7(8:8)(9;S) — (1/4)ae™(0i) (9;7™) + ae™ 5™ (D) 7iOm
+oce_4‘p(8j<p) — (1/2)ce™*TmAM YiOm + ce” 15 mkrmka + (1/2)ae™*5%5,,0,,0,
+(1/2)e™ 3™ (0%im) (Orer) + (1/2)e™"2(9;0)0; + (1/2)e ™7™ 55:(0pr) O
= —AF(0pa) + (1/9)(0;0) K + (4/9)(0;K) + (1/9)aK9; — aAF;0,
= (1/2)5'“ 7H0S8)0 — (1/2)(08)F*F 0k + (1/3)(018")7* 370 — (1/2)6'F™ (0Fmn) 7™
+(1/2)8*3"3719,04
—(Ora)y Zk + 4a’YZk(akS0) — a7 0,

”fak + (1/2)e 4371 (9a) 7% Ady, + (1/2)e~ 4471 3m3% D, 0,01

A)
15m( )00 + (1/2)e” %5~ 15i(3 aﬁjk)ﬁk

= e

~_1ak



BSSN Constraint propagation analysis in flat spacetime

e The set of the constraint propagation equations, 9;,(H”**Y, M, G', A, S)T ?

e For the flat background metric g,,, = 7,,, the first order perturbation equations of (6)-(10):

—(1/6)VK + (1/6)x 1A
(2/3)r50 ZJ DA

at(l)sp —

@ﬂmz—wAJ

O =

oA, = 1 RBSSN TF

—(0;0{"%) + K10} CJ—/i (DHBSSN

— Y D;D;a)'"

+ /<JA15/<: Ek

~(4/3)(01'K) — (2/3)%r1(¢“54)%-2ﬁr53A4i

We express the adjustements as

1/3 /iAgézj (9k Ck

Radj -— (/{gm Ry, RK1, KK2, KA1, KA2, Ry, K’f‘Q)'

e Constraint propagation equations at the first order in the flat spacetime:

at(l)]_(BSSN

o IM.

at(lgi

8t(1)5 —

oA

= (k57 — (2/3)Kpy —
= (—(2/3)kk1+ (1/2)ka1 — (1/3)kaz + (1/2))
‘|—(1/2)/€A18j8j(1gi —+

= 2n W+ (—(2/3)p, — (1/3)5) (0A),

—2%@(1)«4,

— (/@n — FéAz)

(91G7).

(4/3)k, + 2) ;04 + 2(kgy — 1)(0"M;),

0,016’

(L BSSN

((2/3)kr2 — (1/2)) &

/N 7 N 7N N N
= W N =
N— N N N~ ~—

(16)

N N R
N = =
S © oo

N—— — — ~~—



Effect of adjustments

No. Constraints (number of components) Amplification Factors (AFs)
H((1) M;3) G (3) A(1) S(1) | in Minkowskii background

0. standard ADM use use - - - (0,0,%, )

1.  BSSN no adjustment use use use use use (0,0,0,0,0,0,0,%, )

2. the BSSN use+adj use+adj usetadj use+adj use+adj| (0,0,0,3,5, 3,3, S, 9)

3.  no S adjustment use4-adj use4adj use+adj use+ad] use no difference in flat background

4.  no A adjustment use+adj use+adj use+ad] use use+adj | (0,0,0,, 3,3, 9,3, D)

5.  no G' adjustment use+adj use+ad] use  usetadj use+tadj| (0,0,0,0, O O O 3)

6. no M, adjustment use-+ad] use use+adj use+adj use+adj | (0,0,0,0,0,0,0, 3% Jt) Growing modes!

7. no 'H adjustment use use+adj use+adj usetadj use+adj| (0,0,0,3,3, 95,3, 8, 9)

8. ignoreG', A, S use+adj used-ad] - - - (0,0,0,0)

9. ignore G, A use+adj use+tadj use+ad; - - 0,9,9,9,9,9,9)

10. ignore G’ usetadj use+tadj - use+adj use+adj | (0,0,0,0,0,0)

11. ignore A use+adj use+adj use+tad] - use+adj | (0,0,3,3, 8,3, S Q)

12. ignore S use+adj use+adj use+adj use+adj - (0,0,%,%,9,3, 9, 9)




New Proposals :: Improved (adjusted) BSSN systems

TRS breaking adjustments

In order to break time reversal symmetry (TRS) of the evolution egs, to adjust at(p,at%,atfi using S, G, or to adjust
0K, 0;A;; using A.

