科目名	情報通信基礎
科目名(英字)	Fundamentals of Information and Communication Engineering
ナンバリング	20CA15
年次	2年次
単位数	2
期間	後期
担当者	上野 未貴(ウエノ ミキ) 奥 宏史(オク ヒロシ)

授業のねら い・概要

情報通信技術を牽引する人工知能およびデータサイエンス分野の代表的手法を広く身につける。 具体的には、プログラミング言語の Python を用いて、統計・科学計算、機械学習のコードを実装し、 自身で興味を持ち選んだデータを加工・解析した結果を考察して他者へ説明する基礎力を養成する.

授業計画

 	テーマ	内容·方法等	予習/復習
第1回 I	ガイダンス, Python 入門 1	人工知能分野動向、プログラミング習得状況のアンケート Python における変数、演算、リスト型・辞書型を理解する。	予習:Google アカウントを準備し Google Colaboratory と Google Drive にログインできることを確認する(1時間) 復習:JupyterNotebook の使い方を確認し、テキスト 1章 -P16 までのコードを理解する(3時間)
, 第2回 !	Python 入門 2	Python における関数,条件分岐,ループ,ク ラスとインスタンスを理解する。	予習:テキスト 1 章 p. 17-30 までの説明を読む(2時間) 復習:テキスト 1 章 p.17-30 のコードを理解する (2時間)
第3回	データ加工・グラフ描画	ソート. 乱数. ライブラリ Numpy, Matplotlib の 用い方とグラフ描画方法を理解する。	予習:テキスト2章 p.32-47, p.59 の説明を読む(2時間) 復習:テキスト2章のコードを理解し, テキスト6, 7章の 応用例を確認する(2時間)
, 第4回 !	ディレクトリ操作, 記述統計	ディレクトリおよびファイル操作に必要なコマンド、量的・質的データ、 平均, 中央値, 最頻値, 分散と標準偏差を理解する。	予習:テキスト3章 p.70-80 までの説明を読む(2時間) 復習:テキスト1章 p.70-80 のコードを理解し、3章の 全体を確認する。(2時間)
, 第5回	確率統計基礎, Python による科学計算	確率の独立・従属、ベイズの定理、 Numpy を用いた計算方法; Scipy を用いた計 算方法を理解する。	予習:テキスト4章 p.97-102,5章 143-145 までの説明を読む(2時間) 寛容:テキスト4章 p.97-102,5章 p.143-145 のコードを理解し,4,5章の全体を確認する。(2時間)
 	機械学習概論1:教師あ り学習	教師あり機械学習の概要と代表例としてサポートベクターマシンを理解する。	予習:テキスト8章 p.198-202 までの説明を読む(2時間) 復習:テキスト8章 p.230-232 のコードを理解し、8章 の全体を確認する。(2時間)
, 第7回 。	機械学習概論2: 教師な し学習, 強化学習	教師なし学習と強化学習の概要、教師なし学習の代表例として k-means を理解する。	予習:テキスト9章 p.234-239 までの説明を読む(2時間) 復習:テキスト9章 p.234-239 のコードを理解し, 9章 の全体を確認する。(2時間)
第8回	データ処理と代表的手法 のまとめ	1-7 回で学んだ手法を再確認して整理し、ま とめる。	予習:1-7 週の中で学んだ手法の説明を自ら書いて整理する(2時間) 復習:1-7 週の中で学んだ手法の応用例を調べる(2時間)
 第9回 	深層学習概論: 深層畳込みニューラルネットワーク	ニューラルネットワークの歴史, 深層畳込みニューラルネットワークを理解し、 画像認識チュートリアルに取組む。	予習:講義で指定したオンライン資料を読む(2時間) 復習:実装したモデルのパラメータ変更や自作データを 用いた結果変化を調べる(2時間)
 第10回 	深層学習実践: モデルの 検証方法, チーム演習準 備	モデルの検証に重要な、過学習、混同行列、 正解率、適合率、再現率、F1 スコアを理解する。 る。 チーム演習の準備の環境構築をする。	予習:テキスト 10 章 p.274-279 までの説明と講義で指 定した資料を読む。(2時間) 復習:テキスト 10 章 p.234-239 のコードを理解し,チー ム演習で用いるデータを探す。(2時間)

第11回 	チーム演習1 	チームで用いるデータを準備し, 役割を分けて コードを実装する。 	予習:チームメンバーに説明する資料を選択する。(2時間) 間) 復習:チーム内で担当する箇所を実装する。(2時間)
第12回	チーム演習2	チームでコードを実装し、発表用のスライドを 作成する。	予習:自らの担当箇所の一部をスライドにする。(2時間) 復習:チームで発表の準備をする。(2時間)
第13回	チームプレゼン	チームで作成したコードを発表する。	予習: チーム発表の練習をする。(2時間) 復習: 自チームと他チームの発表を比較しレポートの準 備をする。(2時間)
第14回	まとめ,応用技術紹介	 全体を補足し、理解を深める。 本講義に関連する応用技術を紹介する。	予習:チーム発表を振返りコードを修正する。(2時間) 復習:期末レポートの提出のため発表内容を整理する。 (6時間)

1. Pythonにおける変数と演算を理解しプログラムを作成できる。 2. Pythonの主要なライブラリを用いたファイル操作とデータの可視化ができる。 3. 機械学習の基礎的事項を説明できる。 4. データに応じた解析手法の見通しを立て検証ができる。

[関連する学習・教育到達目標] (D-3)情報通信工学に必要な知識とソフトウェアやネットワークの技能が修得できている。 (C-3)技術的内容を伝達するブレゼンテーションができる。

評価方法

平常点:講義を通じてオンラインにてミニレポートを提出させ 20%の割合で評価 中間レポート:: 8 回目後に提出するレポートを 40 % の割合で評価 期末レポート: 13 回目のプレゼンテーション内容まとめと 14 回目後に実施する期末レポートを 40 % の割合で評価

目標1から3は必ず身に付けるべき内容(ミニマムリクワイアメント)である. 授業中に指示されるすべてのレポートを完成させ、提出する必要があ

成績評価 基準

到達目標

る. 評価A:到達目標のすべてを総合して90%以上達成している場合 評価B:到達目標のすべてを総合して80%以上達成している場合 評価C:到達目標のすべてを総合して70%以上達成している場合 評価D:到達目標のすべてを総合して60%以上達成している場合 評価F:上記以外

教科書

書名	著者名	出版社名	
1. 東京大学のデータサイエンティスト育成講座	中山浩太郎[監修], 松尾豊[協力], 塚本邦尊, 山田典一, 大澤文孝[著]	マイナビ	
2.	!		

参考書

受講心得

履修内容と進捗のまとまりに応じた質問受付・解説の時間を多く取る講義回を設ける。 科目性質上、分野先端動向をオンライン上で得て身に着ける手順の紹介や、 学生間の情報共有とフィードバックにより知識を実際に用いて議論する。 興味や疑問を持った事項を常から調査・記録し、進みゆく分野の未来を自身の頭で考えること。

オフィスアワー

月曜日5限、上野講師室(4号館5階)

実践的教育