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1. Subjects for Numerical Relativity
 	 Why Numerical Relativity?
2. The Standard Approach to Numerical Relativity
         The ADM formulation
3. Alternative Approaches to Numerical Relativity
  	 e t c
4. Unsolved problems
     	 Gravitational Wave Physics and related problems
    	 Conjecture Hunting -- reported and unreported issues --



Numerical Relativity – open issues Box 1.2

0. How to foliate space-time

Cauchy (3 + 1), Hyperboloidal (3 + 1), characteristic (2 + 2), or combined?

⇒ if the foliation is (3 + 1), then · · ·
1. How to prepare the initial data

Theoretical: Proper formulation for solving constraints? How to prepare realistic initial data?
Effects of background gravitational waves?
Connection to the post-Newtonian approximation?

Numerical: Techniques for solving coupled elliptic equations? Appropriate boundary conditions?

2. How to evolve the data

Theoretical: Free evolution or constrained evolution?
Proper formulation for the evolution equations? ⇒ see e.g. gr-qc/0209111
Suitable slicing conditions (gauge conditions)?

Numerical: Techniques for solving the evolution equations? Appropriate boundary treatments?
Singularity excision techniques? Matter and shock surface treatments?
Parallelization of the code?

3. How to extract the physical information

Theoretical: Gravitational wave extraction? Connection to other approximations?

Numerical: Identification of black hole horizons? Visualization of simulations?



Several known theorems on Black Holes

BH Uniqueness Theorem Israel (1967), Robinson (1977), Carter (1971)

Any static solution of Einstein’s vacuum equations satisfying conditions (1)-(3) is spherically

symmetric and coincides with the Schwarzschild metric.

(1) it is asymptotically flat,

(2) it has an event horizon, and

(3) it has no singularities on or outside the event horizon.

ds2 = −(1 − 2M

r
)dt2 +

dr2

1 − 2M/r
+ r2(dθ2 + sin2 θdϕ2) (1)

Similarly, for stationary configuration, the Kerr metric.

ds2 = −∆

Σ
[dt − a sin2 θdφ]2 +

sin2 θ

Σ
[(r2 + a2)dφ − adt]2 +

Σ

∆
dr2 + Σdθ2 (2)

where

∆ = r2 − 2mr + a2(+q2), Σ = r2 + a2 cos2 θ,

BH No-hair Conjecture Ruffini-Wheeler (1971)

Regardless of the specific details of the collapse or the structure and properties of the collapsing

body, the resulting stationary black hole is described by a geometry specified by the parameters

M, J, and Q.



Black-Hole No-Hair Conjecture     Ruffini-Wheeler (1971) 

mass M
charge Q
angular momentum J



Brane (4-dim, t,x,y,z) Another Brane?
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Cosmic Censorship Conjecture    Penrose (1969)

 Weak version  
R. Penrose, Riv. Nuovo Cim. 1 (1969) 252

A naked singularity (i.e. a singularity visible to distant observers) 
cannot evolve from a regular initial state of the system under any 
physically reasonable assumptions concerning the properties of the 
matter.

A naked singularity cannot be visible. 
==> if true, the outside the BH is globally hyperbolic. 

 Strong version  
R. Penrose, in Hawking-Israel (Cambridge 1979)

In general, the singularities produced by gravitational collapse are 
spacelke so that no observer can see them until he falls into them. 





Hoop Conjecture K. Thorne, in “Magic without Magic” ed. by Klauder (1972)

BH with horizons form when and only when a mass M gets compacted into a region whose

circumference in every direction is bounded by C ≤ 4πM .

C ~ 4C ~ 4 π  π M BHBH

M



Isoperimetric inequality for higher-dimensional black holes
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The initial data sets for the five-dimensional Einstein equation have been examined. The system is designed
such that the black hole (.S3) or the black ring (.S23S1) can be found. We have found that the typical
length of the horizon can become arbitrarily large but the area of characteristic closed two-dimensional
submanifold of the horizon is bounded above by the typical mass scale. We conjecture that the isoperimetric
inequality for black holes inn-dimensional space is given byVn22&GM, whereVn22 denotes the volume of
a typical closed (n22)-section of the horizon andM is typical mass scale, rather thanC&(GM)1/(n22) in
terms of the hoop lengthC, which holds only whenn53.