O
IYij
O K

(%Aij
AN

OP5 ¢ 4 kg aHP® + kygaDLGE + kys1aS + kysoaD? D;S

0P i + kanaiyH + k36105 DkG" + Fsg20ni DjGF + k35109458 + kasaDiD;S
OP K + ko (DjMy) + ke A + kg oa DV DA

0P Aij + kani1 0 (D" M) + kanoc(DgM) + iy gy 053 A+ ki g 0D DA

8f5fi + /ﬁszozDiHBS + /ﬁ;fglozgi + %Qabﬂ'[)jgi + /ﬁ;fggoz[)i[?jgj + /ffSaDiHBS

or in the flat background

8£4DJ(1)¢

a;élDJ(l

ij

8tADJ(1)[(

atleJ(lM

ij

a;‘lDJ(l)fwi

—|—/<J¢H(1>HBS + Iwgak(l?k + /<J¢31(1)5 + /<3¢$2(9jaj(1)3

a0 THPS  ka6105080G8 4+ (1/2) kg (016G 4+ 082G7) + k516 1S + k5500,0,1S
FhigmOIM; + KLKAl(l)./Zl + /@Kjuajc‘?j(l)/(

+ran 6508 M 4+ (1/2) kanin (M + ;M) + k0 A + Ky 100,05 A

g P 4 10 VG + £ 00,0 G + K7 30:0/1G7 + ki gOMS



Constraint Amplification Factors with each adjustment

adjustment CAFs diag? effect of the adjustment
Orp  kgnaH (0,0, £v—k2(x3), 8Kk g1 k?) no | kgn < 0 makes 1 Neg.
Op  keg aDLG" (0,0, £v—k2(%2), long expressions) yes | kyg < 0 makes 2 Neg. 1 Pos.
OYij  ksp a¥ijH (0,0, v/ —k2(x3), (3/2)kspk?) yes | kgp < 0 makes 1 Neg. Case (B)
OVij  Kagr Y DiG" (0,0, =/ —k2(%2), long expressions) yes | kg1 > 0 makes 1 Neg.
2, 2(_ 2,
OYij  Kyg2 Vi@ ])g (0,0, (1/4)k 1762 + \/k (=1+ k?h42/16)(+2), yes | Ksga < 0 makes 6 Neg. 1 Pos. Case (E1)
long expressions)
OYij  Kssi oﬂjjéi (0,0, v —k2(*3), 3k5s1) no | kss1 < 0 makes 1 Neg.
8{%]' K382 OéDiDjS (O, 0, :t\/ —]432(*3>, —I{',ryggk2> no R382 > (0 makes 1 Neg
o (0,0,0,+v/—F2(x2),

oK I*(D;M < 0 makes 2 Neg.

e ( k D (13 mseadk? = (1/3) (9 1 Boony) 1O | foaea = T mates £ 68
01 Ai;  Kami @i (DPMy) | (0,0, £/ —k2(x3), =k ar1k?) ves | kapma > 0 makes 1 Neg.

y . 2 2(_ 2
OAij  Kamz (D M) (0,0, —& KAMQ/ZL * \/k (=1 + k?hame/16)(x2) yes | Kaame > 0 makes 7 Neg Case (D)
i long expressions)

3t/~1¢j KAAL a’yjj.fl (0,0, =/ —k?(%3), 3k 441) yes | ka1 < 0 makes 1 Neg.
atflij K AA2 ozNDiDj.A (0,0, £v/—k2(%3), —Kk 4 42k?) yes | kaa2 > 0 makes 1 Neg.
oI Kpy aD'H (0,0, v —k2(x3), —k g 42k?) no | Kpy > 0 makes 1 Neg.
&Llji Kig1 ozgf ) (0,0, (1/2)/@Fg1 + \/ k2 + /«;Fgl( 2) , long.) yes | kpg, < 0 makes 6 Neg. 1 Pos. Case (E2)
&Lljl Kigs ozl?ﬂl?jg" (0,0, =(1/2)kgpg, £ \/ k? + K1, (x2) | long.) yes | Kpge > 0 makes 2 Neg. 1 Pos.
oI KpggaD'D;G (0,0, —=(1/2)kpgs £ \/ k2 + /<&Fg3( 2) , long.) yes | Kpgz > 0 makes 2 Neg. 1 Pos.

Yoneda-HS, PRD66 (2002) 124003



An Evolution of Adjusted BSSN Formulation
by Yo-Baumgarte-Shapiro, PRD 66 (2002) 084026
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OF = () + T8, — ()G, x=2/3 for (A4)-(A8)

Oyi; = () — kayiH k=0.1~0.2 for (A5), (A6) and (AS8)
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Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

e "The essential improvement is in the process of replacing terms by the momentum
constraints’

Alcubierre, et al, [PRD 62 (2000) 124011]

~

e [ is replaced by —0;7"/ where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]

~

e ['-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]
Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]



Some known fact (technical):

e Trace-out A;; at every time step helps the stability.
Alcubierre, et al, [PRD 62 (2000) 044034]

This is because A-violation affects to all other constraint violations.

e "The essential improvement is in the process of replacing terms by the momentum
constraints’

Alcubierre, et al, [PRD 62 (2000) 124011]
This is because M-replacement in I equation kills the positive real eigenvalues
of CAFs. eigenvalues

o [ is replaced by —0;7" where it is not differentiated,
Campanelli, et al, [PRL96 (2006) 111101; PRD 73 (2006) 061501R]
This is because G-violation affects to H, M;-violation constraint violations.

e [-equation has been modified as suggested in Yo-Baumgarte-Shapiro [PRD 66
(2002) 084026]

Baker et al, [PRL96 (2006) 111102; PRD73 (2006) 104002]
No doubt about this.



