公募制推薦入試

数学

□ 【数学①・数学②, どちらも解答】

ア	3	1	8
ウ	3 2	エ	
オ	5	カ	282
+	3 5	ク	13

Ⅲ 【数学①のみ解答】

ア	1 2
イ	t -
ウ	12 2
エ	$-2 \sin 2x$
オ	15
カ	<u>- 8</u> <u>5</u>

(1)
$$f'(x) = \frac{3}{x-1}$$

(2)
$$g'(x) = -\frac{3}{(x-1)^2} \, \, \mbox{\sharp} \, \, 0 \quad \, g'(2) = -3$$

$$l$$
の方程式は $l:y=-3x+9$

(3) 条件より,
$$a+b-5=1$$
, $a-b-5=-15$

これを解いて
$$a = -2, b = 8$$

よって
$$C: y = -2x^2 + 8x - 5$$

直線lと放物線Cの交点のx座標は

$$-3x + 9 - (-2x^2 + 8x - 5) = 2x^2 - 11x + 14 = (2x - 7)(x - 2) = 0 \text{ }$$

$$x = \frac{7}{2}, 2$$

よって 求める面積は

$$S = -\int_{2}^{\frac{7}{2}} (2x^{2} - 11x + 14) dx = -\left[\frac{2}{3}x^{3} - \frac{11}{2}x^{2} + 14x\right]_{2}^{\frac{7}{2}} = \frac{9}{8}$$

IV 【数学②のみ解答】

ア	- 1 2
1	2
ウ	2
エ	3 2
オ	1 - 2 t ²
カ	8t4-8t2+1
キ	-3

| V | 【数学②のみ解答】(解答においては、答えだけでなく計算過程も書きなさい)

(1)
$$f'(x) = 3x^2 - 3$$
 より $f'(2) = 9$ m の方程式は $m: y = 9x - 14$

(2)
$$y = ax^2 + bx = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a}$$
 より $\frac{b}{2a} = -\frac{1}{2}$, $\frac{b^2}{4a} = \frac{1}{2}$ これを解いて $a = 2, b = -2$

(3) 直線mと放物線 $y = 2x^2 - 2x$ の交点のx座標は

$$(2x^2 - 2x) - (9x - 14) = 2x^2 - 11x + 14 = (2x - 7)(x - 2) = 0 \ \sharp \ 9$$

$$x = \frac{7}{2}, \ 2$$

よって 求める面積は

$$S = -\int_{2}^{\frac{7}{2}} (2x^{2} - 11x + 14) dx = -\left[\frac{2}{3}x^{3} - \frac{11}{2}x^{2} + 14x\right]_{2}^{\frac{7}{2}} = \frac{9}{8}$$