DOI: 10.1103/PhysRevD.66.064026 PACS number~s!: 04.50.1h, 04.70.Bw

I. INTRODUCTION

There is much interest in higher dimensional space-times
in the context of the unified theory of elementary particles. It
is exciting if the existence of extra dimensions is confirmed
in high energy experiments. In this aspect, the notion of the
brane world@1# is an attractive idea. This phenomelogical
model provides us with a new way of thinking about our
universe, in which a size of the extra dimensions can be large
because the standard model particles and gauge interactions
are confined to the boundary of the higher-dimensional
space-time. According to this scenario, the gravitational in-
teraction at the short distance determined by the size of the
extra dimensions is modified effectively on the brane, so that
we might be able to see the extra dimensions by the gravita-
tional experiments below 1 mm. If the extra dimensions are
large, the higher dimensional Planck scale may be given by
rather low energy. The possibility of TeV gravity, in which
the fundamental Planck scale is set around TeV, has been
much disscussed.

It is suggested that small black holes might be produced at
the CERN Large Hadron Collider~LHC! @2–4#. This argu-
ment follows from the hoop conjecture@5#; a black hole with
horizon forms if and only if the typical length~hoop length!
C and the massM satisfiesC&4pGM. Note that this state-
ment might be valid only for four space-time dimensions.
The property of the higher-dimensional black holes has not
so far been fully explored, though there is much attention to
this issue@6–10#. We need reliable knowledge about such
black holes to predict phenomelogical results. We here con-
sider black holes with small size compared with the extra
dimensions, such that they are well described by the asymp-
totically flat black hole solutions~treatment of Planck size
black holes is beyond the scope of this paper!. The purpose
of this paper is to consider the higher-dimensional generali-
zation of the hoop conjecture.

In four dimensions, the hoop conjecture is believed to be
valid. Though it is loosely formulated, it seems to have at
least the following three meanings:~i! If the massive object
is compactified into a small region, there must be a black

hole; ~ii ! a black hole is small; and~iii ! a highly deformed
black hole does not form. The first one~i! has been proved
by Schoen and Yau@11# ~see also Ref.@12#!, which can be
regarded as the if part of the hoop conjecture. A precise
statement concerning the second proposition~ii ! is, for ex-
ample, given by the Penrose inequality@13–15#, which states
that the square-root of the area of the apparent horizonA is
bounded above by the@Arnowitt-Deser-Misner ~ADM !#
mass:AA<4pGMADM . Thus the Penrose inequality may
serve as a part of the only if part of the hoop conjecture. For
the last statement~iii !, which is also the only if part of the
conjecture, we rely on the numerical works~e.g., Refs.@16–
18#!. There is also a problem concerning the precise formu-
lation of the conjecture@19#, such as the definition of the
hoop lengthC.

At first glance, the hoop conjecture is not valid for higher-
dimensional space-times, since there is black string solu-
tions. In four dimensions, the length scale of the horizon
cannot be so much larger than the Schwarzschild radius,
while this is not the case in higher dimensions. The simplest
example is the four-dimensional Schwarzschild space-time
times the real line, which is the five-dimensional vacuum
solution representing the gravitational field of the infinitely
long S23R black hole.

Nevertheless, we expect that higher dimensional black
holes are also governed by some isoperimetric inequality. In
what follows, we investigate initial data set for the five-
dimensional Einstein equation and estimate the size of the
black holes. Then we show the existence of such an isoperi-
metric inequality and give its physical reasoning.

II. MOMENTARILY STATIC INITIAL DATA SET
FOR THE FIVE-DIMENSIONAL EINSTEIN EQUATION

Let us consider the initial data set (gmn ,Kmn) on a four-
dimensional Cauchy surfaceS4, wheregmn is the induced
metric onS4 andKmn5gm

l5¹lnn (nn denotes the unit nor-
mal toS4) is the extrinsic curvature ofS4. The Hamiltonian
and the momentum constraints are given by

R2KmnKmn1K2516pG% ~1!

PHYSICAL REVIEW D 66, 064026 ~2002!

0556-2821/2002/66~6!/064026~8!/$20.00 ©2002 The American Physical Society66 064026-1



Black-hole Thermodynamics

J.M. Bardeen, B. Carter and S.W. Hawking, Comm. Math. Phys. 31, 161 (1973).

S.W. Hawking, Comm. Math. Phys. 43, 199 (1975).

We see the analogous quantities E ↔ M , T ↔ ακ, and S ↔ (1/8πα)A, where α is a constant.

Law Thrmodynamics Black Holes

0th
T constant throughout body

in thermal equilibrium

κ constant over horizon

of stationary black hole

1st dE = TdS+ work terms dM = (1/8π)κdA + ΩHdJ + ΦHdq

2nd δS ≥ 0 in any process δA ≥ 0 in any process

3rd
impossible to achieve T = 0 by a physical process

(Nernst theorem)

impossible to achieve κ = 0 by a physical process

(censorship conjecture)

Table 1: Black Holes and Thermodynamics.

Hawking TemperatureCHawking evapolation

Due to quantum effects, BH has Planck thermal radiation with temperature T , and will evapolate.