Numerical Experiments of Adjusted BSSN Systems

Kenta Kiuchi  Waseda University
AN EBX EBERMEXFE BIZE

kiuchi@gravity.phys.waseda.ac. jp
Hisa-aki Shinkai Osaka Institute of Technology

EBFHE KARIEXRZE BHRBFE

shinkai@is.oit.ac.jp

e BSSN vs adjusted BSSN Numerical tests

e gauge-wave, linear wave, and Gowdy-wave tests, proposed by the Mexico workshop 2002

e 3 adjusted BSSN systems.
e Work as Expected

— When the original BSSN system already shows satisfactory good evolutions (e.g., linear wave test),
the adjusted versions also coincide with those evolutions.

— For some cases (e.g., gauge-wave or Gowdy-wave tests) the simulations using the adjusted systems
last 10 times longer than the standard BSSN.

arXiv:0711.3575, to be published in Phys. Rev. D. (2008)



Adjusted BSSN systems; we tested

from the proposals in Yoneda & HS, Phys. Rev. D66 (2002) 124003
1. A-equation with the momentum constraint:
0, A;; = 00 Aij + kaa DM, (1)
with k4 > 0 (predicted from the eigenvalue analysis).

2. v-equation with G constraint:
Oy = 0P i + ks DG, (2)
with k5 < 0.
3. [-equation with G constraint:
O = 0PI + kpaG'. (3)

with kg < 0.



Numerical Testbed Models A: Gauge-wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589

The trivial Minkowski space-time, but time-dependent tilded slice.
ds* = —Hdt* + Hdz? + dy® + d2>,
2 — 1
H:H(:U—t)zl—Asin(ﬂaj >),

d

Parameters:
e Gauge-wave parameters: d =1 and A = 107*
e Simulation domain: z€[—0.5,0.5], y =2 =10
o Grid: ' = —0.5+ (n — 3)dz with n = 1,---50p, where dz = 1/(50p) with p = 2,4,8
e Time step: dt = 0.25dx
e Periodic boundary condition in x direction
e Gauge conditions: ;o = —a?K, (' =0.

The 1D simulation is carried out for a T' = 1000 crossing-time or until the code crashes, where one
crossing-time is defined by the length of the simulation domain.



Error evaluation methods

It should be emphasized that the adjustment effect has two meanings, improvement of stability and of
accuracy. Even if a simulation is stable, it does not imply that the result is accurate.

e We judge the stability of the evolution by monitoring the L2 norm of each constraint,

[10C ]2t Z (t;2,y,2)

L,Y,%

where NV is the total number of grid points,

e We judge the accuracy by the difference of the metric components g;;(t;z,y, z) from the exact

solution gz-(jxad)(t; T, Y, 2),

2
16gllst) = [ = (9 — 62°)

XY,z



Numerical Results

A: Gauge-wave test (1)

A.1 The plain BSSN system

10000 ¢ I I I 100000 ¢ I
1000 ¢ 10000 ¢
100 ¢ 1000 ¢
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T 1 = 10 |
= i =. i
g)— 0.1 o% 1
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FIG. 1: The one-dimensional gauge-wave test with the plain BSSN system. The L2 norm of H and M., rescaled by p*/4, are plotted with a function of the crossing-time. The
amplitude of the wave is A = 0.01. The loss of convergence at the early time, near the 20 crossing-time, can be seen, and it will produce the blow-ups of the calculation in the
end.

e The poor performance of the plain BSSN system has been reported.
Jansen, Bruegmann, & Tichy, PRD 74 (2006) 084022.

e The 4th-order finite differencing scheme improves the results.
Zlochower, Baker, Campanelli, & Lousto, PRD 72 (2005) 024021.



A.2 Adjusted BSSN with A-equation
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FIG. 2: The one-dimensional gauge-wave test with the adjusted BSSN system in the A-equation (1). The L2 norm of H and M., rescaled by p?/4, are plotted with a function
of the crossing-time. The wave parameter is the same as with Fig. 1, and the adjustment parameter k4 is set to ka4 = 0.005. We see the higher resolution runs show convergence
longer, i.e., the 300 crossing-time in H and the 200 crossing-time in M, with p = 4 and 8 runs. All runs can stably evolve up to the 1000 crossing-time.

e \We found that the simulation continues 10 times longer.
e Convergence behaviors are apparently improved than those of the plain BSSN.

e However, growth of the error in later time at higher resolution.

N N o N _ 9 N N N
8tA7;j = —6_4¢ [DiDjOz + OzRij]TF + OéKA,‘j — Q(XAikAkj + &ﬂkAkj + 8]6’“14;% — gﬁkﬁkAw + ﬁkakAij—HiAO{D(i./\/lj)



A.4 Evaluation of Accuracy

e L2 norm of the error in v,,, (4), with the function of time.

e The error is induced by distortion of the wave; the both phase and amplitude errors.

1 e 1.05 I I I I I
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F : 095 () .
< 0.01 ¢ E 0.9 Exact 7
S i - 0.85 plain - .
g 0001 F E x 08F Aadp - .
= te-04 | 1 o ]
S I : 0.7 i
— 1e-05 F 5 0.65 .
- 0.6 .
1e- = ] | —-___ e m—— i
e-06 ¢ 0.55 - T -
1e-07 T R TTT BT B S AETTT 05 | | | | |
0.1 1 10 100 1000 -06 -04 -0.2 0 02 04 0.6
LogqolT] X

FIG. 4: Evaluation of the accuracy of the one-dimensional gauge-wave testbed. Lines show the plain BSSN, the adjusted BSSN with A-equation, and with -equation. (a) The
L2 norm of the error in 74, using (4). (b) A snapshot of the exact and numerical solution at 7" = 100.



