数学〔数学① (工学部)、数学② (工学部・情報科学部・知的財産学部)〕

Ⅰ 【数学 ①・数学 ② , どちらも解答】

次の空所を埋めよ。(配点40)

- (1) x>0 のとき、 $x+rac{1}{x}$ の最小値は extstyle exts
- (2) 座標平面上の点 P(a,b) (a,b>0) が円 $C:x^2+y^2=1$ 上にあるとき, b を a の式で表すと,b= <math> <math>
- (3) 曲線 $C_1: y = \log_2 x$ に対し、 C_1 を直線 y = x に関して対称に移した曲線を C_2 とする。 曲線 C_1 が点 (a, -3) を通るとき、 $a = \boxed{x}$ である。 また、曲線 C_2 と曲線 $y = 4^x - 6$ の交点の x 座標は \boxed{b} である。
- (4) 2つの平面ベクトル \vec{a} , \vec{b} が, $|\vec{a}| = 3$, $|\vec{b}| = 2$, $|\vec{a} + \vec{b}| = \sqrt{14}$ を 満たしている。このとき, $\vec{a} \cdot \vec{b} = \boxed{\mp}$ であり。 $|\vec{a} + t\vec{b}|$ の値が最小となるようなt の値は、 $t = \boxed{2}$ である。

Ⅱ 【数学 ①・数学 ② , どちらも解答】

数列 $\{a_n\}$ の階差数列 $\{b_n\}$ を $b_n=a_{n+1}-a_n$ $(n=1,\ 2,\ 3,\ \cdots)$ と定める。数列 $\{a_n\}$ が $a_1=1,\ a_3=11,\ a_4=22$ を満たし、数列 $\{b_n\}$ が等差数列であるとき,次の空所を埋めよ。(配点 35)

- (1) 数列 $\{b_n\}$ の初項は $b_1=$ $extbf{T}$ であり、公差 d の値は、 d= $extbf{T}$ である。 また、 $a_2=$ $extbf{D}$ である。
- (3) $a_n > 200$ を満たす最小の自然数 n の値は, n = カ である。

Ⅲ 【数学 ① のみ解答】

2つの自然数 $m,\,n~(m\!<\!n)$ に対し、曲線 $y\!=\!2\log x$ 上の 2 点 $A(m,2\log m),\,B(n,2\log n)$ における接線をそれぞれ $l_1,\,l_2$ とする。 $l_1,\,l_2$ と x 軸とのなす角をそれぞれ $\alpha,\,\beta$ とするとき、次の問いに答えよ。ただし、 $0<\alpha<\frac{\pi}{2},\,0<\beta<\frac{\pi}{2}$ とする。 (配点 35)

- (1) 直線 1 の方程式を求めよ。
- (2) tan α の値をm の式で表せ。
- (3) tan(α β) の値を m, n の式で表せ。
- (4) 2直線 l_1 , l_2 のなす角が $\frac{\pi}{4}$ のとき, m, n の値を求めよ。

Ⅳ [数学 ① のみ解答]

関数 $f(x)=x^2-1-\left | \, x^2-1 \, \right |$ について、次の問いに答えよ。(配点 40)

- (1) 関数 y = f(x) のグラフをかけ。
- (2) 曲線 y=f(x) と x 軸で囲まれた図形 A の面積 S を求めよ。
- (3) 図形 A を x 軸のまわりに 1 回転してできる立体の体積 V を求めよ。
- $(4) \ g(x) = \{f(x)\}^2$ とおくとき,極限値 $\lim_{h \rightarrow +0} \frac{g(-1+h) g(-1)}{h}$ を求めよ。

V 【数学 ② のみ解答】

円 $C: x^2 + y^2 = 1$ 上の点 A(0,1) と x 軸上の点 P(a,0) (a>1) に対して、直線 AP と円 C の 2 つの共有点のうち、A でない点を Q とする。 また、 \angle OPA $=\theta$ $\left(0<\theta<\frac{\pi}{4}\right)$ とし、 $t=\tan\theta$ とおく。 \angle OPA の O は原点とする。 このとき、次の空所を埋め上、(配点 35)

- (1) $\cos\theta = \boxed{7}$, $\sin\theta = \boxed{4}$, $\cos 2\theta = \boxed{\cancel{\cancel{0}}}$, $\sin 2\theta = \boxed{\cancel{\cancel{x}}}$ と表すことができる。 ただし、 $\boxed{\cancel{\cancel{7}}}$ 、 $\boxed{\cancel{\cancel{7}}}$ 、 $\boxed{\cancel{\cancel{7}}}$ 、 $\boxed{\cancel{\cancel{x}}}$ は t の式である。

VI 【数学 ② のみ解答】

放物線 $C:y=-x^2+2x+4$ と x 軸との交点を $P(\alpha,0), Q(\beta,0)$ とする。 ただし、 $\alpha<\beta$ とする。このとき、次の問いに答えよ。(配点 40)

- α と β の値を求めよ。
- (2) $0 < t < \beta$ に対して,原点 O と x 軸上の点 A (t, 0),および放物線 C 上の 点 B $(t, -t^2 + 2t + 4)$ の 3 点を頂点にもつ直角三角形 OAB の面積を S とする。 このとき、S が最大となるような t の値を求めよ。
- (3) t が (2) で求めた値をとるとき、線分 OB と y 軸、および放物線 C で囲まれた 図形の面積を求めよ。