For Schwarzschild BH, T =
1

8πM


=

hc3

8πkGM


 . For rotating BH, T =

κ

2π
.

Thus the entropy corresponds as S = A/4.



 
Wormhole   (realistic)





Morris-Thorne’s “Traversable” wormhole

M.S. Morris and K.S. Thorne, Am. J. Phys. 56 (1988) 395

M.S. Morris, K.S. Thorne, and U. Yurtsever, PRL 61 (1988) 3182

H.G. Ellis, J. Math. Phys. 14 (1973) 104

(G. Clément, Am. J. Phys. 57 (1989) 967)

Desired properties of traversable WHs

1. Spherically symmetric and Static ⇒ M. Visser, PRD 39(89) 3182 & NPB 328 (89) 203

2. Einstein gravity

3. Asymptotically flat

4. No horizon for travel through

5. Tidal gravitational forces should be small for traveler

6. Traveler should cross it in a finite and reasonably small proper time

7. Must have a physically reasonable stress-energy tensor

⇒ Weak Energy Condition is violated at the WH throat.

⇒ (Null EC is also violated in general cases.)

8. Should be perturbatively stable

9. Should be possible to assemble



BH and WH are interconvertible ? (New Duality?)

S.A. Hayward, Int. J. Mod. Phys. D 8 (1999) 373

• They are very similar – both contain (marginally) trapped

surfaces and can be defined by trapping horizons (TH)

• Only the causal nature of the THs differs, whether THs

evolve in plus / minus density.

Black Hole Wormhole

Locally

defined by

Achronal(spatial/null)

outer TH

Temporal (timelike)

outer THs

⇒ 1-way traversable ⇒ 2-way traversable

Einstein eqs. Positive energy density Negative energy density

normal matter

(or vacuum)
“exotic” matter

Appearance occur naturally Unlikely to occur naturally.

but constructible ???



Fate of the first traversible wormhole: Black-hole collapse or inflationary expansion
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We study numerically the stability of the first Morris-Thorne traversible wormhole, shown previously by
Ellis to be a solution for a massless ghost Klein-Gordon field. Our code uses a dual-null formulation for
spherically symmetric space-time integration, and the numerical range covers both universes connected by the
wormhole. We observe that the wormhole is unstable against Gaussian pulses in either exotic or normal
massless Klein-Gordon fields. The wormhole throat suffers a bifurcation of horizons and either explodes to
form an inflationary universe or collapses to a black hole if the total input energy, is, respectively, negative or
positive. As the perturbations become small in total energy, there is evidence for critical solutions with a certain
black-hole mass or Hubble constant. The collapse time is related to the initial energy with an apparently
universal critical exponent. For normal matter, such as a traveller traversing the wormhole, collapse to a black
hole always results. However, carefully balanced additional ghost radiation can maintain the wormhole for a
limited time. The black-hole formation from a traversible wormhole confirms the recently proposed duality
between them. The inflationary case provides a mechanism for inflating, to macroscopic size, a Planck-sized
wormhole formed in space-time foam.

DOI: 10.1103/PhysRevD.66.044005 PACS number~s!: 04.70.Bw, 04.25.Dm, 04.40.Nr, 98.80.Cq

I. INTRODUCTION

Wormholes are known as a kind of solution to the Ein-
stein equations, and have become a popular research topic,
raising theoretical possibilities of rapid interstellar travel,
time machines and warp drives. These topics sound like sci-
ence fiction, but after the influential study of traversible
wormholes by Morris and Thorne@1#, it became widely ac-
cepted as a scientific topic@2#. The only physically nonstand-
ard feature is that one has to assume negative-energy matter
to construct such a wormhole. However, such exotic matter
occurs extensively in quantum field theory and in alternative
gravitational theories such as scalar-tensor theories.

Until recently, wormholes have been studied mainly as
static or cut-and-paste models, or without an independently
defined exotic matter model. Not long ago, one of the au-
thors @3# proposed a unified theory of black holes and tra-
versible wormholes, arguing that the two are dynamically
interconvertible, and that traversible wormholes are under-
standable as black holes under negative energy density. This
opens a new viewpoint on the dynamical nature of both
black holes and wormholes, including Hawking radiation.
This synthesis has been examined using a low-dimensional
model @4#, where the theory is affirmed.

The purpose of this article is to investigate wormhole dy-
namics in four-dimensional Einstein gravity, using numerical
simulations. Our starting point is a static wormhole which is
perhaps best known as Morris and Thorne’s opening example
~their box 2!. This metric is actually a solution for a massless
Klein-Gordon field whose gravitational coupling takes the

opposite sign to normal, as was shown earlier by several
authors@5#, the earliest of which appears to be Ellis@6#, who
called it a drainhole. To our knowledge, this is the earliest
solution which would nowadays be called a traversible
wormhole.