Numerical Testbed Models B: Linear wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589

Check the ability of handling a travelling gravitational wave.
ds* = —dt* + dx?® + (1 + b)dy* + (1 — b)dz*,

b= Asin (QWJ - t>)

d

Parameters:
e Linear wave parameters: d =1 and A = 107°
e Simulation domain: x€[—0.5,0.5], y =0, 2 =0
o Grid: 2/ = —0.5+ (n — 3)dz with n = 1,---50p, where dz = 1/(50p) with p = 2,4,8
e Time step: dt = 0.25dx
e Periodic boundary condition in x direction
e Gauge conditions: o =1 and ' =0

The 1D simulation is carried out for a 7" = 1000 crossing-time or until the code crashes.



Numerical Results B: Linear Wave Test

1e-08 2e-10 I I | I |
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Snapshot of errors with the exact solution for the Linear Wave testbed with the plain
Snapshots of the one-dimensional linear wave at different resolutions with the plain ~ BSSN system and the adjusted BSSN system with the A equation at 7' = 500. The
BSSN system at the simulation time 500 crossing-time. We see there exists phase  highest resolution p = 8 is used in both runs. The difference between the plain and
error, but they are convergent away at higher resolution runs. the adjusted BSSN system with the A equation is indistinguishable. Note that the
maximum amplitude is set to be 1072 in this problem.

e The linear wave testbed does not produce a significant constraint violation.

e The plain BSSN and adjusted BSSN results are indistinguishable.
This is because the adjusted terms of the equations are small due to the small violations of constraints.



Numerical Testbed Models C: Collapsing polarized Gowdy-wave testbed

from the proposals in Mexico Workshop 2002, Class. Quant. Gravity 21 (2004) 589
Check the formulation in a strong field context using the polarized Gowdy metric.
ds? = 712N (—dt? + d2°) + t(elda® + e Tdy?).
P = Jy(2mt) cos(27z),

A = =27t Jo(2mt) Jy (2mt) cos*(2mz) + 2w 2 JE (2mt) 4 JE(2mt)]

2 {emPLR(2m) + J(2m)] — 2m(2m) i (2n),

where .J,, is the Bessel function.
Parameters:
e Perform the evolution in the collapsing (i.e. backward in time) direction.
e Simulation domain: z € [-0.5,0.5], z =y =0
o Grid: z=—0.5+ (n — 3)dz with n = 1,---50p, where dz = 1/(50p) with p = 2,4,8
e Time step: dt = 0.25dz
e Periodic boundary condition in z-direction
e Gauge conditions: the harmonic slicing 0;a = —a?’K, 3 =0.and ' =0
e Set the initial lapse function is 1, using coordinate transformation.

The 1D simulation is carried out for a 7' = 1000 crossing-time or until the code crashes.



C.1 The plain BSSN

LogylIIHII)]

FIG. 5: Collapsing polarized Gowdy-wave test with the plain BSSN system. The L2 norm of H and M., rescaled by p*/4, are plotted with a function of the crossing-time.
(Simulation proceeds backwards from ¢ = 0.) We see almost perfect overlap for the initial 100 crossing-time, and the higher resolution runs crash earlier. This result is quite
similar to those achieved with the Cactus BSSN code, reported by [? |.

e Our result shows similar crashing time with that of Cactus BSSN code.
Alcubierre et al. CQG 21, 589 (2004)

e Higher order differencing scheme with Kreiss-Oliger dissipation term improves the results.
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C.2 Adjusted BSSN with A-equation
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FIG. 6: Collapsing polarized Gowdy-wave test with the adjusted BSSN system in the A-equation (1), with k4 = —0.001. The style is the same as in Fig. 5 and note that both
constraints are normalized by p? /4. We see almost perfect overlap for the initial 1000 crossing-time in both constraint equations, H and M, even for the highest resolution run.

e Adjustment extends the life-time of the simulation 10 times longer.

e Almost perfect convergence upto ¢ = 1000%.,,ss for both 'H and M., while we find oscillations in M,
later time.

- - . - - 2 - - ~
0iA;; = —e[DiDja+ aRy|"" + aK A — 20 A3 A + 0,8" Ay; + 0;8" Ay — gakﬁ’mij + B0, Aij+raa DM



C.3 Adjusted BSSN with y-equation
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FIG. 7: Collapsing polarized Gowdy-wave test with the adjusted BSSN system in the 4-equation (2), with k5 = 0.000025. The figure style is the same as Figure 5. Note the
almost perfect overlap for 200 crossing-time in the both the Hamiltonian and Momentum constraint and the p = 2 run can evolve stably for 1000 crossing-time.

e Almost perfect convergence up to t = 200¢.,,ss in both 'H and M.

. - . 2 N .
Oy = —20Aij + 7 d; 8" + 3;10,8" — §%j5k5k + 8035 + w30k DG



C.4 Adjustment works for Accuracy

Error of 7., to the exact solution normalized by ...

e Accurate Evolution < Error < 1 %.
(Zlochower, et al., PRD72 (2005) 024021 )

the Plain BSSN ~ ¢t = 200% .05
adjusted BSSN A-eq ~ t = 1000455
adjusted BSSN ~-eq ~ t = 400% .05
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Comparisons of systems in the collapsing polarized Gowdy-wave test.
The L2 norm of the error in .., rescaled by the L2 norm of ~,., for the
plain BSSN, adjusted BSSN with A-equation, and with §-equation are
shown. The highest resolution run, p = 8, is depicted for the plots. We
can conclude that the adjustments make longer accurate runs available.
Note that the evolution is backwards in time.




A Full
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set of BSSN constraint propagation eqs.
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Which constraint should be monitored?

Yoneda & HS, PRD 66 (2002) 124003

Order of constraint violation?

e A and S constraints propagate independently of
the other constraints.

e (-constraint is triggered by the violation of the
momentum constraint.

e H and M constraints are affected by all the other
constraints.

Kiuchi & HS, arXiv:0711.3575, PRD (2008)
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Normalized Constraint

The violation of all constraints normalized with their initial values, ||dC||2(¢)/||dC]|2(0),
are plotted with a function of time. The evolutions of the gauge-wave testbeds with

the plain BSSN system are shown.

By observing which constraint triggers the other constraint’s violation from the constraint propagation
equations, we may guess the mechanism by which the entire system is violating accuracy and stability.



Summary up to here (2nd half)

[Keyword 1] Adjusted Systems
Adjusting the EoM with constraints is common to all previous approaches.
Just add constraints to evolution eqs, while lambda-system requires
symmetric hyperbolicity.

[Keyword 2] Constraint Propagation Analysis -> Constraint Damping System
By evaluating the propagation egs of constraints, we can predict the suitable
adjustments to the EoM in advance.
(Step 1) Fourier mode expression of all terms of constraint propagation egs.
(Step2) Eigenvalues and Diagonalizability of constraint propagation matrix.
Eigenvalues = Constraint Amplification Factors
(Step 3) If CAF=negatives -> Constraint surface becomes the attractor.

[Keyword 3] Adjusted ADM systems
We show the standard ADM has constraint violating mode.
We predict several adjustments, which give better stability.
[Keyword 3] Adjusted BSSN systems
We show the advantage of BSSN is the adjustment using M.
We predict several adjustments, which give better stability.
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Discussion
Application 1 : Constraint Propagation in N + 1 dim. space-time

HS-Yoneda, GRG 36 (2004) 1931
Dynamical equation has /N-dependency
Only the matter term in 0;K;; has N-dependency.

1 .
0~Cy = (G — 81T, )n''n" = 5((N)R + K? — K" K;;) —8mpy — A,

0~ Cui = (G — 81T, 0" LY = D;K! — D;K — 8nJ;
Oyij = —2aKi;+ D;f; + Dif;,
(9tKZ~j = CV(N)RZ']' + OéKKZ'j — QCXKKJ-KZ[ — DZ'DjOz
1

+0"(DyKij) + (D; 8 Kir, + (Dif3*) Ky — 87ax (S — ﬁ%ﬂ) -

20

2T A,
N 14

Constraint Propagations remain the same

From the Bianchi identity, V*S,, = 0 with S, = Xn,n, +Y,n, +Y,n, + Z,,, we get

0=n'V'S, = —Z,(V'n") - V'Y, + Y, n'V,n" -2Yn, (V') - X(V'n,) —n,(V"X),
0=hn"'V"S, = V'Z,+Y(V'n,) +Y,(V'n;) + X(V'n;)n, + n,(V'Y).

o (S5,,,X.Y,, Zi;) = (T, pu, Ji, Sij) with V*T,, = 0 = matter eq.
o (5, X.Y,, Zi;) = (G — 811, Crx, Csi, 67iiCrr) with VA(G,, —87T),,) =0 = CP eq.



Discussion
Future : Construct a robust adjusted system
HS-Yoneda, in preparation

(1) dynamic & automatic determination of x under a suitable principle.

e.g.) Efforts in Multi-body Constrained Dynamics simulations

% o o
apz = Fz + )\a @, with C (ﬂfz,t) ~ (

e J. Baumgarte (1972, Comp. Methods in Appl. Mech. Eng.)
Replace a holonomic constraint 97C' = 0 as 97C + ad,C + 3*C = 0.

e Park-Chiou (1988, J. Guidance), “penalty method”
Derive “stabilization eq.” for Lagrange multiplier \().

e Nagata (2002, Multibody Dyn.)
Introduce a scaled norm, J = C1SC, apply 0;J +w?J = 0, and adjust \(t).

e.g.) Efforts in Molecular Dynamics simulations
e Constant pressure ~ ------ potential piston!

e Constant temperature ------ potential thermostat!! (Nosé, 1991, PTP)




(2) target to control each constraint violation by ) Momentum constr.

adjusting multipliers. grow
CP-eigenvectors indicate directions of con-

straint grow/decay, if CP-matrix is diagonal-
izable. grow

deca >
~///// Hamiltonian constr.

decay

(3) clarify the reasons of non-linear violation in the

last stage of current test evolutions.