We study dynamical perturbations of this static wormhole,
using the spherically symmetric Einstein system with the
above exotic matter model, the massless ghost Klein-Gordon
field. We developed a numerical code based on a dual-null
coordinate system in order to follow the horizon dynamics
and radiation propagation clearly. Our main experiment is to
add or subtract Gaussian pulses in the ghost field, i.e., re-
spectively, with negative or positive energy. We also consider
Gaussian pulses in a normal Klein-Gordon field to see the
effect on the wormhole of normal matter, like a human being
traversing the wormhole. We discover how the initially static
wormhole will change its structure due to these dynamic
perturbations. Although our model is specific to spherically
symmetric space-times, we believe that it illustrates the dy-
namical nature of traversible wormholes. To our knowledge,
this is the first numerical study of wormhole dynamics.

We describe our model and numerical method in Sec. II
and present numerical results in Sec. III. Section IV con-
cludes.

II. MODEL AND NUMERICAL METHOD

A. Field equations

The field equations for a massless conventional and ghost
Klein-Gordon field,c andf, respectively, in Einstein grav-
ity are, in standard notation,

R52¹c ^ ¹c22¹f ^ ¹f, ~2.1!
*Email address: shinkai@atlas.riken.go.jp
†Email address: hayward@mm.ewha.ac.kr
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Ghost pulse input – Bifurcation of the horizons
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Figure 3: Horizon locations, ϑ± = 0, for perturbed wormhole. Fig.(a) is the case we supplement the ghost field, ca = 0.1,
and (b1) and (b2) are where we reduce the field, ca = −0.1 and −0.01. Dashed lines and solid lines are ϑ+ = 0 and ϑ− = 0
respectively. In all cases, the pulse hits the wormhole throat at (x+, x−) = (3, 3). A 45◦ counterclockwise rotation of the figure
corresponds to a partial Penrose diagram.



Bifurcation of the horizons – go to a Black Hole or Inflationary expansion
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Figure 4: Partial Penrose diagram of the evolved space-time.
Figure 6: Areal radius r of the “throat” x+ = x−, plotted as a function of proper time. Additional negative energy causes
inflationary expansion, while reduced negative energy causes collapse to a black hole and central singularity.



Travel through a Wormhole – with Maintenace Operations!
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Figure 11: A trial of wormhole maintenance. After a normal scalar pulse, we signalled a ghost scalar pulse to extend the life
of wormhole throat. The travellers pulse are commonly expressed with a normal scalar field pulse, (c̃a, c̃b, c̃c) = (+0.1, 6.0, 2.0).
Horizon locations ϑ+ = 0 are plotted for three cases:
(A) no maintenance case (results in a black hole),
(B) with maintenance pulse of (ca, cb, cc) = (0.02390, 6.0, 3.0) (results in an inflationary expansion),
(C) with maintenance pulse of (ca, cb, cc) = (0.02385, 6.0, 3.0) (keep stationary structure upto the end of this range).



Discussion

Dynamics of the Ellis-Morris-Thorne traversible wormhole

⇒ WH is Unstable

(A) with positive energy pulse ⇒ Black Hole

(B) with negative energy pulse ⇒ Inflationary expansion

⇒ (A) confirms duality conjecture between BH and WH.

⇒ (B) provides a mechanism for enlarging a quantum wormhole
to macroscopic size.

• We answered to the question of :
what happens if our hero (or heroine) attempts to traverse
the wormhole.

• New discoveries of the critical behaviour.

“Science can be stranger than science fiction.”





  Unsolved Problems in GR
                         ...... many  many

Grav. Wave Physics: How can we achieve precise numerical simulations 
of coalescence of binary neutron stars and/or black holes?  Can we 
determine equation of state of neutron star?  Physically reasonable initial 
data?  How identify black-hole horizons?  Validity of new approximations? 
BH Uniqueness Theorems, No-hair Conjecture: Are colored BHs 
realistic?  In higher dim.?  Stable configuration of Black String? 
Cosmic Censorship Conjecture: Counter-examples?  Strong version? 
Hoop Conjecture: definition of quasi-local mass? Validity? In higher dim.? 
BH Thermodynamics: Why area, not volume?  Under dynamical situation? 
Dynamical Wormholes: topology change in dynamical transition?  New 
critical behavior for forming black-hole mass?  Time-machine? (closed 
timelike curve?  Chronological protection conjecture?) Wormhole 
thermodynamics? ........... etc etc



All realistic discussion requires numerical simulations.
Our understanding for numerical procedures are accumulating. 
Ready to go conjecture hunting !