(4) Alternative new ideas?

— control theories, optimization methods (convex functional theories), mathematical pro-
gramming methods, or ....

(5) Numerical comparisons of formulations, links to other systems, ...

— "“Comparisons of Formulations” (e.g. Mexico NR workshop, 2002-2003); more formula-
tions to be tested, ...

Find a RECIPE for all. Avoid un-essential techniques.
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Goals of the Lecture

What is the guiding principle for
selecting evolution equations for
simulations in GR?

--- Constraint Propagation egs.
Why many groups use the BSSN
equations?

--- Just rush, not to be late.

Are there an alternative ‘T TANK. 00 SHOURD B MORE EXFLLCT

HERE ™ STEP TWO .Y
formulation better than the BSSN?
-—- Yes, there are. But we do not the best one.




Discussion
Application 2 : Constraint Propagation of Maxwell field in Curved space
HS-Yoneda, in preparation

Towards a robust GR-MHD system:

e Maxwell egs in curved space-time

OE = €9"Dj(aBy) —4rnal' + aKE + £3E

OB = —e*Di(aE) +aKB + £3B'
Cp = D;E'—4mp,
Cp = D,B'

e CP of Maxwell system in curved space-time

0,Cg = OzKCE—FﬁijCE
0,Cp = OzKCB—l—ﬁijCB

e CP of ADM+Maxwell

CE CE
CB CB
H H

* X O O
*x *x O O

o O X %
O O X X

e CP of ADM-+Maxwell+Hydro

In progress.



Constraint propagation and constraint-damping

for C?-adjusted formulations

+ &
HEFZES: KHE T, B H #H 2

U BRE R R FRp PR T2 7R 252 A B2k
2 RBR LHERF HREA B 27 598

2011411 H 7 H

ADM case: Phys. Rev. D 83, 064032 (2011)
BSSN case: [gr-qc/1109.5782], submitted
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Hhpk & AFETH

BOEAR % 5 CHEBRICEMEF A 21T 2121, BHICLLTOREZ T D HLED
DD
@ WIS
@ BESLSLM
@ gauge KD E
@ formulation M ER
@ AX—LDFRIE
A | D eI formulation ([CBI4 5 & D.
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Hhpk & AFETH

5 AEFE X5 C i, formulation LI @
- FAE ) FLRELTZELTYH, W
v A ORISR L, SN I -
TLE9.
time
Z N EBAEAR SR IZ B 1T B formulation [HE & BE5.
5T Tl

@ ADM formulation |Z VG307 0

@ Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation 73~
CHWHNLD X 2IZR>TnD

HEE, X570 A8EZE 7 formulation 255884+ 5 - 2 Th 5.
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A & AT
formulation k242 1 2O FHEE LT, BEGEXICHT

TRER A

35 HERH 5. (Z1vE constraint damping technique & FESS.)

-

ZGim

AT A

o H R REUC R TR N4 5
ou' = [Original Terms] 4 (C',0,C', - - -)

ZDEE, MRITREAD3E
9;C' = [Original Terms] + g(C',9,C’,---)

&2

L5, — RN, W22 EE LT, (2) DREITAHIOEA
EENTZ1TO Z & T, B LW HFRBRRRDODZEELZTRDE LN TE 5.

R ()5

Ut T RE) 13

~

(2)

J

@ LD L HIME f(C,9,C', ) EMAAUT L2
@ FHE L L HITHEIFENE(N L T EHAIZ ZOFENTITIE LV ?

=

b =
H A\

22 | AR A L 72 UM INTE %

Zns, C?-adjusted system T 5.

T Rl (FAEEREE)

'G. Yoneda and H. Shinkai in PRD 63. 124019 and PRD 66. 124003

Cz-adjusted formulations

RET D1 OOHEERNTT D,

5 24 [ HERAB@ENL KR XA 4 /24



C?-adjusted System ? A
& DR GATAT & R ITFE

o' = fl(u', o, . . .)
{Ct’_g(u 8u ) 0 (3)

X LT, U T XD ICHETREAZEIET D:

. . . 5(;2
iy o
Otu (u,@,u )= Y S

where, C? = / C'Cidx3, k! : Positive definite (D)

DL E, CCOMKCIEIENIIUTO LIRS

2 2
0;C? = [Original terms]—~’ (50 ) (£> (6)

ou’ ou

(Z D% 21X D. R. Fiske (Phys. Rev. D 69, 047501 (2004)) (2 & » TIE I 1L77)
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C?-adjusted System ? A
& DR GATAT & R ITFE

o' = fl(u', o, . . .)
{Ct’_g(u 8u ) 0 (3)

X LT, U T XD ICHETREAZEIET D:

. . . 5(;2
iy o
Otu (u,@,u )= Y S

where, C? = / C'Cidx3, k! : Positive definite (D)

DL E, CCOMKCIEIENIIUTO LIRS

2 2
9;C? = [Original terms]—~’ (ii' ) (553/ ) <0 (6)

(Z D% 21X D. R. Fiske (Phys. Rev. D 69, 047501 (2004)) (2 & » TIE X 1L77)
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© scittaxtin~i i
@ ADM Case
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Standard ADM Formulation

Einstein 522 (G, = 81 T,,,) DRFZE/ R,

N’ G, = 87 pp. (7)
: PUir¥ G, = —8ndi.  (8)
:) PHPY .Gy =87S;.  (9)
=7c L/, P,UV — gluy + n,unl/:
Figure: H#%ﬁj\ﬁﬁ@ifﬁﬁﬁ\x Nt @i% ELODEiﬁ/ﬁ@%/\ﬁ 2

2J. W. York, Jr., in Sources of Gravitational Radiation, edited by L. Smarr
(Cambridge University Press, Cambridge, England, 1979);
L. Smarr and J. W. York, Jr., Phys. Rev. D 17, 2529 (1978).
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Standard ADM Formulation

FEREAIEN:
Oryij = —2aKj+ Difsj + D;f, (10)
@tf(/j — Oz(R,/ K/(,j — 2!(,'€ng) — D,'Djoz
+ K D;3" + KiyD;i3* + B DyK; (11)
H R AFE:
HAPM — R+ K% — KiK' ~ 0 (12)
,/\/l;-qDM — DjKj,' — D,K ~ 0 ( 3)
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C?-adjusted ADM Formulation

C?-adjusted ADM formulation #3825 2=

5(CADM)2
Orvij = |Original Terms| — . imn 5 (14)
mn
5(CADM)2
0tKjj = [Original Terms] — xjmn 7 (15)
mn

where

(CADMY2 _ / {(HADM)Z _I_/yij(Mf\DM)(Mf\DM)} dx3 (16)
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Constraint Propagation Equations

522 2 Minkowskii, Lagrange Je#f% %k %
DX I H:

0¢H = [Original Terms]—2x,A*H (17)
0:M; = [Original Terms]+rx AM; + 3ry0;0,M (18)

FHIEIE OB YL BN BRI D . TP B DO AV T K & Zp s 2 %
E2BHLEEZHN5.
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© scittaxtin~i i

@ BSSN Case
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Standard BSSN Formulation

BSSN formulation ® 38 RZE¥4:

»=15 log(det(vji)) (19)
Yi = € % (20)
K ='Kj (21)
Aj=e* (K,, %7,-,-K> (22)
I =xabr (23)
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Standard BSSN Formulation

FEEAEN
Orp = —(1/6)aK + (1/6)(9;8) + B'(9ip) (24)
K = aAjAT + (1/3)aK? — DiD'a + B(89;K) (25)

Oy = —2aA; — (2/3)7(9e8°) + Fje(9iB") + Fie(9;8°) + B(9e7;) (26)
O A = aKAj — 2aAAY + ae % R;TT — =% (D;Dja) "

— (2/3)A(08°) + (9i8")Ae + (9;8°)Aie + B (0eAj) (27)
o = 2a{6(9jp) AT + T At — (2/3)77(9;K)} — 2(0;x) AT
+(2/3)T(98) + (1/3)77(0:0;8°) + (9T — TV(9;8")
+5(0j0,8") (28)
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Standard BSSN formulation

H R AFE:
“TEH) )" ) R T R
1 BSSN = =4 R _ 8e~*°(D;D' v + (D) (Dme)) + (2/3)K?
— AjAT — (2/3)AK ~ 0 (29)
MBSSN = —(2/3)DiK + 6(Djp)A; + DiA; — 2(Dip)A~0  (30)

b

“PREHY” AT R

G =T -7, ~ 0 (31)
S =det(y;) —1~0 (33)

G L, REIF R ITREZ (31)-(33) 23w 7z S v Wiga, BSSN
formulation 2% ADM formulation (2 —% L 72\,

T & . (BRGHEKRT) C?-adjusted formulations 5 24 AIBERZR@IE N K XA 14 /24




C?-adjusted BSSN Formulation
C?-adjusted BSSN formulation #3252

5(CBSSN)2
Otp = [Original Terms| — )\, < 5o ) (34)
BSSNY2
0;:K = [Original Terms| — \x (5(65K ) ) (39)
5(CBSSN)2
Oryij = |Original Terms| — \5;imn ( — ) (36)
57mn
N 5(CBSSN)2
OtAjj = |Original Terms| — A5 ( — ) (37)
J 5Amn
. ) BSSN\2
0i['' = [Original Terms] — A% (5(C5Fj ) ) (38)

where

(CBSSN)ZZ/{(HBSSN)Z_|_/yij(MBSSN)i(MBSSN)j_I_,Yijgigj_l_Az_|_82}dx3
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) KA 1 07 2=

T REZE 2 Minkowskii, Lagrange &R E A Asjimn = A50imdjn,

Niiimn = Aa0m0jn, AL = Apo¥ & Uiz & &, S 4sif UL T o X 5
(2725
OrH = [Original Terms] + {128\ ,A%—(3/2)\:s A% +2\=A}H
+{=(1/2)X\580m — 2X=0m}G™ + 3N\ AS (39)
Ot M4 = [Original Terms] — 2);0,.A
+ {(8/9)Ak6%°0a0p+ A3 A02° + A367°020p} Mo (40)

0:G? = |Original Terms] + 62°{(1/2)\50pA + 2X=0p } H
— XA56%0pS + (A5 A6%, + (1/2)A50%0:0p—27=6%) G®  (41)
0rA = [Original Terms] -+ 2) 50" (9;,M;)—6X; A (42)
0;S = [Original Terms] + 3A\;AH + A\50,G°—6)5S (43)

PR TENELIL, TN RIE ORI D I KREx B L B 2 A LEZ 2 5
A,
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R TR
b L, (CBoSMN)2 NI R F R (G, A, S) & B ERWVIEA:

(CBSSN)2 _ / {(HBSSN)Z _I_,VI]'(MBSSN)I_(MBSSN)],} dx®.

PR FRERUIL T O X 9122 5

OyH = [Original Terms] + {—128>\¢A2—(3 /2)>\5A2+2>\FA}”H (44)
0tM 4 = [Original Terms]

+ {(8/9)Ak6%°0a0p+ A3 A02° + A367°020p} Mo (45)

0:G? = [Original Terms] + 62°{(1/2)\59pA + 2X=0p } H (46)
OrA = [Original Terms] + 2)\;5"(9;,M;) (47)

0:S = |Original Terms] + 3\5AH (48)

REHI R EIE TR (46)-(48) LB E & £/ 2 5.
= (CBSSNY2 |3 RO R 2 S de & TH B,
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Q it

@ Test =&
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Test it =

Polarized Gowdy wave test-bed (Apples-with-Apples test® DT & D)

ds? = t~1/2eM2(—df? + dx?) + t(e"dy? + e Fdz?) (49)
P = Jy(27t) cos(27x) (50)
A = —27tdy(2nt)Jy (2rt) cos?(2mx) + 272 t2[J2 (2nt)

+ Ji(2nt)] — (1/2){(2m)?[J5(2m) + J5 (2)]
— 2ndp(2m)J1(27)} (51)

= 2T, J, iX Bessel Ei#k.
(37> Apples-with-Apples 7 A | (gauge-wave & Linear wave) $17-
=73, AT Gowdy wave Ol B 721 29 5.

SAlcubierre et al., Class. Quant. Grav. 21, 589 (2004)
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Q it

@ ADM Case
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BfE s H (ADM Formulation)

Standard ADM formulation Cz-adjusted ADM formulation

Hamiltonian constraint _
morlnentulm coPstrailnts -------

Hamiltonian constraint _
momelntum conlstraints -------

0 200 400 600 800 1000 O 200 400 600 800 100012001400 1600
-Time -Time

N o s b 2o

Log(L2 norm of constraint)
N o s DN 2o
|
Log(L2 norm of constraint)

@ C?-adjusted ADM formulation @34 (4 X) D1F 5 23, standard
ADM formualtion D354 (£X) L 0 b FFEREREIAK 1.7 12O

@ C?-adjusted ADM formulation ® S fEDAZIL DN L 7=

(T. Tsuchiya, G. Yoneda, and H. Shinkai, Phys. Rev. D 83, 064032 (2011))
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Q it

@ BSSN Case

T & . (BRGHEKRT) C?-adjusted formulations 5 24 AIBERZR@IE N K XA 22 / 24




e S H (BSSN Formulation)

Standard BSSN formulation Cz-adjusted BSSN formulation
= 5 I — ) I I I I I I I
C (-
< s
B 0 1 B Or }
c c
@) o
&) -5 - _ &) -5 v
© ©
2 o Hamiltonian constraint Q Hamiltonian constraint
~ momentum constraint ------- ~ momentum constraint -------
1 -15 | G-constraint =~ seeeeee- ~ 1 -15 } G-constraint  ~~ seeeeee- ~
ks} A-constraint =~ e oy A-constraint e
9 S-constraint O S-constraint
-20 | | | — -20 | | | | | |
0 200 400 600 800 1000 0O 200 400 600 800 1000 1200 1400
-Time -Time

@ C?-adjusted BSSN formulation ®¥4& (45 X) DIE 9 73 standard
BSSN formulation 56 (£IX) LV L FEMN 2EFELS ol

@ C?-adjusted BSSN formulation O#IHRAEDHEIL A —EIT 72 - 7=

(T. Tsuchiya, G. Yoneda, and H. Shinkai, arXiv[gr-gc/1109.5782])

T & . (BRGHEKRT) C?-adjusted formulations 5 24 AIBERZR@IE N K XA 23/ 24




FLOEEHBDOELE

&
@ (C?-adjusted system % ADM formulation & BSSN formulation (&
HLT7.

@ C?-adjusted ADM formulation & C?-adjusted BSSN formulation &
R X2 EH L, damping B G FILTWAZ E a2 R LT,

@ C?-adjusted BSSN formulation (Zxt L T, & O FAHE e Xns 6
C? DR HEE G _R&ETHDHZ BN LT,

@ FE[PEIC C?-adjusted ADM formulation & C?-adjusted BSSN
formulation Z W TEIERT A 21TV, T OFREEFHNEDNSD Z & %
~ LTz,

SEDEE
@ first order ADM formulation ~ ™1
@ Lagrange L5 %5 ﬁ?éﬁ/ﬁ%%ﬁ%ﬁ‘é

Qll
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